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Abstract. We consider a quadruple (Ω,A , ϑ, μ), where A is a σ-algebra of subsets

of Ω, and ϑ is a measurable bijection from Ω into itself that preserves a finite measure

μ. For each B ∈ A , we define and study the measure μB obtained by integrating on B

the number of visits to a set of the trajectory of a point of Ω before returning to B. In

particular, we obtain a generalization of Kac’s formula and discuss its relation to discrete-

time Palm theory. Although classical in appearance, its use in obtaining uniqueness of

invariant measures of various stochastic models seems to be new. We apply the concept

to countable Markov chains and Harris processes in general state space.

1. Introduction. This paper started with the following question. It is classical that,

for a Markov chain (Xn, n ≥ 0) with a countable state space S possessing a positive

recurrent state b ∈ S, there is at least one invariant probability measure π(b) on S which

is defined by the usual “cycle formula”: Let tb be the first return time to b and set

π(b)(A) =
1

Ebtb
Eb

tb−1∑
n=0

1(Xn ∈ A),

where 1(·) denotes the indicator function. To show that π(b) is the only invariant prob-

ability measure, we need, in addition, to ensure that the only positive recurrent states

are those that communicate with b (this holds, for instance, if the chain is irreducible).

There are several proofs of uniqueness, ranging from analytic [by means of the Perron-

Frobenius theorem which itself can be proved in a number of ways—see, e.g., Lind and

Marcus [9] for a geometric proof] to probabilistic [by means of applying the Doeblin cou-

pling construction; this requires, in addition, aperiodicity—see, e.g., Norris [12, Theorem
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1.8.3]. The question we posed is whether there is a way to prove uniqueness directly from

the way that π(b) is constructed by the cycle formula. If so, can we do this for Markov

chains in a general state space?

In answering the question, we abstracted the problem and lifted it to a general measur-

able space (Ω,A ) endowed with a measurable bijective transformation ϑ that preserves

some finite measure μ. The point of view appears to be new, although the tools used

below are quite natural in ergodic theory and in the construction of Palm probabilities.

The origin of these tools can be traced, as far as we can tell, to a paper by Kac [7] where

the so-called Kac formula (see Corollary 2.10) is proved. In Section 2 we define, for each

B ∈ A , the forward and backward hitting times of B by the iterates of ϑ (called T+
B and

T−
B , respectively) and the measures

μ±
B(A) =

∫
B

dμ

T±
B −1∑
n=0

1ϑ−nA.

Theorem 2.4 states that the two measures are identical, called μB, for simplicity, and

that

μB(A) = μ(A, T+
B < ∞) = μ(A, T−

B < ∞).

Thus, for all B such that μ(B) > 0, Poincaré’s recurrence lemma (Lemma 2.1 in this

paper) implies that μB = μ. In addition, Section 2 contains several facts about the

measures μB such as their relation to discrete-time Palm theory and their behaviour

as functions of B. In Section 3, we consider a Markov chain on a countable set S.

Assuming irreducibility and positive recurrence, the previous observation immediately

yields a unique probability measure π on S such that πP = π, which answers the original

question. Finally, in Section 4, we consider a Harris chain and show uniqueness of the

invariant probability measure constructed by means of cycles away from a recurrent

regeneration set R.

A few words about the notation used in the paper: we find it less cumbersome to

sometimes replace the symbol for intersection between two sets by a simple comma (this

is customary in probability theory). So, for instance, μ(A, T+
B < ∞) should be read as

μ(A ∩ {T+
B < ∞}).

2. The master formula. Let (Ω,A ) be a measurable space endowed with an au-

tomorphism ϑ, that is, a measurable function ϑ : Ω → Ω such that the inverse function

ϑ−1 : Ω → Ω exists and is also a measurable. As in ergodic theory [see, e.g., Petersen

[16]], we shall consider the group (ϑn, n ∈ Z) acting on Ω.

For A,B ∈ A define the following functions:

T+
B ≡ TB(ω;ϑ) := inf{n ≥ 1 : ϑnω ∈ B}, T−

B ≡ TB(ω;ϑ
−1), (2.1a)

M+
B (A) ≡ MB(A,ω;ϑ) :=

∑
0≤n<TB(ω;ϑ)

1(ϑnω ∈ A), M−
B (A) ≡ MB(A,ω;ϑ−1). (2.1b)

They are both measurable and may assume the value +∞.

Consider the forward trajectory, or orbit, (ω, ϑω, ϑ2ω, . . .) of the point ω ∈ Ω. Then

M+
B (A)(ω) gives the number of times the forward orbit visits the set A up to (and not
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including) the time T+
B (ω) it visits the set B for the first time. A similar interpretation

can be given forM−
B (A)(ω) with respect to the backwards trajectory (ω, ϑ−1ω, ϑ−2ω, . . .).

In addition to the above, we assume that there is a finite measure μ on (Ω,A ) which

is preserved by ϑ. First, recall the following standard result, a short proof of which

(amongst the many possible ones, e.g., [16, 17, 18]) is given for completeness:

Lemma 2.1 (Poincaré recurrence). Let μ be a finite measure on (Ω,A ) which is preserved

by ϑ. Then, for all B ∈ A ,

μ(B) = μ(B, T−
B < ∞) = μ(B, T+

B < ∞). (2.2)

Proof. We have {T−
B = ∞} =

⋂
n≥1 ϑ

nBc. Since μ(Bc) < ∞, using the monotone

convergence theorem, we obtain

μ(Bc, T−
B = ∞) = lim

n→∞
μ(Bc ∩ ϑBc ∩ · · · ∩ ϑn−1Bc)

= lim
n→∞

μ(ϑBc ∩ ϑ2Bc ∩ · · · ∩ ϑnBc) = μ(T−
B = ∞).

Since both sides of this are finite, we have μ(B, T−
B = ∞) = μ(T−

B = ∞) − μ(Bc, T−
B =

∞) = 0. Therefore,

μ(B) = μ(B, T−
B = ∞) + μ(B, T−

B < ∞) = μ(B, T−
B < ∞), (2.3)

which concludes the proof of the first equality in (2.2). Working similarly, we obtain the

equality for T+
B . �

Remark 2.2. In other words, T+
B < ∞ and T−

B < ∞, μ-a.e. on B:

μ(B, T−
B = ∞) = μ(B, T+

B = ∞) = 0. (2.4)

Remark 2.3. Note also that

μ(B) = 0 ⇐⇒ μ(T+
B < ∞) = 0 ⇐⇒ μ(T−

B < ∞) = 0. (2.5)

Indeed, if μ(B) > 0, then, by (2.3), μ(T±
B < ∞) ≥ μ(B) > 0. On the other hand, if

μ(B) = 0, then μ(T+
B < ∞) = μ(

⋃
n≥1 ϑ

−nB) ≤
∑

n≥1 μ(ϑ
−nB) =

∑
n≥1 μ(B) = 0.

These are used in proving the main formulae of this paper:

Theorem 2.4. If the finite measure μ on (Ω,A ) is preserved by ϑ, then, for all A,B ∈ A ,

μ+
B(A) :=

∫
B

M+
B (A)dμ =

∫
A

1(T−
B < ∞)dμ, (2.6a)

μ−
B(A) :=

∫
B

M−
B (A)dμ =

∫
A

1(T+
B < ∞)dμ. (2.6b)

Furthermore, the two measures μ+
B and μ−

B are identical.

Proof. We show the first relation; the second one can be proved in a similar way.

Suppose first that μ(B) > 0. Then using Fubini’s theorem, and the assumption that μ
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is preserved by ϑ we have∫
B

M+
B (A)dμ = μ(A ∩B) +

∑
n≥1

μ(B ∩ ϑ−1Bc ∩ · · · ∩ ϑ−nBc ∩ ϑ−nA)

= μ(A ∩B) +
∑
n≥1

μ(ϑnB ∩ ϑn−1Bc ∩ · · · ∩Bc ∩ A)

= μ(A ∩B) +
∑
n≥1

μ(T−
B = n,A ∩Bc)

= μ(A ∩B) + μ(A ∩Bc, T−
B < ∞)

= μ(A ∩B, T−
B = ∞) + μ(A ∩B, T−

B < ∞) + μ(A ∩Bc, T−
B < ∞)

= μ(A, T−
B < ∞), (2.7)

where we used (2.4) to obtain the last equality. If μ(B) = 0, then the danger exists that

the quantity M+
B (A) may be infinite since T+

B may assume the value +∞. However, since

T+
B < ∞, μ-a.e. on B, we have∫

B

M+
B (A)dμ ≤

∫
B

M+
B (Ω)dμ =

∫
B

T+
B dμ = 0.

On the other hand, by (2.5), we have μ(T−
B < ∞) = 0 and so∫

A

1(T−
B < ∞)dμ = 0.

Thus, if μ(B) = 0, both sides of (2.6a) are equal to zero.

We next show that μ+
B = μ−

B by showing that the right-hand sides of (2.6a) and (2.6b)

are equal. Observe that, for all N ∈ Z,

{T+
B = ∞} = {T+

B ◦ ϑN = ∞}, μ− a.e.,

in the sense that the μ-measure of the symmetric difference of the two sets is zero. This

follows from the fact that both sets have equal μ-measure and that T+
B = ∞ implies that

T+
B ◦ ϑN = ∞ if N > 0 or is implied by it if N < 0. Therefore,1

{T+
B = ∞} =

⋂
N∈Z

{T+
B ◦ ϑN = ∞}, μ− a.e.

But the last event can be written as
⋂

n∈Z
ϑnBc. Since the sets {T+

B = ∞} and⋂
n∈Z

ϑnBc are μ-a.e. equal, we have that, for all A ∈ A ,

μ(A, T+
B = ∞) = μ(A ∩

⋂
n∈Z

ϑnBc).

By the same argument, we have

μ(A, T−
B = ∞) = μ(A ∩

⋂
n∈Z

ϑnBc),

so the right-hand sides of (2.6a) and (2.6b) are identical. It follows that μ+
B = μ−

B. �
Remark 2.5. Since the two measures are the same, we shall simply use the symbol

μB for either of μ±
B.

1If B0 = Bn, μ-a.e., for all n ≥ 1, then B0 = B, μ-a.e., where B =
⋂

n≥1 Bn. To see this notice that

μ(Bc
0 ∩ B) ≤ μ(Bc

0 ∩B1) = 0 and μ(B0 ∩Bc) ≤
∑

n≥1 μ(B0 ∩Bc
n) = 0.
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Next, besides the measures μ and μB, we are going to consider the restriction μ|B of

μ on the set B, defined by

μ|B(A) := μ(B ∩ A). (2.8)

We let

Ω+
B := {T+

B < ∞},

and define the measurable function ϑT+
B : Ω → Ω by

(
ϑT+

B
)
(ω) :=

{
ϑT+

B (ω)(ω), ω ∈ Ω+
B

ω, otherwise.

We define ϑ−T+
B , ϑT−

B , and ϑ−T−
B in a similar way.

We shall see that μ|B is preserved by ϑT+
B and ϑT−

B .

Proposition 2.6. If the finite measure μ on (Ω,A ) is preserved by ϑ, then its restriction

μ|B on some B ∈ A is preserved by ϑT+
B and by ϑT−

B ; i.e., for all A,B ∈ A ,

μ|B((ϑ
T+
B )−1A) = μ|B((ϑ

T−
B )−1A) = μ|B(A).

Proof. By the definition of ϑT+
B we have

(ϑT+
B )−1A = {T+

B = ∞, A} ∪
∞⋃

n=1

{T+
B = n, ϑ−nA}.

Hence

μ|B((ϑ
T+
B )−1A) = μ(B ∩A, T+

B = ∞) +
∞∑

n=1

μ(B ∩ ϑ−nA, T+
B = n).

Due to (2.4) the first term is zero and so

μ|B((ϑ
T+
B )−1A) =

∞∑
n=1

μ(B ∩ ϑ−nA, T+
B = n)

=

∞∑
n=1

μ(B ∩ ϑ−nA ∩ ϑ−1Bc ∩ · · · ∩ ϑ−(n−1)Bc ∩ ϑ−nB)

=

∞∑
n=1

μ(B ∩ ϑ−1Bc ∩ · · · ∩ ϑ−(n−1)Bc ∩ ϑ−n(A ∩B))

=
∞∑

n=1

μ(ϑnB ∩ ϑn−1Bc ∩ · · · ∩ ϑBc ∩ A ∩B)

=
∞∑

n=1

μ(T−
B = n,A ∩B) = μ(T−

B < ∞, A ∩B) = μ(A ∩B),

where the latter equality follows again from (2.4). The assertion about T−
B is proved in

the same manner. �

Proposition 2.7. If the finite measure μ on (Ω,A ) is preserved by ϑ, then, for all

B ∈ A , the measure μB, defined by either (2.6a) or (2.6b), is also preserved by ϑ.
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Proof. Note that

M+
B (ϑ−1A)−M+

B (A) = 1
(ϑT

+
B )−1A

− 1A.

Integrating both sides against μ on the set B we obtain∫
B

M+
B (ϑ−1A)dμ−

∫
B

M+
B (A)dμ = μ(B ∩ (ϑ−T+

B )−1A)− μ(B ∩ A).

From the definition of the measure μ+
B , we have that the left-hand side equals μ+

B(ϑ
−1A)−

μ+
B(A), and from the definition of the measure μ|B we have that the right-hand side equals

μ|B((ϑ
T+
B )−1A)− μ|B(A), so:

μ+
B(ϑ

−1A)− μ+
B(A) = μ|B((ϑ

T+
B )−1A)− μ|B(A).

But the right-hand side is zero, thanks to Proposition 2.6. Hence μ+
B is preserved by

ϑ. �
Remark 2.8. Some results do not require the invertibility of ϑ. For instance, recall

formula (2.2): μ(B) = μ(B, T+
B < ∞) = μ(B,

⋃∞
n=1 ϑ

−nB). This holds for any μ-

preserving measurable map ϑ. However, the main formulae (2.6a)–(2.6b) that exhibit

the “duality” between forward and backward iterates of ϑ, do require invertibility. On

the other hand, even without using Theorem 2.4 and Propositions 2.6–2.7, we can show

that the measure νB(A) := μ(A, T−
B < ∞) satisfies νB(ϑA) = νB(A) directly. To do this,

note that {T−
B < ∞} =

⋃
n≥1 ϑ

nB, so ϑ−1{T−
B < ∞} =

⋃
n≥0 ϑ

nB = B ∪ {T−
B < ∞}

and write

μ(ϑA, T−
B < ∞) = μ(A,B ∪ {T−

B < ∞})
= μ((A \B) ∪ (A ∩B), B ∪ {T−

B < ∞})
= μ(A \B, T−

B < ∞) + μ(A ∩B, T−
B < ∞)

= μ(A, T−
B < ∞).

This, incidentally, gives a second proof of Proposition 2.7.

2.1. The case of a probability measure. Assume now that μ is a probability measure,

i.e., μ(Ω) = 1. Write P instead of μ and let E denote integration with respect to it.

Thus Theorem 2.4 reads

PB(A) = E1BM
+
B (A) = P (A, T+

B < ∞).

Note that PB is not necessarily a probability measure. We then have a number of

important corollaries, the first of which concerns the total mass of PB.

Corollary 2.9. If P is a probability measure on (Ω,A ), then

PB(Ω) = E[T+
B 1B ] = P (T−

B < ∞) = E[T−
B 1B] = P (T+

B < ∞) ≤ 1. (2.9)

Proof. Let A = Ω in (2.6a):∫
B

M+
B (Ω)dP =

∫
Ω

1(T−
B < ∞)dP.

But M+
B (Ω) = T+

B and so the left-hand side equals E[T+
B 1B ], proving the first equality

in (2.9). The other equalities follow from the last part of Theorem 2.4. �
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For A,B ∈ A , we let, as usual, P (A|B) := P (A∩B)/P (B), provided that P (B) > 0.

For a random variable X : Ω → R let E(X|B) := E(X1B)/P (B) if P (B) > 0 and

E(|X|1B) < ∞.

Corollary 2.10 (Kac formula). If P is a probability measure on (Ω,A ) and B ∈ A

with P (B) > 0, then

E(T+
B |B) =

1

P (B|T−
B < ∞)

= E(T−
B |B) =

1

P (B|T+
B < ∞)

.

Proof. From Corollary 2.9 we have E[T+
B 1B ] ≤ 1, and, by assumption, P (B) > 0;

therefore E(T+
B |B) = E[T+

B 1B ]/P (B) can be defined. From Corollary 2.9 again, we

have E[T+
B 1B ] = P (T−

B < ∞). Note also that we can define P (B|T−
B < ∞) since, by

Poincaré’s recurrence, P (T−
B < ∞) ≥ P (T−

B < ∞, B) = P (B) > 0. Hence

E(T+
B |B) =

E[T+
B 1B ]

P (B)
=

P (T−
B < ∞)

P (B, T−
B < ∞)

=
1

P (B|T−
B < ∞)

.

The second formula follows in the same way. �
Corollary 2.10 is slightly more general than Kac’s formula [7], many proofs of which

are known: see, e.g., Petersen [16] or Pollicott and Yuri [17].

Lemma 2.11. The distribution of T+
B is the same as the distribution of T−

B .

Proof. For each n ≥ 1, we have

P (T+
B > n) = P (ϑ−nBc ∩ · · · ∩ ϑ−1Bc)

= P (ϑBc ∩ · · · ∩ ϑnBc) = P (T−
B > n). �

2.2. Connections with discrete-time Palm theory. We fix a set B ∈ A and define the

point process N(ω) as the random set

N(ω) := {n ∈ Z : ω ∈ ϑnB},

and refer to the set Z as the set of times. The rate of the point process is

λB := P (B)

which will be assumed to be positive. We define the Palm probability2 P 0
B with respect

to N as a probability measure on (Ω,A ) that puts a point of N at the origin of time,

i.e.,

P 0
B(A) := P (A|0 ∈ N) = P (A|B). (2.10)

A basic property of the Palm probability measure is that it is invariant under a group of

transformations that places the origin of time at any of the points of the point process

N . To make this precise, fix B ∈ A and let (Sm(ω),m ∈ Z) be an enumeration of the

elements of N(ω) in a way that · · ·S−1(ω) < S0(ω) ≤ 0 < S1(ω) < S2(ω) < · · · . Thus,

S1 = T+
B . Let

ϕm := ϑSm , m ∈ Z.

2See [3] for an exposition of the theory in discrete and continuous time. The point here is that, in

discrete time, Palm theory is simple and a simple consequence of the extension of Kac’s formula.
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It is easy to see that ϕm ◦ ϕk = ϕm+k for all m, k ∈ Z. If ω ∈ B, then S0(ω) = 0 and so

ϕ0(ω) = ω. In other words, ϕ0 is the identity on B. Therefore ϕm ◦ ϕ−m is the identity

on B and so the family (ϕm,m ∈ Z) is a group of transformations on B. Proposition

2.6 states that P (ϕ−1
1 A ∩ B) = P (A ∩ B) or P 0

B(ϕ−1A) = PB(A); this implies that

P 0
B(ϕmA) = PB(A) for all m ∈ Z.

In the language of Palm probabilities, we can also see that Theorem 2.4 gives, under

an additional assumption, the so-called Palm inversion formula:

Lemma 2.12. If B ∈ A is such that P (T+
B < ∞) = 1, then PB = P , and if P 0

B is defined

as in (2.10), then

P (A) = λBE
0
B

⎡
⎣T+

B −1∑
n=0

1A ◦ ϑn

⎤
⎦ , (2.11)

and λB = P (B) is positive.

Proof. From the assumption P (T+
B < ∞) = 1 and (2.6a) we have

PB(A) = E[1BM
+
B (A)] = P (A, T+

B < ∞) = P (A).

Therefore,

E

⎡
⎣1B

T+
B −1∑
n=0

1A ◦ ϑn

⎤
⎦ = P (A).

Since P (T+
B < ∞) > 0 it follows from (2.5) that λB > 0 and so the left-hand side of the

above equals P (B) E[
∑T+

B −1
n=0 1A ◦ ϑn|B] = λBE

0
B[
∑T+

B −1
n=0 1A ◦ ϑn]. �

Remark 2.13. We stress two important aspects of this last lemma.

(i) First, it says that if P (T+
B < ∞) = 1, then the sub-probability measure PB is

identical to the probability measure P .

(ii) Second, it says that P is fully determined from P 0
B through the inversion formula

(2.11). As such, it is the discrete-time analogue of Slivnyak’s inverse construction

[20] showing that the law of a stationary point process is fully determined by its

Palm measure.

2.3. Additional properties of PB(A) as a function of B. As a function of A, the quan-

tity PB(A) = E1BMB(A) is a measure (i.e., a countably additive set function with total

mass PB(Ω) ≤ 1). On the other hand, the function B 
→ PB(A) can be thought of as a

pre-capacity. By this we mean that it satisfies the following inequality:3

Proposition 2.14.

PB1∪B2
(A) + PB1∩B2

(A) ≤ PB1
(A) + PB2

(A).

The point here is that this is not obvious from the definition of PB(A) as E1BM
+
B (A).

But, owing to Theorem 2.4, PB(A) = P (A, T+
B < ∞) and this is what facilitates the

proof of the above inequality. In fact, we shall prove the stronger statement:

3The notion of capacity [cf. Schneider and Weil [19], Molchanov [11]] requires additional continuity
properties which are possible only under additional topological structure on Ω and we shall not be

concerned with this here.
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Proposition 2.15.

P (T+
B1∩B1

= ∞, T+
B1

< ∞, T+
B2

< ∞, A) = PB1
(A) + PB2

(A)− PB1∩B2
(A)− PB1∪B2

(A).

(2.12)

Proof. Indeed, consider the ‘forward trajectory’ of a fixed element ω of Ω, i.e., the set:

Ψ(ω) := {ϑnω : n ≥ 1}.
Then, for any B ∈ A ,

{ω ∈ Ω : T+
B (ω) < ∞} = {ω ∈ Ω : Ψ(ω) ∩B �= ∅},

which is abbreviated as {Ψ ∩B �= ∅}, as usual. So the left-hand side of (2.12) equals

L = P (A,Ψ ∩B1 ∩B2 = ∅,Ψ ∩B1 �= ∅,Ψ ∩B2 �= ∅).

It is easy to see that

{Ψ ∩B1 ∩B2 = ∅, Ψ ∩B1 �= ∅}
= {Ψ ∩B1 ∩B2 = ∅, Ψ ∩B1 �= ∅, Ψ ∩B2 �= ∅} ∪ {Ψ ∩B2 = ∅, Ψ ∩B1 �= ∅},

and the union is disjoint. (The trajectory of a point avoids B1 ∩ B2 but hits B1 if it

either does so by also hitting B2 or by not hitting it.) Therefore the left-hand side of

(2.12) equals

L = P (A,Ψ ∩ B1 ∩ B2 = ∅,Ψ ∩ B1 �= ∅) − P (A,Ψ ∩ B2 = ∅,Ψ ∩ B1 �= ∅).

Consider these last two terms separately. First, consider

P (A,Ψ ∩B1 ∩B2 = ∅,Ψ ∩B1 �= ∅) = P (A,Ψ ∩B1 ∩B2 = ∅)− P (A,Ψ ∩B1 = ∅)

= P (A,Ψ ∩B1 �= ∅)− P (A,Ψ ∩B1 ∩B2 �= ∅)

= P (A, T+
B1

< ∞)− P (A, T+
B1∩B2

< ∞)

= PB1
(A)− PB1∩B2

(A).

Then, consider

P (A,Ψ ∩B2 = ∅,Ψ ∩B1 �= ∅) = P (A,Ψ ∩B2 = ∅)− P (A,Ψ ∩ (B1 ∪B2) = ∅)

= PB1∪B1
(A)− PB2

(A).

Combining the two terms above, we obtain (2.12). �

3. Uniqueness of the invariant distribution in Markov chains. Suppose that

P = [pi,j ]

is a stochastic matrix on a countable state space S = {a, b, c, . . . , i, j, . . .}, i.e.,

pi,j ≥ 0,
∑
k∈S

pi,k = 1, i, j ∈ S.

Assume that it is

(i) irreducible (each i communicates with each j in S),

(ii) positive recurrent (starting from some i the expected return time to i has finite

expectation).
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These properties depend entirely on the matrix P. Let (X0, X1, . . .) be a Markov chain

with values in S such that P (Xn+1 = j|Xn = i) = pi,j for all i, j ∈ S and all n ≥ 0. A

standard reference for these notions is Brémaud [4].

Theorem 3.1. If (i) and (ii) above hold, then there is a unique probability π on S such

that πP = π. This π is necessarily given by

π(a) =
Eb

∑tb−1
n=0 1(Xn = a)

Ebtb
, a ∈ S, (3.1)

where Eb denotes expectation conditional on X0 = b, and

tb := inf{n ≥ 1 : Xn = b},

for an arbitrary b ∈ S.

Proof. We wish to show this by using the idea developed in the previous section. First,

let π(b) denote the specific probability measure defined by (3.1), i.e.,

π(b)(a) :=
Eb

∑tb−1
n=0 1(Xn = a)

Ebtb
. (3.2)

It is well known [see, e.g., Brémaud [4]] that π(b) is invariant for P, i.e., that it satisfies

π(b)P = π(b). It is important to note that π(b) depends entirely on the stochastic matrix

P and the choice of the state b (hence, the superscript).

To show uniqueness, we work at the level of sequences, i.e., with the space Ω = SZ,

whose elements are denoted by ω = (ωn, n ∈ Z), equipped with the cylinder σ-algebra

A . We consider the natural shift

ϑ : (n 
→ ωn) 
→ (n 
→ ωn+1),

which is A -measurable and invertible. We are thus in the setup of the earlier section.

Consider a probability π on S which is invariant for P, i.e., it satisfies

πP = π,

and let P be the probability measure on (SZ,A ) defined by

P ({ω ∈ Ω : ωm = im, . . . , ωn = in}) = π(im) pim,im+1
· · · pin−1,in ,

im, . . . , in ∈ S, m, n ∈ Z, m ≤ n. (3.3)

Consider also the random variables

Xn(ω) := ωn, ω ∈ Ω, n ∈ Z.

Under P , the sequence (Xn) is a Markov chain with transition probability matrix P. The

assumption π = πP implies that the measure P defined by (3.3) is preserved by ϑ. By

Proposition 2.7, for any B ∈ A , the measures

PB(·) = E1BM
+
B (·) =

∫
B

M+
B (·)dP,

where T+
B ,M+

B are given by (2.1a)–(2.1b), are also preserved by ϑ. Fix some b ∈ S, and

consider the set

B = {ω ∈ Ω : ω0 = b}. (3.4)
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Observe that

tb(ω) := inf{n ≥ 1 : ωn = b} = T+
B (ω).

By Theorem 2.4,

PB(A) = E1BM
+
B (A) = P (A, T+

B < ∞) = P (A, tb < ∞), A ∈ A . (3.5)

By (i) and (ii) we have

P (tb < ∞) = P (T+
B < ∞) = 1,

and so (3.5) yields

PB(A) = P (A), A ∈ A ,

while Corollary 2.9 gives

E1BT
+
B = 1.

Therefore,

P (A) = PB(A) = E1BM
+
B (A) =

E1BM
+
B (A)

E1BT
+
B

=
Eb

∑tb−1
n=0 1(ϑnω ∈ A)

Ebtb
. (3.6)

Apply this identity to the set

A := {ω ∈ Ω : ω0 = a},

for an arbitrary a ∈ S. Then the left-hand side of (3.6) equals π(a) while the right-hand

side equals π(b)(a) by the definition (3.2) of π(b). Therefore, π(a) = π(b)(a), for all a ∈ S.

In other words, an arbitrary invariant probability measure π must necessarily be equal

to the specific measure π(b); hence the uniqueness. �
Remark 3.2. The last argument directly proves that, for the case of Markov chains,

Eb

∑tb−1
n=0 1(Xn = a)

Ebtb
=

Ec

∑tc−1
n=0 1(Xn = a)

Ectc
.

This is the so-called exchange formula of (discrete-index) Palm theory; see also [8].

Remark 3.3. In essence, uniqueness follows from the following two facts: First, thanks

to the Markov setting considered here, the law of a cycle starting from a given state until

the chain returns to this state is uniquely determined by the transition matrix. Second,

P can be uniquely determined by its Palm measure: see Lemma 2.12 and Remark 2.13.

Remark 3.4. A direct consequence of these ideas is the following well-known fact: If b

is not a positive recurrent state of a (any) Markov chain, then π(b) = 0 for any invariant

probability measure π. To see this, let π be an invariant probability measure. Construct

(Ω,A , ϑ, P ) as above, and let B be as in (3.4). Then

E[1(X0 = b)tb] = E[1BT
+
B ] ≤ 1,

where the last inequality is due to Corollary 2.9. If π(b) were positive, we would obtain

Ebtb ≤ 1/π(b) < ∞, in contradiction to the positive recurrence of b.
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4. Uniqueness of invariant distribution in Harris chains. A Markov chain

in a general state space S, assumed to be Polish (i.e., a separable metrizable space

which is complete under an appropriate metric), with Borel sets S , is defined via its

transition kernel K(x,B) which is measurable in x ∈ S and is a probability measure

in B ∈ S . We let Kn(x,B) be the n-th fold convolution, i.e., K1(x,B) = K(x,B),

Kn+1(x,B) =
∫
S
K(x, dy)Kn(y,B), n ≥ 1. By Kolmogorov’s theorem, we can uniquely

define probability measures Px, x ∈ S, on the space of sequences (xn, n ∈ Z+) ∈ SZ+

such that Px(x0 = x) = 1 and Px(xn+1 ∈ ·|xn, xn−1, . . .) = K(xn, ·). A measure μ on

(S,S ) is called invariant for K if μ(B) =
∫
S
μ(dx)K(x,B), B ∈ S . We are interested in

showing uniqueness of an invariant probability measure for K, under the condition that

the chain is positive Harris recurrent, which we shall define below. First, we present some

historical overview, along with definitions. Doeblin [5] first introduced the condition that

there exists a reference probability measure on (S,S ) and a positive integer 	, such that

the probability K�(x,B) is bounded from below by a positive number ε for all x ∈ S and

all Borel sets B which are assigned a reference probability larger than some nonnegative

number δ < 1. Under this condition, he proved an “ergodic theorem”, in the sense that

Kn(x, ·) converges, as n → ∞. Harris [6] introduced the condition that there exists a

sigma-finite measure ϕ on (S,S ) such that every set B ∈ S is visited infinitely often by

the Markov chain, starting from any initial state. This condition (known as recurrence

in the sense of Harris) turns out to be weaker than Doeblin’s, but equivalent to the one

introduced by Orey [14] [see also Orey [15]] which is the one we adopt here [see also

Asmussen [1]]:

There exists a set R ∈ S , a probability measure λ on (S,S ), a positive integer 	, and

ε > 0, such that

(i) Px(tR < ∞) = 1 for all x ∈ S, where tR := inf{n ∈ N : xn ∈ R}.

(ii) K�(x, ·) ≥ ελ(·), for all x ∈ R.

The chain is called positive Harris recurrent if, in addition to (i) and (ii) we also have

(iii) EλtR < ∞, where Eλ denotes expectation with respect to Pλ(·) :=
∫
S
λ(dx)Px(·).

Without using the ergodic theorem, and based on Section 2, we give a proof of the

following:

Theorem 4.1. A positive Harris recurrent chain possesses a unique invariant probability

measure.

Note that this theorem, without the positivity condition, is proved by Harris [6], Orey

[14] and in the paper of Athreya and Ney [2]; the latter authors introduced the idea of

splitting to provide a construction of the Harris chain on an enlarged probability space.

This was also done, independently, by Nummelin [13]. [See also Meyn and Tweedie [10].]

Our contribution here is that the uniqueness proof is a direct corollary of the results

of Section 2, in the case of positive Harris recurrence, with an appeal to the ergodic

theorem.

Proof of Theorem 4.1. Suppose first that 	 = 1. We first describe the construction

of a Markov chain (xn, n ≥ 0) with kernel K on an enlarged probability space as in
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Athreya and Ney [2] and Nummelin [13]. Fix a probability measure λ and a number

ε > 0 for which condition (ii) above holds. Let p be the Bernoulli probability measure

on the two-element set {0, 1} such that

p(1) = ε, p(0) = 1− ε.

We consider a Markov chain ((xn, ζn), n ≥ 0) with values in S∗ := S × {0, 1} defined by

the following kernel (here α, β range in {0, 1} and x, y in S):

If x �∈ R, then K∗((x, α), (dy, β)) = K(x, dy) p(β).

If x ∈ R, then

{
K∗((x, 1), (dy, β)) = λ(dy) p(β),

K∗((x, 0), (dy, β)) = Q(x, dy) p(β),

where Q is the kernel on S defined by

Q(x, ·) := K(x, ·)− ελ(·)
1− ε

.

Condition (ii) is responsible for the nonnegativity of Q. We let P(x,α), where (x, α) ∈ S∗,

be the probability measure on the canonical space S
Z+
∗ (defined by means of Kolmogorov’s

theorem), making the coordinate process ((xn, ζn), n ≥ 0) a Markov chain with kernel

K∗ and initial state (x, α). We let

Px := εP(x,1) + (1− ε)P(x,0).

It is easy to see that, under Px, the sequence (xn, n ≥ 0) is a Markov chain in S with

kernel K and that the sequence (ζn, n ≥ 0) is a sequence of i.i.d. Bernoulli random

variables with common law p(·); the two sequences are not independent under Px. The

initial idea for this construction comes from the paper of of Athreya and Ney [2]. Here

we follow the formulation and construction of Thórisson [21, Chapter 10, pp. 365-369]

who shows that the times at which the pair process (xn, ζn) visits the set

R × {1}

are Px-a.s. finite for all x ∈ S. Owing to the definition of the kernel K∗, it follows that

at the Px-a.s. finite random time

t := inf{n ≥ 1 : (xn−1, ζn−1) ∈ R× {1}} (4.1)

the pair process regenerates with (xt, ζt) having law λ× p. This enables us to define the

probability measure

π∗(C) :=
Eλ×p

∑t−1
n=0 1(xn ∈ C)

Eλ×pt
, C ∈ S , (4.2)

which can be seen to be invariant for K [see Meyn and Tweedie [10] and Asmussen [1]].

We now wish to show that π∗ is the unique invariant distribution for K. Let π be

a probability measure on (S,S ) which is invariant for the kernel K. On the enlarged

probability space

Ω := SZ

∗

of two-sided sequences

ω = (ωn = (xn, ζn), n ∈ Z),
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consider the probability measure P under which (xn, ζn), n ∈ Z, is a stationary Markov

chain with kernel K∗ and initial distribution π × p. Define the natural shift ϑ on Ω:

ϑ : (n 
→ (xn, ζn)) 
→ (n 
→ (xn+1, ζn+1)).

The invariance of π for K implies that P is preserved by ϑ. We are thus in the setup of

Section 2. As in (2.1a), we shall consider the random time T+
B and, as in (2.6a), we will

work with the probability measure

PB(·) = E1BM
+
B (·) =

∫
B

M+
B (·)dP.

Consider next the set B ∈ A defined by

B := {ω ∈ Ω : ω−1 ∈ R × {1}}.

Note that, as in (2.1a),

T+
B (ω) = inf{n ≥ 1 : ϑnω ∈ B}

= inf{n ≥ 1 : (ϑnω)−1 ∈ R× {1}}
= inf{n ≥ 1 : ωn−1 ∈ R × {1}} = t(ω)},

as seen by (4.1). The rest proceeds as in the proof of Theorem 3.1. Since Px(t < ∞) = 1

for all x, we have P(t < ∞) = 1, i.e. P(T+
B < ∞) = 1, and so, by Theorem 2.4,

PB(A) = P(A), A ∈ A .

By Corollary 2.9,

E1BT
+
B = 1.

Therefore,

P(A) = PB(A) = E1BM
+
B (A) =

E1BM
+
B (A)

E1BT
+
B

.

But

E1BT
+
B = E[t · 1(ω−1 ∈ R× {1})] = E[t | ω−1 ∈ R× {1}] · P(ω−1 ∈ R× {1})

= Eλ×p[t] P(ω−1 ∈ R× {1}).

Similarly,

E1BM
+
B (A) = P(ω−1 ∈ R × {1}) Eλ×p

t−1∑
n=0

1(ωn ∈ A).

Therefore,

P(A) =
Eλ×p

∑t−1
n=0 1(ωn ∈ A)

Eλ×p[t]
,

for all A ∈ A , the cylinder σ-field of SZ

∗ . Now let C ∈ S and define A ∈ A by

A := {ω ∈ Ω : ω0 = (x0, ζ0) ∈ C × {0, 1}}.

Then P(A) = π(C) and

Eλ×p

∑t−1
n=0 1(ωn ∈ A)

Eλ×p[t]
=

Eλ×p

∑t−1
n=0 1(xn ∈ C)

Eλ×p[t]
= π∗(C),
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by (4.2). Hence π(C) = π∗(C) for all C ∈ S . Recall that π∗ depends on λ and ε; hence

uniqueness follows.

The case 	 > 1 is similar. All that is required is the construction of the extended

process ((xn, ζn), n ≥ 1 − 	) with values in S∗ = S × {0, 1}. This is again found in

Thórisson [21, Chapter 10, pp. 365-369]. The difference with the 	 = 1 case is that this

extended process is an 	th order Markov chain with transition kernel, say, K∗. The times

at which the process visits the set R × {1} are a.s. finite, regardless of the initial state.

In fact, the process regenerates at the time

t = inf{n ≥ 1 : (xn−�, ζn−�) ∈ R× {1}}

and (xt, ζt) has law λ × p. As before, formula (4.2) defines an invariant probability

measure π∗ for K. The rest of the proof proceeds as before; we only sketch it here.

On the enlarged probability space Ω = S
Z+
∗ with the natural shift ϑ, we let P be the

probability measure that makes the coordinate process ((xn, ζn), n ∈ Z) an 	-th order

Markov chain with kernel K∗ and marginal distribution π × p. Also, P is preserved by

ϑ. The set B is defined as {ω ∈ Ω : ω−� ∈ R × {1}}, and, on choosing A as before, we

can, exactly in the same manner, show that the arbitrary invariant probability measure

π equals π∗. �
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