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Abstract

We give a stand-alone simple proof of a probabilistic interpretation of the

Gaussian binomial coefficients by conditioning a random walk to hit a given

lattice point at a given time.
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Introduction

The Gaussian binomial coefficients (also known as q-binomial coefficients) [4] are generalizations

of classical binomial coefficients and are usually defined as

⎡⎢⎢⎢⎢⎢⎣

n

m

⎤⎥⎥⎥⎥⎥⎦q
= (1 − qn)(1 − qn−1)⋯(1 − qn−m+1)

(1 − q)(1 − q2)⋯(1 − qm) .

The term “generalization” is justified, e.g., by the fact that limq→1[ nm ]q = (n
m
), which becomes

obvious if we divide each term in the numerator and denominator of the last display by 1 − q and

expand the ratio into a power series with finitely many terms. The Gaussian binomial coefficients

turn out to be polynomial functions of the variable q and satisfy many analogs of the usual properties

of binomial coefficients. We refer, e.g., to the textbook of Kac and Cheung [5].

Originally, they appeared in combinatorics, so it is not surprising that they are nowadays very

important in random polymer models which have strong connections to algebraic combinatorics;

see, for example, the recent work on the q-weighted version of the Robinson-Schensted algorithm

introduced by O’Connell and Pei [6]. In the study of random graphs, Gaussian binomial coefficients
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are present, for instance, in the distributions of the sizes of the transitive closure and transitive

reduction of node 1 in a random acyclic digraph with n nodes, see [3] and [2]. Another application

is in integer-valued random matrices; see, for example, [1] where the distribution of the m-rank of a

random matrix is expressed in terms of these coefficients.

The purpose of this note is to give a short proof of a probabilistic interpretation of the Gaussian

coefficients which, not surprisingly, is very similar to their combinatorial interpretation, given by

Pólya [7], as counting the number of nondecreasing paths in a rectangle in the 2-dimensional integer

lattice that leave a fixed area below them. The probabilistic proof given below (Theorem 1) is

different than Pólya’s. The note is stand-alone in that everything discussed is proved, including

Heine’s formula (see (4) below) that is needed at the end of the proof of Theorem 1. The probabilistic

interpretation gives a natural meaning to several identities and properties satisfied by the coefficients

(see end remarks).

The statement and proof

Consider nondecreasing paths in the standard 2-dimensional integer lattice Z2, that is, finite

or infinite sequences x0, x1, . . . of elements of Z2 such that ηi = xi − xi−1 is either e1 or e2, where

e1 = (1,0), e2 = (0,1), the standard unit vectors. Let r, s be nonnegative integers. By a random

nondecreasing path from (0,0) to (r, s) we mean a finite nondecreasing path that starts at x0 = (0,0)
and ends at xr+s = (r, s), and that is chosen uniformly at random among the set of all such paths.

Since there are (r+s
r
) such paths, the increments sequence (η1, . . . , ηn) is assigned probability equal

to (r+s
r
)−1.

Theorem 1. Consider a random nondecreasing path from (0,0) to (r, s). This path splits the

rectangle [0, r] × [0, s] into two regions. Let Ar,s be the area of the region under the path. Then

EqAr,s =
⎡⎢⎢⎢⎢⎢⎣

r + s
r

⎤⎥⎥⎥⎥⎥⎦q
/(r + s

r
).

Proof. Toss a fair coin independently and let e1 represent heads and e2 tails. Denote by ξ1, ξ2, . . .

the successive outcomes, a random independent sequence with P(ξt = ei) = 1/2, i = 1,2, t ≥ 1. Let

X0 = 0, Xt = ξ1 +⋯+ ξt, t ≥ 1. If it takes Tr+1 coin tosses until the (r + 1)-th head occurs for the first

time then, conditional on the event that we have seen s tails up to Tr+1, the sequence (ξ1, . . . , ξTr+1−1)
(of length Tr+1 − 1 = s + (r + 1) − 1 = s + r, under the conditioning) has uniform distribution. Thus,

conditional on the same event, the path (X0,X1, . . . ,XTr+1−1) is a random nondecreasing path from

(0,0) to (r, s). Let Ni(t) be the number of heads/tails seen up to the t-th toss:

Ni(t) ∶=
t

∑
k=1
1{ξk = ei}, i = 1,2,
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and consider the stopping times

T0 ∶= 0, Tm ∶= inf{t ≥ 1 ∶ N1(t) =m}, m ≥ 1.

Since T1, T2, . . . is an increasing sequence of stopping times in i.i.d. Bernoulli trials, the random

variables Zi = N2(Ti+1) −N2(Ti), i = 0,1,2, . . ., are i.i.d. geometric: P(Zi = j) = (1/2)j+1, j ≥ 0, and

so EθZi = 1
2
(1 − θ/2)−1, ∣θ∣ < 2. Simply putting it, the Zi count the number of up-steps of the path

between two successive right-steps and so

V = N2(Tr+1) =
r

∑
i=0
Zi

is the total number of up-steps up to Tr+1. The distribution of V is

P(V = s) = (1

2
)r+s+1(r + s

r
), s ≥ 0. (1)

The area A = Ar,s under the path (X0,X1, . . . ,XTr+1−1) is then

A = rZ0 + (r − 1)Z1 +⋯ +Zr−1.

Letting q, θ be variable with, say, ∣q∣, ∣θ∣ < 2, we have

E qAθV = E[(qrθ)Z0(qr−1θ)Z1⋯(qθ)Zr−1θZr ]

= (1

2
)r+1 1

1 − qrθ
2

1

1 − qr−1θ
2

⋯ 1

1 − qθ
2

1

1 − θ
2

= (1

2
)r+1

∞
∑
s=0

Cr,s(q)(θ/2)s, (2)

where the Cr,s(q) are defined by the right-hand side as coefficients in the Taylor expansion in the

variable θ/2. On the other hand,

E qAθV =
∞
∑
s=0

θsP(V = s)E[qA∣V = s]. (3)

Equating coefficients in (2) and (3), also taking into account (1), gives

E[qA∣V = s] = Cr,s(q)/(r + s
r

).

It remains to show that the Cr,s(q) are Gaussian binomial coefficients. To this end, we prove that if

Fr(x) ∶=
r

∏
j=0

1

1 − qjx =
∞
∑
s=0

Cr,s(q)xs, (4)

then the recurrence relation

Cr,s(q) = Cr,s−1(q)
1 − qr+s
1 − qs , s ≥ 1, (5)

holds. This follows quite easily from the observation that

(1 − qr+1x)Fr(qx) = (1 − x)Fr(x).
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Indeed, if, in this identity, we replace Fr(qx) and Fr(x) by their series, from the right-hand side of

(4), and equate coefficients of similar powers, we obtain (5). Since, clearly, Cr,0(q) = Fr(0) = 1, we

can iterate (5) to obtain

Cr,s(q) =
1 − qr+s
1 − qs

1 − qr+s−1
1 − qs−1 ⋯

1 − qr+1
1 − q =

⎡⎢⎢⎢⎢⎢⎣

r + s
r

⎤⎥⎥⎥⎥⎥⎦q
.

This completes the proof.

Remarks

1. Since [ r+sr ]q is proportional to EqAr,s we have that [ r+sr ]q is a polynomial in q.

2. Formula (4) with Cr,s(q) the Gaussian binomial coefficients is known as Heine’s formula [5]. When

q = 1 it corresponds to the Taylor series (Newton’s formula) (1−x)−r = ∑s≥0 (−rs )(−x)
s = ∑s≥0 (r+sr )xs.

3. By symmetry, the area above the random nondecreasing path has the same distribution as the

area below, i.e., the random variables Ar,s and rs−Ar,s have the same distribution. This is equivalent

to the identity [ r+sr ]q = qrs [ r+sr ]1/q.
4. By the definition of the random variable Ar,s as the area under a random nondecreasing path

from (0,0) to (r, s) we see, by conditioning on the last edge of this path, that Ar,s is in distribution

equal to Ar,s−1 with probability s/(r + s) or to Ar−1,s + s with probability r/(r + s). Using then the

result of Theorem 1, the well-known recursion [ r+sr ]q = [ r+s−1r ]q + qs[ r+s−1r−1 ]q follows.
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