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Abstract. We propose a stochastic model for a file-sharing peer-to-peer
network which resembles the popular BitTorrent system: large files are
split into chunks and a peer can download or swap from another peer
only one chunk at a time. We exhibit the fluid and diffusion limits of a
scaled Markov model of this system and look at possible uses of them to
draw practical conclusions.

1 Introduction

Peer-to-peer (p2p) activity continues to represent a very significant fraction of
overall Internet traffic, 44% by one recent account [4]. BitTorrent [1,2,8,21,18,9,19]
is a widely deployed p2p file-sharing network which has recently played a signifi-
cant role in the network neutrality debate. Under BitTorrent, peers join “swarms”
(or “torrents”) where each swarm corresponds to a specific data object (file). The
process of finding the peers in a given swarm to connect to is typically facilitated
through a centralised “tracker”. Recently, a trackerless BitTorrent client has been
introduced that uses distributed hashing for query resolution [16].

For file sharing, a peer is typically uploads upload pieces (“chunks”) of the
file to other peers in the swarm while downloading his/her missing chunks from
them. This chunk swapping constitutes a transaction-by-transaction incentive
for peers to cooperate (i.e., trading rather than simply download) to disseminate
data objects. Large files may be segmented into several hundred chunks, all of
which the peers of the corresponding warm must collect, and in the process
disseminate their own chunks before they can reconstitute the desired file and
possibly leave the file’s swarm.
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In addition to the framework in which data objects are segmented into chunks
to promote cooperation through swapping, there is a system whereby the rate at
which chunks are uploaded is assessed for any given transaction, and peers that
allocate inadequate bandwidth for uploading may be “choked” [14,17]. Choking
may also be applied to peers who, by employing multiple identities (sybils),
abuse BitTorrent’s system of allowing newly arrived peers to a swarm to just
download a few chunks (as they clearly cannot trade what they simply do not as
yet possess). BitTorrent can also rehabilitate peers by (optimistically) unchoking
them. In the following, we do not directly consider upload bandwidth and related
choking issues.

In this paper, we motivate a deterministic epidemiological model of file dis-
semination for peer-to-peer file-sharing networks that employ BitTorrent-like
incentives, a generalisation of that given in [10,11]. Our model is different from
those explored in [15,21,18] for BitTorrent, and we compute different quantities
of interest. Our epidemiological framework, similar to that we used for the spread
of multi-stage worms [12], could also be adapted for network coding systems. In
[9], the authors propose a “fluid” model of a single torrent/swarm (as we do in
the following) and fit it to (transient) data drawn from aggregate swarms. The
connection to branching process models [21,8] is simply that ours only tracks
the number of active peers who possess or demand the file under consideration,
i.e., a single swarm. Though our model is significantly simpler than that of prior
work, it is derived directly from an intuitive transaction-by-transaction Markov
process modelling file-dissemination of the p2p network and its numerical solu-
tions clearly demonstrate the effectiveness of the aforementioned incentives. A
basic assumption in the following is that peers do not distribute bogus files (or
file chunks) [20].

2 The Stochastic Model

A file is represented as a set F of size n, the elements of which are called chunks.
Consider a large networked “swarm” ofN nodes called peers. Each peer possesses
a certain (possibly empty) subset A of F . As time goes by, this peer interacts
with other peers, the goal being to enlarge his set A until, eventually, the peer
manages to collect all n chunks of F . The interaction between peers can either
be a download or a swap; in both cases, chunks are being copied from peer to
peer and are assumed never lost. A peer will stay in the network as long as he
does not possess all chunks. After collecting everything, sooner or later a peer
departs or switches off. By splitting the desired file into many chunks we give
incentives to the peers to remain active in the swarm for long time during which
other peers will take advantage of their possessions.

2.1 Possible Interactions

We here describe how two peers, labelled A,B, interact. The following types of
interactions are possible:
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1. Download: Peer A downloads a chunk i from B. This is possible only if
A is a strict subset of B. If i ∈ B then, after the downloading A becomes
A′ = A∪{i} and but B remains B because it since it gains nothing from A.
Denote this interaction by: (A ← B) � (A′, B). The symbol on the left is
supposed to show the type of interaction and the labels before it, while the
symbol on the right shows the labels after the interaction.

2. Swap: Peer A swaps with peer B. In other words, A gets a chunk j from B
and B gets a chunk i from A. It is required that j is not an element of A and
i not an element of B. We denote this interaction by (A � B) � (A′, B′),
where A′ = A∪ {j}, B′ = B ∪ {i}. We thus need A \B �= ∅ and B \A �= ∅.

2.2 Notation

The set of all combinations of n chunks, which partition F , is denoted by P(F ),
where |P(F )| = 2n and the empty set is included. We write A ⊂ B (respectively,
A � B) when A is a subset (respectively, strict subset) of B. We (unconvention-
ally) write

A � A′ when A ⊂ A′ and |A′ −A| = 1.

If A∩B = ∅, we use A+B instead of A∪B; if B = {b} is a singleton, we often
write A+ b instead of A+ {b}. If A ⊂ B we use B −A instead of B \A. We say
that

A relates to B (and write A ∼ B) when A ⊂ B or B ⊂ A;

if this is not the case, we write A �∼ B. Note that A �∼ B if and only if two peers
labelled A, B can swap chunks. The space of functions (vectors) from P(F ) into
Z+ is denoted by Z

P(F )
+ . The stochastic model will take values in this space.

The deterministic model will evolve in R
P(F )
+ . We let eA ∈ Z

P(F )
+ be the vector

with coordinates
eB

A := 1(A = B), B ∈P(F ).

For x ∈ Z
P(F )
+ or R

P(F )
+ we let |x| := ∑

A∈P(F ) |xA|.

2.3 Defining the Rates of Individual Interactions

We follow the logic of stochastic modelling of chemical reactions or epidemics and
assume that the chance of a particular interaction occurring in a short interval of
time is proportional to the number of ways of selecting the peers needed for this
interaction [13]. Accordingly, the interaction rates must be given by the formulae
described below.

Consider first finding the rate of a download A← B, where A � B, when the
state of the system is x ∈ Z

P(F )
+ . There are xA peers labelled A and xB labelled

B. We can choose them in xAxB ways. Thus the rate of a download A ← B
that results into A getting some chunk from B should be proportional to xAxB .
However, we are interested in the rate of the specific interaction (A ← B) �
(A′, B), that turns A into a specific set A′ differing from A by one single chunk
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(A � A′); there are |B − A| chunks that A can download from B; the chance
that picking one of them is 1/|B −A|. Thus we have:

(DR)

⎧
⎨

⎩
the rate of the download (A← B) � (A′, B) equals βxA xB

|B −A| ,
as long as A � A′ ⊂ B,

where β > 0.
Consider next a swap A � B and assume the state is x. Picking two peers

labelled A and B (provided that A �∼ B) from the population is done in xAxB

ways. Thus the rate of a swap A � B is proportional to xAxB . So if we fix two
chunks i ∈ A \ B, j ∈ B \ A and specify that A′ = A + j, B′ = B + i, then the
chance of picking i from A \B and j from B \A is 1/|A \B||B \A|. Thus,

(SR)

⎧
⎨

⎩
the rate of the swap (A � B) � (A′, B′) equals γ

xAxB

|A \B||B \A| ,
a long as A � A′, B � B′, A′ −A ⊂ B, B′ −B ⊂ A,

where γ > 0.

2.4 Deriving the Markov Chain Rates

Having defined the rates of each individual interaction we can easily define rates
q(x, y) of a Markov chain in continuous time and state space Z

P(F )
+ as follows.

Define functions λA,A′ , μA,B : R
P(F ) → R by:

λA,A′(x) :=

[

βxA
∑

C:C⊃A′

xC

|C −A|

]

1(A � A′) (1a)

μA,B(x) := γ
xAxB

|A \B||B \A| 1(A �∼ B). (1b)

Consider also constants δ ≥ 0 and αA ≥ 0 for A ∈ P(F ), i.e., α ∈ R
P(F )
+ . The

transition rates of the closed conservative Markov chain are given by:

q(x, y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λA,A′(x), if y = x− eA + eA′

μA,B(x), if

{
y = x− eA − eB + eA′ + eB′

A � A′, B � B′, A′ −A ⊂ B,B′ −B ⊂ A,
αA if y = x+ eA

δxF if y = x− eF

0, for any other value of y �= x,

(2)

where x ranges in Z
P(F )
+ .

A little justification of the first two cases is needed: that q(x, x − eA − eB +
eA′ + eB′) = μA,B(x) is straightforward. It corresponds to a swap, which is only
possible when A � A′, B � B′, A′ − A ⊂ B,B′ − B ⊂ A. The swap rate was
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defined by (SR). To see that q(x, x − eA + eA′) = λA,A′(x) we observe that a
peer labelled A can change its label to A′ � A by downloading a chunk from
some set C that contains A′, so we sum the rates (DR) over all these possible
individual interactions to obtain the first line in (2). We can think of having
Poisson process of arrivals of new peers at rate |α|, and that each arriving peer
is labelled A with probability αA/|α|. Peers can depart, by definition, only when
they are labelled F and it takes an exponentially distributed amount of time
(with mean 1/δ) for a departure to occur. Thus, q(x, x − eF ) = δxF . We shall
let Q denote the generator of the chain, i.e. Qf(x) =

∑
y(f(y) − f(x))q(x, y),

when f is an appropriate functional of the state space.

Definition 1 (BITTORRENT[x0, n, α, β, γ, δ]). Given x0 ∈ Z
P(F )
+ (initial con-

figuration), n = |F | ∈ N (number of chunks), α ∈ R
P(F )
+ (arrival rates),

β > 0 (download rate), γ ≥ 0 (swap rate), δ ≥ 0 (departure rate) we let
BITTORRENT[x0, n, α, β, γ, δ] be a Markov chain (Xt, t ≥ 0) with transition rates
(2) and X0 = x0. We say that the chain (network) is open if αA > 0 for at least
one A and δ > 0; it is closed if αA = 0 for all A; it is conservative if it is closed
and δ = 0; it is dissipative if it is closed and δ > 0.

In a conservative network, we have q(x, y) = 0 if |y| �= |x| and so |Xt| = |X0|
for all t ≥ 0. Here, the actual state space is the simplex {x ∈ Z

P(F )
+ : |x| = N},

where N = |X0|. It is easy to see that the state eF is reachable from any other
state, but all rates out of eF are zero. Hence a conservative network has eF as a
single absorbing state.

In a dissipative network, we have |Xt| ≤ |X0| for all t ≥ 0. Here the state space
is {x ∈ Z

P(F )
+ : |x| ≤ N}, where N = |X0|. It can be seen that a dissipative

network has many absorbing points.
In an open network, there are no absorbing points. On the other hand, one

may wonder if certain components can escape to infinity. This is not the case:

Lemma 1. If αF > 0 then the open BITTORRENT[x, n, β, γ, α, δ] is positive re-
current Markov chain.

Proof. (sketch) If αF > 0, δ > 0 the Markov chain is irreducible. The remain-
der of the proof is based on a the construction of a simple Lyapunov function:
V (x) := |x|, for which it can be shown that there is a bounded set of states
K such that supx �∈K(QV )(x) < 0. Perhaps the easiest way to see this is by ap-
pealing to the stability of the corresponding ODE limit; see Theorem 1 below
and [7]. �

3 Macroscopic Description: Fluid Limit and Diffusion
Approximation

Analysing the Markov chain in its original form is complicated. We thus resort
to a first-order approximation by an ordinary differential equation (ODE). Let
v(x) be the vector field on R

P(F )
+ with components vA(x) defined by
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vA(x) = αA − xA
(
βϕA

d (x) + γϕA
s (x)

)

+ β
∑

B:A⊂B

ψA
d (x)xB

1 + |B \A| + γ
∑

B:A �⊂B

ψA,B
s (x)xB

1 + |B \A| − δx
F1(A = F ), (3)

where

ϕA
d (x) :=

∑

B⊃A

xB, ϕA
s (x) :=

∑

B �∼A

xB

ψA
d (x) :=

∑

a∈A

xA−a, ψA,B
s (x) :=

∑

a∈A∩B

xA−a (4)

Consider the differential equation

ẋ = v(x) with initial condition x0. (5)

Consider the sequence of stochastic models BITTORRENT[XN,0, n,Nα,
β
N ,

γ
N , δ]

for N ∈ N and let XN,t be the corresponding jump Markov chain.

Theorem 1. There is a has a unique smooth (analytic) solution to (5), denoted
by xt for t ≥ 0. Also, if there is an x0 ∈ R

P(F )
+ such that XN,0/N → x0 as

N →∞, then for any T, ε > 0,

lim
N→∞

P
(

sup
0≤t≤T

|N−1XN,t − xt| > ε
)

= 0.

Proof. See [11].
Next, let

YN,t :=
√
N(XN,t/N − xt).

For each y ∈ Z
P(F )
+ let Wy be a standard one-dimensional Brownian motion;

suppose that these Brownian motions are independent over y. Define the (time-
inhomogeneous) Gaussian diffusion process Y by

dY (t) =
∑

y

(y − xt)
√
q(xt, xt + y)dWy(t) +Dv(xt)Y (t)dt,

where Dv(x) is the matrix of partial derivatives of v(x). Due to the form the
rates (2), the first sum ranges over finitely many y and so only finitely many
Brownian motions are needed.

Theorem 2. If
√
N(XN,t/N − x0) → 0 as N → ∞, where x0 ∈ R

P(F )
+ , then

the law of YN (as a sequence of probability measures in D[0,∞) with the topology
of uniform convergence on compacta) converges weakly to the law of Y .

Proof. We refer to [13] for the relevant arguments.
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4 Examples

Suppose that F consists of n = 2 chunks. The limiting ODE is easily found to
be:

ẋ∅ = α∅ − βx∅(x1 + x2 + x12)

ẋ1 = α1 − x1(βx12 + γx2) + βx∅(x1 + 1
2x

12)

ẋ2 = α2 − x2(βx12 + γx1) + βx∅(x2 + 1
2x

12)

ẋ12 = α12 + β(x1 + x2)x12 + 2γx1x2 − δx12.

We look at its behaviour in three cases. To make things easier, assume that
γ = 0.

4.1 Closed Conservative System: α1 = α2 = α12 = 0, δ = 0

Letting x = x∅, u = x1 + x2, w = x12, assuming that x + u + w = 1, and
eliminating the variable w we obtain

ẋ = −βx(1 − x)
u̇ = βu2 − βu(1− x) + βx(1 − x).

Fig. 1. Typical vector field plot for a closed conservative BitTorrent model

The vector field in the x− u plane is depicted in Figure 1. The unique equi-
librium point x = 0, u = 0 corresponds to w = 1, i.e. everybody possesses the
full file. By solving the equation in x, substituting into the equation for u, we
find the explicit solution

wt =
x0 + (1− x0)eβt

x0 + (1− x0)eβt + x0βt+ (1 − w0)w−1
0

,

from which one can estimate the time required for w to reach an ε-neighbourhood
of the equilibrium, which can be turned into an estimate for the original stochas-
tic system.
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4.2 Closed Dissipative System: α1 = α2 = α12 = 0, δ > 0

With x = x∅, u = x1 +x2, w = x12 as before, change the time variable to s = βt,
let ρ = δ/β, and write x′ for dx/ds, to obtain:

x′ = −x(u+ w)
u′ = −uw + x(u + w)
w′ = uw − ρw.

Assume x0 + u0 + w0 = 1, so that xt + ut + wt < 1 for all t > 0. We cannot
eliminate the variable w now since there is no obvious conserved quantity, but
we can study the equilibria of the system. It is easily seen that the only equilibria
are of the form (0, u, 0) which are unstable if u > ρ and stable if u < ρ. In terms
of the original variables, the stable equilibria are (x∅, x1, x2, x12) = (0, x1, x2, 0),
0 ≤ x1 + x2 < ρ. This is as expected: since there is no swapping (γ = 0), the
system eventually settles to a situation where there are peers with label 1 and
peers with label 2. Had γ been positive, x1, x2 could not have simultaneously
been positive in equilibrium.

4.3 Open System: α1 = α2 = 0, α12 = λ > 0, δ > 0

Choosing variables appropriately, we have

x′ = −x(u+ w)
u′ = −uw + x(u + w)
w′ = λ+ uw − ρw.

The system eventually settles to the unique stable equilibrium (x, u, w) =
(0, 0, λ/ρ). It is easily seen that the eigenvalues of the differential of the vec-
tor field at this point are −λ/ρ and −ρ (the first one has algebraic multiplicity
1 but geometric multiplicity 2), and so there is no possibility of spiralling.

(0, 0, λ/ρ )

x

u

w

Fig. 2. Trajectory for open system
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5 Performance Improvement in Presence of BitTorrent
Incentives

To split or not to split? The answer is yes, but not always. We can address this
question by looking at the behaviour of the �1-norm |x∗| of the unique equilibrium
point of an open system as the number of chunks (dimension) increases.

As an example, consider a situation where peers possessing nothing arrive at
rate λ, download at rate β and depart at rate δ once they have the full file. This
is described by

ẋ∅ = λ− βx∅x1

ẋ1 = βx∅x1 − δx1.

The globally attracting stable equilibrium is given by x∗ = (δ/β, λ/δ).
Suppose now that we split into n = 2 chunks. Peers arrive and depart at

the same rates but download at a rate β̃ ≥ β and swap at rate γ̃. The new
equilibrium is easily found to be

x̃∗ =
(
δ

β̃

( δ

λ
u+ 1

)−1
,
u

2
,
u

2
,
λ

δ

)

,

where u is the positive number which solves

q(u) := u2 +
2β̃λ
γ̃δ

u− 2λ
γ̃

= 0. (6)

The following is shown in [11]:

Lemma 2

1. x̃∗∅ < x∗∅.
2. |x∗| > |x̃∗| if and only if u < ũ, where ũ is the unique positive number which
satisfies

q̃(ũ) := ũ2 − ( δ

β
− λ

δ

)
ũ− (λ

β
− λ

β̃

)
. (7)

Furthermore, there exists a λ0 > 0 such that for all λ < λ0 (7) holds.

6 Conclusions and Open Problems

We proposed a stochastic model of a BitTorrent-like network and showed the
existence of an ODE limit, along with a diffusion approximation. Several simula-
tions [10] test the suitability of the model. Proofs of some of the results presented
in this paper can be found in [11]. One can look at the ODE limit and, more
specifically, its equilibria in order to obtain crude information about the station-
ary distribution of the original model. This requires proving a certain robustness
result, as explained in [11, Sec. 5]. Rates of convergence to the ODE limit is an-
other interesting open problem. Its solution requires estimating bounds on the
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vector field and its derivative. A criticism of the model is that the ODE lives in
a high-dimensional space. One can reduce the dimension under some symmetry
assumptions on the initial state and the parameters of the model [11, Sec. 7].
Another drawback is the Markovian assumption requires that times between
transactions are exponential; this is clearly violated in practise (download times
are typically heavy-tailed random variables). A quick fix of this problem is to
represent the Markov process on a probability space supporting i.i.d. Poisson
processes and then replace these by more general renewal processes.
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