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1. Introduction and overview

The classical Cauchy–Binet formula states that if A, B are two matrices over R (or any field) of
sizes n × N , N × n, respectively, with n � N , then

det(AB) =
∑
σ

det(Aσ )det
(

Bσ
)

(1)

where the sum is taken over all σ = (σ1 < σ2 < · · · < σn), with σi ∈ {1, . . . , N}, and where Aσ (re-
spectively Bσ ) is the n × n submatrix of A (respectively submatrix of B) obtained by deleting all
columns (respectively all rows) except those with indices in σ .

There are many proofs of this formula, each telling its own story, explaining the formula from a
different point of view. The most direct way of proving the formula is by writing down the deter-
minant as a sum over permutations and performing algebraic manipulations. This is the approach
taken in many linear algebra books; see Marcus and Minc [7, Theorem 6.1, p. 128] and Gohberg et al.
[6, Theorem A.2.1, p. 651]. A probabilistic interpretation and proof of the formula (which starts by
using the formula for a determinant) is also available [4]. On the other hand, there are many com-
binatorial proofs. Suffice, perhaps, to refer to the one chosen to be included in the “Proofs from The
Book” [2] by Aigner and Ziegler. This is a nice proof (after all, it is a proof from The Book) based on
the beautiful Gessel–Vienot lemma which states that, in a finite weighted acyclic directed graph, the
determinant of the path matrix between two sets of vertices of cardinality n each equals a sum over
all possible vertex-disjoint path systems; see [2, Chapter 29, p. 196] and [1] for details. Another very
simple proof appears in the recent book by Terence Tao [11, p. 298] on random matrices. An outline
of proof is as follows: Start from Sylvester’s determinant identity,

det(In + AB) = det(IN + B A), (2)

where In, IN are identity matrices. This can be proved in a number of ways, one of which is sketched
in [11, p. 298]. Then

zN−n det(zIn + AB) = det(zIN + B A).

When N � n, an inspection of the zN−n coefficient gives the Cauchy–Binet formula (1).
On the other hand, the Cauchy–Binet formula is a generalization of the Pythagorean theorem.

Indeed, let A be an n × N real matrix, n � N , and take B = AT , the transpose of A. Since Bσ =
(AT )σ = (Aσ )T , the formula gives

det
(

A AT ) =
∑
σ

det(Aσ )2,

which can be interpreted geometrically as follows: The parallelotope in RN generated by the n
row vectors of A has n-dimensional Lebesgue measure

√
det(A AT ). Therefore the formula says that

the square of the n-dimensional measure of an n-dimensional parallelotope, embedded in a higher-
dimensional Euclidean space, equals the sum of the squares of the measures of its projections onto
all possible n-dimensional coordinate hyperplanes. If n = 1 this reduces to the Pythagorean theorem.

The goal of this short article is to give a proof of the Cauchy–Binet formula, from an algebraic-
geometric viewpoint. If n = 1, the Cauchy–Binet formula is a triviality: it states that the inner product
of two N-dimensional vectors equals the sum of the products of their components:

(a1, . . . ,aN) · (b1, . . . ,bN)T =
N∑

σ=1

aσ bσ .

There is no need to take determinants here, because both sides involve 1 × 1 matrices, i.e., real num-
bers. What we show is that the general case, when n � 1, is the same, but on bigger vector spaces.
In Section 2 we give an account of the ingredients we need, and, in Section 3, we state and prove
the main formula (Theorem 1) without determinants and in a more general setup; a corollary of it
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is the classical Cauchy–Binet formula. Then, in Section 4, we see that the formula can be extended
to a Hilbert space, giving a generalization of the classical Parseval identity. We conclude with a few
bibliographic remarks.

2. The main ingredients

The main theorem, Theorem 1, requires two ingredients.
(i) The first is the notion of the determinant of a linear transformation F : X → X on a vector space

X of dimension d. The dimension of the linear space
∧m X of alternating m-linear maps ω : Xm → R

is
(d

m

)
. For each m, the m-th level dual F ∗ :

∧m X → ∧m X of F is defined by

F ∗ω[x1, . . . , xm] := ω[F x1, . . . , F xm]; (3)

see [10]. (Duals obey the standard composition rules: (G F )∗ = F ∗G∗ .) Since
∧d X is 1-dimensional,

the d-th level dual F ∗ is multiplication by a constant. This constant is, by definition, the determinant
of F :

F ∗ω = (det F ) · ω, ω ∈
∧d

X . (4)

(ii) The second ingredient is very simple too. Let X, Y , Z be vector spaces, and F : X → Y ,
G : Y → Z linear maps. Suppose Y is the direct sum of Y1, . . . , Y K . Let Pi : Y → Yi , 1 � i � K , be
the projections corresponding to this direct sum (so idV = P1 + · · · + P K is a partition of the identity
on V ), and let Ei : Yi → Y be the natural embedding of Yi into Y . Then, clearly,

G F =
K∑

i=1

(G Ei)(Pi F ). (5)

See Diagram 1.

3. An abstract version of the Cauchy–Binet formula

Let U , V , W be finite-dimensional vector spaces of arbitrary dimensions, and let B : U → V ,
A : V → W be two linear maps. Fix n ∈ N and consider the n-th level duals B∗ :

∧n V → ∧n U ,
A∗ :

∧n W → ∧n V . Let N be the dimension of V and let f1, . . . , f N be a basis for V . See Diagram 2.
Denote by Sn(N) the set of subsets of {1, . . . , N} of size n. For each σ ∈ Sn(N), let Vσ be the subspace
of V spanned by { f i, i ∈ σ } and consider the direct sum

V = Vσ ⊕ Vσ , (6)

where σ := {1, . . . , N} \ σ ,

Pσ : V → Vσ

is the projection of V onto Vσ along Vσ , and

Eσ : Vσ → V

is the natural embedding of Vσ into V .

Theorem 1.

(AB)∗ =
∑

σ∈Sn(N)

(Pσ B)∗(AEσ )∗, (7)
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Proof. The
(N

n

)
-dimensional space

∧n V is the direct sum of the 1-dimensional spaces
∧n Vσ , where

σ ranges in Sn(N):∧n
V =

⊕
σ∈Sn(N)

∧n
Vσ . (8)

Let Pσ :
∧n V → ∧n Vσ be projections corresponding to this direct sum, and let Eσ :

∧n Vσ → ∧n V
be natural embedding. Using (5) (with A∗ , B∗ in place of F , G , respectively, and K = (N

n

)
), we have

B∗ A∗ =
∑

σ∈Sn(N)

(
B∗Eσ

)(
Pσ A∗).

See Diagram 2. Since (see Lemma 1)

Eσ = P∗
σ , Pσ = E∗

σ ,

the theorem follows from the composition rules of the duals. �
Lemma 1.

Pσ = E∗
σ , Eσ = P∗

σ .

Proof. We identify Sn(N) with the set of strictly increasing sequences of length n with values in
{1, . . . , N}. Thus, if σ is a subset of {1, . . . , N} we let (σ1, . . . , σn) be a listing of its elements in
increasing order. To prove the first equality it suffices to show that

Pσ ω[v1, . . . , vn] = ω[Eσ v1, . . . , Eσ vn],
for all ω ∈ Λn(V ) and all v1, . . . , vn ∈ Vσ . But then Eσ vi = vi and, since Vσ is spanned by
fσ1 , . . . , fσn , it suffices to show that

Pσ ω[ fσπ(1)
, . . . , fσπ(n)

] = ω[ fσπ(1)
, . . . , fσπ(n)

], (9)

where π is a permutation of {1, . . . ,n}. Since ω = ∑
τ∈Sn(N) Pτω [this is the partition of the identity

on
∧n V corresponding to (8)] we may replace ω by Pτω in (9):

Pσ Pτω[ fσπ(1)
, . . . , fσπ(n)

] = Pτω[ fσπ(1)
, . . . , fσπ(n)

].
But then, if τ = σ the two sides are equal, and if τ �= σ the left-hand side equals zero and
Pτω[ fσπ(1)

, . . . , fσπ(n)
] = 0.

To prove the second equality it suffices to show that

Eσω[v1, . . . , vn] = ω[Pσ v1, . . . , Pσ vn],
for all ω ∈ Λn(Vσ ) and all v1, . . . , vn ∈ V . But then Eσ ω = ω. Since vi = Pσ vi + Pσ vi [corresponding
to (6)], we have

Eσω[v1, . . . , vn] = ω[Pσ v1 + Pσ v1, . . . , Pσ vn + Pσ vn]. (10)

Using the multilinearity of ω we split the right-hand side of (10) into 2n terms, all of which are zero
except the one involving only Pσ vi as arguments. �

Consider now the case where W = U . Moreover, take the number n in Theorem 1 to be equal to
their common dimension. Assume n � N = dim V to avoid trivialities. Then the linear maps (AB)∗ ,
(Pσ B)∗ , and (AEσ )∗ , appearing in formula (7), are maps between 1-dimensional spaces. Since the
spaces Vσ and U have common dimension n, we can identify them by means of a linear bijection

ϕσ : Vσ → U .



Author's personal copy

T. Konstantopoulos / Linear Algebra and its Applications 439 (2013) 2651–2658 2655

Then

(Pσ B)∗(AEσ )∗ = (Pσ B)∗ϕ∗
σ

(
ϕ−1

σ

)∗
(AEσ )∗ = (ϕσ Pσ B)∗

(
AEσ ϕ−1

σ

)∗
,

and so

(AB)∗ =
∑

σ∈Sn(N)

(ϕσ Pσ B)∗
(

AEσ ϕ−1
σ

)∗
. (11)

Since all three linear maps AB , ϕσ Pσ B , AEσ ϕ−1
σ are linear maps on the same 1-dimensional vector

space U , it follows, from the definition of the determinant, that

det(AB) =
∑

σ∈Sn(N)

det(ϕσ Pσ B)det
(

AEσ ϕ−1
σ

)
. (12)

(The role of ϕσ is to force all maps be on the same space, so we can talk about determinants.) If
U = Rn , V = RN , this proves the classical Cauchy–Binet formula (1). If N = n, then we have shown
that the determinant of the product is the product of the determinants.

Therefore (1) follows from (12). The latter is a restatement of (11). But (11) is a special case of (7)
because in (7) we allow U , V , W to be different with dimensions that may be distinct from n.

4. Multilinear Parseval’s identity

We are now going to replace the middle space V of the previous setup by a separable Hilbert space
H over the complex numbers C, having inner product 〈x, y〉. Let f1, f2, . . . be an orthonormal basis
for H . Let

∧n H be the collection of all continuous alternating multilinear functionals ω : Hn → C. In
particular,

∧1 H = H∗ is the Hilbert space dual of H . By the Riesz–Fischer theorem, f1, f2, . . . forms a
basis for

∧1 H in the sense that every ω ∈ ∧1 H can be uniquely written as ω[x] = ∑∞
σ=1 aσ 〈 fσ , x〉,

for aσ ∈ C such that
∑

σ |aσ |2 < ∞. More generally,
∧n H is a separable Hilbert space with orthonor-

mal (with respect to a suitably defined inner product) basis

fσ1 ∧ · · · ∧ fσn , σ = (σ1, . . . , σn) ∈ Sn(N),

where Sn(N) is the collection of all n-tuples (σ1, . . . , σn) of positive integers such that σ1 < · · · < σn .
Recall that the wedge product satisfies, by definition,

( f1 ∧ f2)[x, y] = f1[x] f2[y] − f1[y] f2[x],
and, more generally, fσ1 ∧ · · · ∧ fσn is obtained by antisymmetrization of the tensor product of
fσ1 , . . . , fσn . Incidentally, the direct sum of

⊕∞
n=0

∧n H (where
∧0 H := C) is the so-called alter-

nating Fock (or fermionic) space [9]. Wedge products can be defined, by linearity, between any finite
number of elements of this space.

If H1, H2 are two Hilbert spaces and F : H1 → H2 is a continuous linear function then
F ∗ :

∧n H2 → ∧n H1 is defined as before–see (3)–and is, moreover, continuous.

Theorem 2. Let H be a separable Hilbert space over C with orthonormal basis f1, f2, . . . , and let n be a
positive integer. For each σ ∈ Sn(N), let Hσ be the subspace spanned by fσ1 , . . . , fσn . Let Eσ : Hσ → H be
the natural embedding of Hσ into H and let Pσ : H → Hσ be the orthogonal projection of H onto Hσ . If U ,
W are finite-dimensional vector spaces over C and B : U → H, A : H → W continuous linear maps, then

(AB)∗ =
∑

σ∈Sn(N)

(Pσ B)∗(AEσ )∗.

If W = U with common dimension n, and if ϕσ : Hσ → U is any linear bijection, then

(AB)∗ =
∑

σ∈Sn(N)

(ϕσ Pσ B)∗
(

AEσ ϕ−1
σ

)∗
.
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In particular,

det(AB) =
∑

σ∈Sn(N)

det(ϕσ Pσ B)det
(

AEσ ϕ−1
σ

)
.

The proof of this theorem is exactly as in the finite-dimensional case. Infinite sums have to be
understood in the Hilbert space sense.

Consider now H = L2[0,1] with inner product 〈x, y〉 = ∫ 1
0 x(t)y(t)dt and the standard orthonormal

basis ek(t) = exp(i2πkt), k ∈ Z, and let U = W = Cn , for a given positive integer n. A continuous linear
map A : L2[0,1] → Cn is necessarily (Riesz representation theorem) of the form

Ax = (〈x,a1〉, . . . , 〈x,an〉) =
( 1∫

0

a1(t)x(t)dt, . . . ,

1∫
0

an(t)x(t)dt

)
, x ∈ L2[0,1],

where a1, . . . ,an ∈ L2[0,1]. A linear map B : Cn → L2[0,1] is of the form

(Bu)(t) = u1b1(t) + · · · + unbn(t), u ∈ Cn,

where b1, . . . ,bn ∈ L2[0,1]. Hence the jk-entry of the matrix of AB : Cn → Cn , with respect to the
standard basis on Cn , is given by

(AB) jk =
1∫

0

a j(t)bk(t)dt.

Consider now σ ∈ Sn(Z), i.e., σ = (σ1, . . . , σn) ∈ Zn with σ1 < · · · < σn . (There is no difficulty in
replacing N in the preceding theorem by Z.) Then Hσ is the subspace of L2[0,1] spanned by
eσ1 , . . . , eσn . So the orthogonal projection Pσ : H → Hσ is given by

Pσ x = x̂(σ1)eσ1 + · · · + x̂(σn)eσn ,

where

x̂(k) :=
1∫

0

x(t)exp(−i2πkt)dt, k ∈ Z,

are the Fourier coefficients of x. Letting ϕσ : Hσ → Cn be the linear bijection that takes eσr into the
r-th standard basis vector of Cn , for r = 1, . . . ,n, we see that the jk-entry of the matrix of ϕσ Pσ B is

(ϕσ Pσ B) jk = b̂k(σ j).

Arguing analogously, the jk-entry of the matrix of AEσ ϕ−1
σ is(

AEσ ϕ−1
σ

)
jk = â j(σk).

Hence the last formula of Theorem 2 gives

det
1� j,k�n

1∫
0

a j(t)bk(t)dt =
∑

σ∈Sn(Z)

det
1� j,k�n

[̂
a j(σk)

]
det

1� j,k�n

[
b̂ j(σk)

]
= 1

n!
∑
σ1∈Z

· · ·
∑
σn∈Z

det
1� j,k�n

[̂
a j(σk)

]
det

1� j,k�n

[
b̂ j(σk)

]
,
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where the second equality follows from the fact that applying the permutation of (σ1, . . . , σn) to both
matrices changes the sign of both determinants simultaneously and the fact that repeated indices
result into zero determinants. For n = 1, this is the standard Parseval identity.

Of course, there is nothing special about the Lebesgue measure. We can obtain formulas for any
other L2 space or other separable Hilbert spaces.

5. Remarks

My motivation for this article was due to my desire to understand some elements of random
matrix theory [3] and determinantal point processes [5]. In particular, the derivation of the ubiquitous
Tracy–Widom probability distribution [3] involves several applications of Cauchy–Binet type formulas.
When I looked at it first, a standard computational proof was not too satisfactory. I discovered that
there are many proofs, which can be roughly classified into combinatorial and algebraic ones. The
version presented in this article was inspired by the observation that the Cauchy–Binet formula is a
version of Pythagorean theorem: it is a version of the Pythagorean theorem on

∧n RN , with n � N

(which is of course isomorphic to R
(N

n

)
).

Several years ago, Zeilberger [12] “complained” that, to most contemporary mathematicians, ma-
trices and linear transformations are practically interchangeable notions and that the mainstream
‘Bourbakian’ establishment, with its profound disdain for the concrete, goes as far as to frown at the
mere mention of the word ‘matrix’. He then explains how “to [him], as well as to other ‘dissidents’
called ‘combinatorialists’, a matrix has nothing whatsoever to do with that intimidating abstract con-
cept called ‘a linear transformation between linear vector spaces’ ” and, by thinking of matrices as
putting weights on a graph, he develops a combinatorial way of interpreting and proving fundamen-
tal results such as the Cayley–Hamilton theorem. The Cauchy–Binet formula has found a nice proof,
in the Zeilberger sense, as a corollary of the Gessel–Vienot lemma. We also mention Zeng’s proof [13]
which also uses Zeilberger’s methods.

In a sense then, what we have done here is in exactly the opposite of Zeilberger’s spirit, because
the proof presented uses nothing else but the concept of a linear map between vector spaces (and
lots of definitions). Each point of view leads to different kinds of extensions. (Extensions to infinite
matrices are not easy when the combinatorial point of view is adopted.)

There are generalizations of the Cauchy–Binet formula to matrices that contain elements of a non-
commutative ring [8]. We do not know how to extend our proof to this case.

6. Note added in proof

Craig Tracy has recently pointed out to me that a proof of the Cauchy–Binet formula can also be
found in [C.A. Tracy, H. Widom, On the distributions of the lengths of the longest monotone subse-
quences in random words, Probab. Theory Related Fields 119 (2001) 350–380]. The proof is essentially
the same as the one proof appearing in [11].
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Appendix A. Diagrams

X F Y

Pi

G Z

Yi

Ei

Y =
K⊕

i=1

Yi

G F =
K∑

i=1

(G Ei)(Pi F )

Diagram 1.

W VA

Pσ

U
∧n W A∗B ∧n V B∗

Pσ

∧n U

Vσ

Eσ ∧n Vσ

Eσ

∧n V =
⊕

σ∈Sn(N)

∧n Vσ

B∗ A∗ =
∑

σ∈Sn(N)

(B∗Eσ )(Pσ A∗)

Diagram 2.
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