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INTEGRAL REPRESENTATION OF SKOROKHOD REFLECTION

VENKAT ANANTHARAM AND TAKIS KONSTANTOPOULOS

(Communicated by Edward C. Waymire)

Abstract. We show that a certain integral representation of the one-sided
Skorokhod reflection of a continuous bounded variation function characterizes

the reflection in that it possesses a unique maximal solution which solves the
Skorokhod reflection problem.

1. Introduction

The Skorokhod reflection problem has a long history. Skorokhod [10] introduced
it as a method for representing a diffusion process with a reflecting boundary at zero.
Given a continuous function X : [0,∞) → R, the standard Skorokhod reflection
problem seeks to find (Q(t), t ≥ 0) and a continuous, nondecreasing function Y :
[0,∞) → R+ with Y (0) = 0, such that Q(t) := X(t) + Y (t) ≥ 0 for all t, and∫∞

0
Q(s)dY (s) = 0. Intuitively, the latter expresses the idea that Y can increase

only at points t such that X(t) + Y (t) = 0. Skorokhod [10] showed that there is
only one such Y , namely, Y (t) = − inf0≤s≤t(X(s) ∧ 0) and thus

Q(t) = X(t) ∨ sup
0≤s≤t

(X(t)−X(s)).

We use the standard notation a ∨ b := max(a, b), a ∧ b := min(a, b). The mapping
X 7→ Q is referred to as the (one-sided) Skorokhod reflection mapping and has now
become a standard tool in probability theory and other areas. As an example, we
recall that if X is the path of a Brownian motion then Q is a reflecting Brownian
motion and Q(t) has the same distribution as |X(t)| for all t ≥ 0 [3, 9]. Several
extensions of the Skorokhod reflection mapping exist generalizing the range of X
(see, e.g., [11]) or its domain (see, e.g., [1]).

The question resolved in this paper was motivated by an application of the
Skorokhod reflection in stochastic fluid queues [7, 6]. Suppose that A,C are two
jointly stationary and ergodic random measures defined on a common probability
space (Ω,F ,P), with intensities a, c, respectively, such that a < c. Then there
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exists a unique stationary and ergodic stochastic process (Q(t), t ∈ R) defined on
(Ω,F ,P) such that, for all t0 ∈ R, (Q(t0 + t), t ≥ 0) is the Skorokhod reflection of
(Q(t0) + A(t0, t0 + t] − C(t0, t0 + t], t ≥ 0). In addition, if the random measures
A,C have no atoms then

(1.1) Q(t) =

∫ t

−∞

1(Q(s) > C(s, t]) dA(s),

for all t ∈ R, P-almost surely. The latter equation was called an “integral repre-
sentation” of Skorokhod reflection and extensions of it were formulated and proved
in [6]. The integral representation was found to be useful in several applications,
e.g. (i) in deriving the so-called Little’s law for stochastic fluid queues [2], stating
that E[Q(0)] = (a/c)EA[Q(0)], where EA is expectation with respect to the Palm
measure [4] of P with respect to A, and (ii) in deriving the form of the stationary
distribution of a stochastic process derived from the local time of a Lévy process
[5].

In an open problems session of the workshop on “New Topics at the Interface
Between Probability and Communications” [8], the second author asked whether
and in what sense (1.1) characterizes Skorokhod reflection. The question will be
made precise in Section 2 below, where the main theorem, Theorem 2.1, which
answers the question, is stated. In Section 3 the integral representation is explicitly
proved, along with some auxiliary results which are proved in order to make the
paper self-contained. Finally, in Section 4 a proof of Theorem 2.1 is given. This
requires a number of lemmas, all proved in the same section.

2. The problem

Consider a locally finite signed measure X on the Borel sets of R. Assume that
X has no atoms, i.e. X({t}) = 0 for all t ∈ R. Define

(2.1) Q∗(t) := sup
0≤s≤t

X(s, t], t ≥ 0,

where X(s, t] = X((s, t]) is the value of X at the interval (s, t]. 1 In particular,

Q∗(0) = 0.

Let X(t) := X(0, t] and write (2.1) as

Q∗(t) = X(t)− inf
0≤s≤t

X(s).

The standard terminology [3, 12] is that Q∗ solves the Skorokhod reflection problem
for the function t 7→ X(t).

Decompose X as the difference of two locally finite nonnegative measures A, C,
without atoms, i.e. write

(2.2) X = A− C.

We stress that A, C are not necessarily the positive and negative parts of X. In
other words, the decomposition is not unique. For instance, we can add an arbitrary
locally finite nonnegative measure without atoms to both A and C.

1Since X,A,C are assumed to have no atoms, we may as well write X[s, t] or X(s, t) instead of
X(s, t], and likewise for A and C, but we have chosen the notation to be consistent with possible

generalizations.
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In [6] it was proved that (2.1) also satisfies the fixed point equation referred to
as “integral representation” of the reflected process:

(2.3) Q(t) =

∫ t

0

1(Q(s) > C(s, t]) dA(s), t ≥ 0.

A simpler version of this appeared earlier in [7]; this version was concerned with
the case where C is a multiple of the Lebesgue measure. In an open problems
session of the workshop on “New Topics at the Interface Between Probability and
Communications” [8], the second author asked whether and in what sense (2.3)
implies (2.1); the question was actually asked for the special case where C is a
multiple of the Lebesgue measure.

In this note we answer this question by proving the following:

Theorem 2.1. Let A, C be locally finite Borel measures on R+ = [0,∞) with-

out atoms and consider the integral equation (2.3). This integral equation admits

a unique maximal solution, i.e. a solution which pointwise dominates any other

solution. Further, this maximal solution is precisely the function Q∗ defined by

(2.1).

We proceed as follows. First, we present some auxiliary results and also give a
proof of (2.1) ⇒ (2.3) which is different from the one found in [6]. Then we prove
Theorem 2.1 by a successive approximation scheme and by proving a number of
lemmas.

3. Proof of the integral representation and auxiliary results

We first exhibit some properties of Q∗, defined by (2.1), and also show that Q∗

satisfies the integral equation (2.3). The proof of the latter in the special case where
C is a multiple of the Lebesgue measure can be found in [7, Lemma 1] and in [2,
§3.5.3]. A more general case is dealt with in [6, Theorem 1]. We give a different
proof in Proposition 3.4 below. The lemmas below are straightforward and well-
known but we give proofs for completeness. As before, X is a locally finite Borel
measure without atoms and X = A−C is a decomposition as the difference of two
nonnegative locally finite Borel measures without atoms. We set

A(t) := A(0, t], C(t) := C(0, t].

Lemma 3.1. If 0 ≤ s ≤ s′ ≤ t and if Q∗(s) > C(s, t] then Q∗(s′) > C(s′, t].

Proof. Assume that C(s, t] < Q∗(s) = sup0≤u≤s X(u, s]. This is equivalent to

C(t)− C(s) < sup
0≤u≤s

{A(s)−A(u)− (C(s)− C(u))}

= A(s) + sup
0≤u≤s

{−A(u) + C(u)} − C(s),

that is, C(t) < A(s) + sup
0≤u≤s

{−A(u) + C(u)}.

The right-hand side of the latter is increasing in s and so replacing s by a larger s′

we obtain

C(t) < A(s′) + sup
0≤u≤s′

{−A(u) + C(u)},

which is equivalent to Q∗(s′) > C(s′, t]. �
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Lemma 3.2. Q∗ satisfies

(3.1) Q∗(t) = sup
s≤u≤t

X(u, t] ∨ (Q∗(s) +X(s, t]), 0 ≤ s ≤ t.

Proof. We show that the right-hand side of (3.1) equals the left-hand side.

sup
s≤u≤t

X(u, t] ∨ (Q∗(s) +X(s, t]) = sup
s≤u≤t

X(u, t] ∨ {( sup
0≤u≤s

X(u, s]) +X(s, t]}

= sup
s≤u≤t

X(u, t] ∨ sup
0≤u≤s

{X(u, s] +X(s, t]}

= sup
s≤u≤t

X(u, t] ∨ sup
0≤u≤s

X(u, t]

= sup
0≤u≤t

X(u, t] = Q∗(t).

�

Lemma 3.3. If 0 ≤ s ≤ t and if Q∗(s) ≥ C(s, t] then Q∗(t) = Q∗(s) +X(s, t].

Proof. We use equation (3.1), rewritten as follows:

(3.2) Q∗(t) = sup
s≤u≤t

{
X(u, t] ∨ (Q∗(s) +X(s, t])

}
.

Suppose 0 ≤ s ≤ u ≤ t and that Q∗(s) ≥ C(s, t]. Then Q∗(s) ≥ C(s, u] and so

Q∗(s) +X(s, t] ≥ C(s, u] +X(s, t]

= C(s, u] +A(s, t]− C(s, t]

= A(s, t]− C(u, t]

≥ A(u, t]− C(u, t] = X(u, t],

and this inequality implies that the term X(u, t] inside the bracket of the right-hand
side of (3.2) is not needed. Hence Q∗(t) = Q∗(s)+X(s, t], which is what we wanted
to prove. �

Define next

(3.3) σ∗(t) := sup{0 ≤ s ≤ t : Q∗(s) ≤ C(s, t]}.

By Lemma 3.1,

Q∗(s) ≤ C(s, t], if 0 ≤ s ≤ σ∗(t),(3.4a)

Q∗(s) > C(s, t], if σ∗(t) < s ≤ t,(3.4b)

provided that the last inequality is non-vacuous. Since the function Q∗ is nonneg-
ative and continuous, we also have

Q∗(σ∗(t)) = C(σ∗(t), t].

Theorem 3.4. If X is a locally finite signed Borel measure on [0,∞) without atoms

and if X = A− C is any decomposition of X as the difference of two nonnegative

locally finite Borel measures without atoms, then the function Q∗ defined by (2.1)
satisfies (2.3).
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Proof. By Lemma 3.3, and the last display,

Q∗(t) = Q∗(σ∗(t)) +A(σ∗(t), t]− C(σ∗(t), t]

= A(σ∗(t), t]

=

∫ t

σ∗(t)

dA(s)

=

∫ t

0

1(Q∗(s) > C(s, t]) dA(s),

which is the integral representation formula (2.3). Note that, to obtain the last
equality in the last display, we used (3.4a)-(3.4b). �

4. Proof of Theorem 2.1

A priori, it is not clear that (2.3) admits a maximal solution and, even if it does,
whether it satisfies (2.1). We shall show the validity of these claims in the sequel.

We fix two locally finite measures A and C and define the map Θ on the set of
nonnegative measurable functions by

(4.1) Θ(Q)(t) :=

∫ t

0

1(Q(s) > C(s, t]) dA(s), t ≥ 0.

The integral equation (2.3) then reads

Q = Θ(Q).

We observe that Θ is increasing:

(4.2) If Q ≤ Q̃ then Θ(Q) ≤ Θ(Q̃).

Here, and in the sequel, given two functions f, g : [0,∞) → R, we write f ≤ g to
mean that f(t) ≤ g(t) for all t ≥ 0. To see that (4.2) holds, simply observe that

Q ≤ Q̃ implies 1(Q(s) > C(s, t]) ≤ 1(Q̃(s) > C(s, t]) for all 0 ≤ s ≤ t.
Define next a sequence of functions (Qk, k = 0, 1, 2, . . .) by first letting

Q0 := ∞,

and then, recursively,

Qk+1 := Θ(Qk), k ≥ 0.

Clearly, Q1(t) =
∫ t

0
dA(s) = A(t). So Q0 ≥ Q1. Since Θ is an increasing map, we

see that,

Qk ≥ Qk+1 ≥ 0, k ≥ 0.

We can then define

Q∞(t) := lim
k→∞

Qk(t).

Lemma 4.1. If Q = Θ(Q) then Q ≤ Q∞. Furthermore,

Q∗ ≤ Q∞.

Proof. Suppose that Q satisfies Q = Θ(Q). Since the integrand in the right-hand
side of (4.1) is ≤ 1, we have Q(t) ≤ A(t) for all t ≥ 0. Letting Θ(k) be the k-fold
composition of Θ with itself, we have

Q = Θ(k)(Q) ≤ Θ(k)(A) = Qk,
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and so Q ≤ Q∞. In particular, Proposition 3.4 states that Q∗ = Θ(Q∗). Hence
Q∗ ≤ Q∞. �

However, it is not yet clear at this point that Q∞ is a fixed point of Θ. We can
only show that

Q∞ ≥ Θ(Q∞).

Indeed, Q∞ ≤ Qk for all k, and so 1(Q∞(s) > C(s, t]) ≤ 1(Qk(s) > C(s, t]), for
all 0 ≤ s ≤ t, implying that Θ(Q∞) ≤ Θ(Qk) = Qk+1, and, by taking limits, that
Θ(Q∞) ≤ Q∞.

Definition 4.2 (Regulating functions). Consider functions B : [0,∞) → [0,∞)
which are continuous, nondecreasing, with B(0) = 0, such that X(0, t] + B(t) ≥ 0
for all t ≥ 0. Call these functions regulating functions of X. The set of regulating
functions is denoted by R.

We define a mapping

Φ : R → R(4.3)

in two steps as follows.
Step 1: Given B ∈ R, first define

σB(t) := sup{0 ≤ s ≤ t : A(s) +B(s)− C(t) ≤ 0}, t ≥ 0.

To motivate this definition, note that if B is chosen according to the formula B(t) =
− inf0≤s≤t{A(s)−C(s)}, then σB(t) = σ∗(t) for all t, where σ∗ was defined in (3.3).
Step 2: Then let

Φ(B)(t) := B(σB(t)), t ≥ 0.

We actually need to show that what is claimed in (4.3) holds. Namely:

Lemma 4.3. If B ∈ R then Φ(B) ∈ R.

Proof. Clearly, σB(·) is nondecreasing. Since B is nondecreasing, it follows that
Φ(B) = B◦σB is nondecreasing. Also, Φ(B)(0) = B(σB(0)) = B(0) = 0. From the
continuity of A, B and the definition of σB , we have

(4.4) A(σB(t)) +B(σB(t)) = C(t), t ≥ 0.

We also have,

A(t) + Φ(B)(t)− C(t) = A(t) +B(σB(t))− C(t)

= [A(t)−A(σB(t))] + [A(σB(t)) +B(σB(t))− C(t)]

= A(t)−A(σB(t)) ≥ 0,

where we used (4.4) in the third step. It remains to show that Φ(B)(·) is continuous.
Note that σB(·) need not be continuous. However, C(·) is a continuous function
and so, by (4.4), t 7→ A(σB(t)) +B(σB(t)) is continuous. Hence

[A(σB(t+))−A(σB(t−)] + [B(σB(t+))−B(σB(t−))] = 0, for all t.

Since A(σB(·)) and B(σB(·)) are both nondecreasing, it follows that A(σB(t+))−
A(σB(t−) ≥ 0 and B(σB(t+))− B(σB(t−)) ≥ 0 and, since their sum is zero, they
are both zero, implying that A(σB(·)) and B(σB(·)) are continuous. �
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An immediate property of Φ is that

(4.5) Φ(B) ≤ B for all B ∈ R.

Indeed, for all t ≥ 0, σB(t) ≤ t and so B(σB(t)) ≤ B(t).
Starting with the function

(4.6) B1(t) := C(t), t ≥ 0,

we recursively define

(4.7) Bk+1 := Φ(Bk), k ≥ 1.

Therefore

(4.8) B1 ≥ B2 ≥ · · · ≥ Bk ↓ B∞, as k → ∞,

where the inequalities and the limit are pointwise.

Lemma 4.4. The function B∞, defined via (4.6), (4.7) and (4.8), is a member of

the class R.

Proof. B∞ is nondecreasing since all the Bk are nondecreasing. Also, B∞(0) = 0.
Since for all k, A + Bk − C ≥ 0, we have A + B∞ − C ≥ 0. We proceed to show
that B∞ is a continuous function. We observe that, for 0 ≤ t ≤ t′,

|Φ(B)(t′)− Φ(B)(t)| = |B(σB(t
′))−B(σB(t))|

= B(σB(t
′))−B(σB(t))

≤ A(σB(t
′))−A(σB(t)) +B(σB(t

′))−B(σB(t))

= [A(σB(t
′)) +B(σB(t

′))]− [A(σB(t)) +B(σB(t))]

= C(t′)− C(t),

where we again used (4.4). It follows that the family of functions {Φ(B), B ∈ R} is
uniformly bounded and equicontinuous on each compact interval of the real line. By
the Arzelà-Ascoli theorem, the family is compact and therefore B∞ is continuous.
We have established that B∞ ∈ R. �

We now claim that B∞ is a fixed point of Φ.

Lemma 4.5. Φ(B∞) = B∞.

Proof. By definition,

Φ(B∞)(t) = B∞(σB∞
(t)),

where

σB∞
(t) = sup{0 ≤ s ≤ t : A(s) +B∞(s) ≤ C(t)}.

Now, since Bk ≥ Bk+1 for all k ≥ 1, it follows that σBk
≤ σBk+1

for all k ≥ 1, and
so

σL(t) := lim
k→∞

σBk
(t)

is well-defined. Since Bk ≥ B∞ for all k ≥ 1, we have σBk
≤ σB∞

. Taking limits,
we find

σL ≤ σB∞
.
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Using the last two displays and the fact that Bk and B∞ are nondecreasing, we
have

Φ(B∞)(t) = B∞(σB∞
(t)) ≥ B∞(σL(t))

= lim
k→∞

Bk(σL(t))

≥ lim
k→∞

Bk(σBk
(t))

= lim
k→∞

Bk+1(t) = B∞(t).

By inequality (4.5), Φ(B) ≤ B for all B ∈ R and since, by Lemma 4.4, B∞ ∈ R, it
follows that we also have B∞ ≤ Φ(B∞). Therefore B∞ = Φ(B∞), as claimed. �

Lemma 4.6. Consider the function Q∗ defined by (2.1) and define a function B∗

by

B∗(t) := Q∗(t)−X(0, t], t ≥ 0.

Then

(i) B∗ ∈ R.

(ii) B∗ = Φ(B∗).

Proof. (i) We have X(0, t] + B∗(t) = Q∗(t) ≥ 0 for all t. Using (2.1) and (2.2) we
see that

(4.9) B∗(t) = sup
0≤s≤t

{−A(s) + C(s)}.

Therefore, B∗(0) = 0, and B∗ is a continuous and nondecreasing. We conclude
that B∗ ∈ R. To prove (ii), recall that Φ(B∗) = B∗

◦σB∗ where

σB∗(t) = sup{0 ≤ s ≤ t : A(s) +B∗(s) ≤ C(t)}.

Splitting the supremum in (4.9) in two parts, we obtain

B∗(t) = sup
0≤s≤σB∗ (t)

{−A(s) + C(s)} ∨ sup
σB∗ (t)≤s≤t

{−A(s) + C(s)}.

= B∗(σB∗(t)) ∨ sup
σB∗ (t)≤s≤t

{−A(s) + C(s)}.

For s ≥ σB∗(t), we have A(s) +B∗(s) ≥ C(t), i.e. −A(s) +C(s) ≤ B∗(s)−C(s, t].
Therefore

B∗(t) ≤ B∗(σB∗(t)) ∨ sup
σB∗ (t)≤s≤t

{B∗(s)− C(s, t]}

= B∗(σB∗)(t) = Φ(B∗)(t).

Thus, B∗ ≤ Φ(B∗). On the other hand, since B∗ ∈ R, we have Φ(B∗) ≤ B∗, by
(4.5). �

Lemma 4.7. Let B ∈ R be any fixed point of Φ. Then B ≤ B∗.

Proof. Since B = Φ(B) = B◦σB we have

B = B◦σ
(k)
B

where σ
(k)
B

:= σB◦ · · · ◦σB︸ ︷︷ ︸
k times

. Since

t ≥ σB(t) ≥ σB◦σB(t) ≥ · · · ≥ σ
(k)
B

(t),
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we may define

σ
(∞)
B

(t) := lim
k→∞

σ
(k)
B

(t).

By the continuity of B,

(4.10) B = B◦σ
(∞)
B

.

On the other hand, (4.4) gives

A◦σ
(k+1)
B

+B◦σ
(k+1)
B

= C◦σ
(k)
B

, k ≥ 1.

Taking the limit as k → ∞, and using the continuity of A, B and C, we have

A◦σ
(∞)
B

+B◦σ
(∞)
B

= C◦σ
(∞)
B

.

Since A(t) +B∗(t) ≥ C(t) for all t, we have

A◦σ
(∞)
B

+B∗
◦σ

(∞)
B

≥ C◦σ
(∞)
B

,

and from the last two displays we conclude that

B∗
◦σ

(∞)
B

≥ B◦σ
(∞)
B

.

Since B∗ is nondecreasing and since (4.10) holds, we have

B∗ ≥ B∗
◦σ

(∞)
B

≥ B◦σ
(∞)
B

= B,

as claimed. �

We are now ready to prove Theorem 2.1. We already know from Lemma 4.1 that
Q∗ ≤ Q∞. So we only have to prove the opposite inequality. Recall that Q1 = A
and B1 = C. Trivially then

Q1(t) + C(t) = A(t) +B1(t), t ≥ 0.

Thus, for 0 ≤ s ≤ t we have

Q1(s) > C(s, t] ⇐⇒ Q1(s) + C(s) > C(t)

⇐⇒ A(s) +B1(s) > C(t)

⇐⇒ s > σB1
(t).

From this we get

Q2(t) =

∫ t

0

1(Q1(s) > C(s, t]) dA(s)

=

∫ t

0

1(s > σB1
(t)) dA(s)

= A(t)−A(σB1
(t)).

But (4.4) gives

A(σB1
(t)) +B1(σB1

(t)) = C(t),

and so

Q2(t) + C(t) = A(t) +B1(σB1
(t)) = A(t) +B2(t), t ≥ 0.

We now claim that

Qk(t) + C(t) = A(t) +Bk(t), t ≥ 0, k ≥ 1.
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This can be proved by induction along the same lines as above. Taking limits as
k → ∞, we conclude

Q∞(t) + C(t) = A(t) +B∞(t), t ≥ 0.

Lemma 4.5 tells us that B∞ is a fixed point of Φ, and so, by Lemma 4.7,

B∞ ≤ B∗.

Hence

Q∞(t) + C(t) = A(t) +B∞(t)

≤ A(t) +B∗(t)

= Q∗(t) + C(t), t ≥ 0,

and this gives
Q∞ ≤ Q∗,

as needed.
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