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Abstract

We take a fresh look at the classical problem of runs in a sequence of i.i.d. coin

tosses and derive a general identity/recursion which can be used to compute (joint)

distributions of functionals of run types. This generalizes and unifies already exist-

ing approaches. We give several examples, derive asymptotics, and pose some further

questions.
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1 Introduction

The tendency of “randomly occurring events” to clump together is a well-understood chance

phenomenon which has occupied people since the birth of probability theory. In tossing i.i.d.

coins, we will, from time to time, see “long” stretches of heads. The phenomenon has been

studied and quantified extensively. For a bare-hands approach see Erdős and Rényi [3] its

sequel paper by Erdős and Révész [4] and the review paper by Révész [13].

We shall consider a sequence (ξn, n ∈ N) of Bernoulli random variables with P(ξn = 1) =

p, P(ξn = 0) = q = 1− p. We let

S(n) := ξ1 + · · ·+ ξn, n ≥ 1,
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S(0) := 0. Throughout the paper, a “run” refers to an interval I ⊂ N := {1, 2, . . .} such that

ξn = 1 for all n ∈ I and there is no interval J ⊃ I such that ξn = 1 for all n ∈ J . People

have been interested in computing the distribution of runs of various types. For example,

we may ask for the distribution of the number of runs of a given length in n coin tosses.

Feller [5, Section XIII.7] considers the probability that a run of a given length ℓ first appears

at the n-th coin toss and, using renewal theory, computes the distribution of the number of

runs of a given length [5, Problem 26, Section XIII.12] as well as asymptotics [5, Problem

25, Section XIII.12]. (Warning: his definition of a run is slightly different.) He attributes

this result to von Mises [14].1 Philippou and Makri [12] derive the joint distribution of

the longest run and the number of runs of a given length. More detailed computations are

considered in [10]. The literature is extensive and there is even a 452-page book on the topic

[2].

In this paper, we take a more broad view: we study real- or vector-valued functionals

of runs of various types and derive, using elementary methods, an equation which can be

specified at will to result into a formula for the quantity of interest. To be more specific, let

Rℓ(n) be the number of runs of length ℓ in the first n coin tosses. Consider the vector

R(n) := (R1(n), R2(n), . . .)

as an element of the set

Z
∗
+ := {x ∈ Z

N
+ : xk = 0 eventually}.

The set can be identified with the set
⋃∞

ℓ=1 Z
ℓ
+ of nonempty words from the alphabet of

nonnegative integers, but, for the purpose of our analysis, it is preferable to append, to each

finite word, an infinite sequence of zeros. The set is countable, and so the random variable

R(n) has a discrete distribution. If h : Z∗
+ → R

d is any function then we refer to the random

variable h(R(n)) as a d-dimensional functional of a run-vector. For example, for d = 1, if

h1(x) = sup{ℓ : xℓ > 0} (with sup∅ = 0), then h1(R(n)) is the length of the longest run of

heads in n coin tosses. If h2(x) :=
∑∞

ℓ=1 1{xℓ > 0}, then h2(R(n)) is the total number of

runs of any length in n coin tosses. Letting d = 2, we may consider h(x) := (h1(x), h2(x)) as

1In his classic work [15, p, 138], von Mises, refers to a 1916 paper of the philosopher Karl Marbe who

reports that in 200,000 birth registrations in a town in Bavaria, there is only one ‘run’ of 17 consecutive

births of children of the same sex. Note that log
2
(200000) ≈ 17.61 and see Section 5 below.
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a 2-dimensional functional; a formula for the distribution of h(R(n)) would then be a formula

for the joint distribution of the number of runs of a given length together with the size of

the longest run. It is useful to keep in mind that Z
∗ := {x ∈ Z

N : xk = 0, eventually},

is a vector space and that Z
∗
+ is a cone in this vector space. If x, y ∈ Z

∗ then x + y is

defined component-wise. The symbol 0 denotes the origin (0, 0, . . .) of this vector space. For

j = 1, 2, . . ., we let ej = (ej(1), ej(2), . . .) ∈ Z
∗ be defined by

ej(n) := 1{n = j}, n ∈ N.

It is convenient, and logically compatible with the last display, to set

e0 := (0, 0, . . .),

thus having two symbols for the origin of the vector space Z
∗.

The paper is organized as follows. Theorem 1 in Section 2 is a general formula for func-

tionals of R∗, defined as R(·) stopped at an independent geometric time. We call this formula

a “portmanteau identity” because it contains lots of special cases of interest. To explain

this, we give, in the same section, formulas for specific functionals. In Section 3 we compute

binomial moments and distribution of Gℓ(n) :=
∑

k≥ℓRk(n), the number of runs of length

at least ℓ in n coin tosses. In particular, we point out its relationship with hypergeometric

functions. Section 4 translates the portmanteau identity into a “portmanteau recursion”

which provides, for example, a method for recursive evaluation of the generating function of

the random vector R(n). In Section 5 we take a closer look at the most common functional

of R(n), namely the length L(n) of the longest run in n coin tosses. We discuss the behavior

of its distribution function and its relation to a Poisson approximation theorem, given in

Proposition 2. This roughly states that, in a certain approximating regime, the random

variables Rℓ1(n), . . . , Rℓν (n) become asymptotically independent Poisson random variables,

as n → ∞, when, simultaneously, ℓ1, . . . , ℓν → ∞. A second approximation for the distri-

bution function P(L(n) < ℓ) of L(n), which works well at small values of ℓ, is obtained in

Section 5.2, using complex analysis. We numerically compare the two approximations in

Section 5.3 and finally pose some further questions in the last section. We point out that,

although our method is applied to finding very detailed information about the distribution

function of the specific functional L(n), other functionals, mentioned above and in Section
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2, can be treated analogously if detailed information about their distribution function is

desired.

2 A portmanteau identity

Let N∗ be a geometric random variable,

P(N∗ = n) = wn−1(1− w), n ∈ N,

independent of the sequence ξ1, ξ2, . . .. We let

R∗ := R(N∗ − 1).

Thus R∗ is a random element of Z∗
+ which is distributed like R(n) with probability wn(1−w),

for n = 0, 1, . . . Note that R(0) = (0, 0, . . .), which is consistent with our definitions. To

save some space, we use the abbreviations

α := wp, β := wq, γ := 1− w, (1)

throughout the paper, noting that if α, β, γ are three nonnegative real numbers adding up

to 1 with γ strictly positive, then w, p, q = 1− p are uniquely determined.

Theorem 1. For any h : Z∗
+ → R such that Eh(R∗) is defined we have the Stein-Chen type

of identity

Eh(R∗) = γ
∑

j≥0

αjh(ej) + β
∑

j≥0

αj
Eh(R∗ + ej). (2)

Proof. The equation becomes apparent if we think probabilistically, using an “explosive

coin”. Consider a usual coin (think of a British pound2) but equip it with an explosion

mechanism which is activated if the coin touches the ground on its edge. An explosion occurs

with probability γ = 1−w. When an explosion occurs the coin is destroyed immediately and

we do not observe heads or tails. If an explosion does not occur then the coin lands heads

or tails, as usual. Clearly, α = wp is the probability that we observe heads and β = wq is

2A British pound is sufficiently thick so that the chance of landing on its edge is non-negligible, especially

at the hands of a skilled coin tosser. If a US (thinner) nickel is used then the chance of landing on its edge

is estimated to be 1/6000 [11].
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the probability that we observe tails. We let E,H,T denote “explosion”, “heads”, “tails”,

respectively, for the explosive coin. The possible outcomes in tossing such a coin comprise

the set

Ω∗ :=
⋃

k≥0

{H,T}k × {E}.

Indeed, the repeated tossing of an explosive coin results in an explosion (which may happen

immediately), in which case the coin is destroyed. R∗ can then naturally be defined on Ω∗.

Let Hj
E ∈ Ω∗ be an abbreviation for seeing heads j times followed by explosion. Similarly,

for H
j
T. Clearly, Ω∗ =

⋃
j≥0{H

j
E} ∪

⋃
j≥0{H

j
T} and all events involved in the union are

mutually disjoint. Hence

Eh(R∗) =
∑

j≥0

E[Hj
E;h(R∗)] +

∑

j≥0

E[Hj
T;h(R∗)],

where, as usual, E[A;Y ] = E[1AY ], if A is an event and Y a random variable. For j ≥ 0, on

the event {Hj
E}, we have R∗ = ej . Hence E[Hj

E;h(R∗)] = αjγh(ej). On the event {Hj
T}

we have R∗ = ej + θj+1R∗, where θj+1R∗ = (R∗
j+1, R

∗
j+2, . . .), which is independent and

identical in law to R∗. Hence E[Hj
T;h(R∗)] = αjβEh(ej +R∗).

The easiest way to see that the identity we just proved actually characterizes the law of

R∗ is by direct computation. If x ∈ Z
∗
+, we let

zx := zx1

1 zx2

2 · · · ,

for any sequence z1, z2, . . . of real or complex numbers such that zk 6= 0 for all k. (This

product is a finite product, by definition of Z∗
+.)

Theorem 2. There is a unique (in law) random element R∗ of Z∗
+ such that (2) holds for

all nonnegative h. For this R∗, we have

EzR
∗

= γ
1 +

∑
j≥1 α

jzj

1− β − β
∑

j≥1 α
jzj

.

Moreover, for any ℓ ∈ N, the law of (R∗
1, . . . , R

∗
ℓ ) is specified by

Ez
R∗

1

1 · · · z
R∗

ℓ

ℓ = γ
1 +

∑ℓ
j=1 α

jzj +
∑

j>ℓ α
j

1− β − β
∑ℓ

j=1 α
jzj − β

∑
j>ℓ α

j
.

Proof. Let h(x) := zx in (2). Then h(ej) = zj , and h(R∗+ ej) = zjh(R
∗). Substituting into

(2) gives the result. Taking zj = 1 for all j ≥ ℓ gives the second formula.
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We can now derive distributions of various functionals of R∗ quite easily. For example,

to deal with the one-dimensional marginals of R∗, set zℓ = θ and let zk = 1 for k 6= ℓ:

EθR
∗

ℓ = γ
1 +

∑
j 6=ℓ α

j + αℓθ

1− β − β
∑

j 6=ℓ α
j − βαℓθ

. (3)

This is a geometric-type distribution (with mass at 0), and we give it a name for our

convenience.

Definition 1. For 0 ≤ α, β ≤ 1 let geo(α, β) denote the probability measure Q on Z+ ∪

{+∞} = {0, 1, . . . ,+∞} with

Q{0} = α, Q{n} = (1− α)(1− β)βn−1, n ≥ 1.

For example, N∗ has geo(0, w) distribution and N∗ − 1 has geo(1 − w,w) distribution.

Abusing notation and letting geo(α, β) denote a random variable with the same law, we

easily see that

E geo(1− β, β) =
β

1− β

E

(
geo(α, β)

r

)
=

1− α

β

(
β

1− β

)r

, r ≥ 1

Eθgeo(α,β) =
α+ (1− α− β)θ

1− βθ
=

1−
1− α− β

1− β
(1− θ)

1 +
β

1− β
(1− θ)

Therefore, comparing with (3), we have

Corollary 1. R∗
ℓ has geo(αℓ, βℓ) distribution with

αℓ = γ
1 + σℓ

1− β − βσℓ
, βℓ =

βαℓ

1− β − βσℓ
,

where

σℓ :=
∑

j≥1
j 6=ℓ

αj .

As a reality check, observe that

ER∗
ℓ =

βℓ
1− βℓ

=
(1− α)2αℓ

γ
,

and so
∞∑

ℓ=1

ℓER∗
ℓ =

α

γ
.
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On the other hand,
∑∞

ℓ=1 ℓR
∗
ℓ = S(N∗ − 1). Since S(n) is binomial and N∗ is independent

geometric, we have, by elementary computations,

S(N∗ − 1) ∼ geo

(
γ

1− β
,

α

1− β

)

and so

ES(N∗ − 1) =
α

γ
,

as above.

As another example, consider the following functional λ : Z∗
+ → R:

λ(x) = sup{i > 0 : xi > 0}.

Corollary 2. Let L∗ := λ(R∗) be the longest run in N∗ − 1 coin tosses. Then

P(L∗ < ℓ) =
γ(1− αℓ)

γ + βαℓ
, ℓ ∈ N.

Proof. With 0 denoting the zero element of Z∗
+, we have λ(0) = 0, since sup∅ = 0. Also

λ(x+ ej) = λ(x) ∨ j, j ≥ 0, x ∈ Z
∗
+.

Fix ℓ ∈ N, and use (2) with h(x) := 1{λ(x) < ℓ}. Then P(L∗ < ℓ) = Eh(R∗). Since

h(x + ej) = 1{λ(x) ∨ j < ℓ} = h(x)1{j < ℓ}, we have Eh(R∗ + ej) = P(L∗ < ℓ)1{j < ℓ}.

Substituting into (2) gives

P(L∗ < ℓ) = γ
∑

j≥0

αj
1{j < ℓ}+ β

∑

j≥0

αj
1{j < ℓ}P(L∗ < ℓ),

which immediately gives the announced formula.

See also Grimmett and Stirzaker [6, Section 5.12, Problems 46,47] for another way of

obtaining the distribution of L∗.

Alternatively, we can look at the functional

λ(x) := inf{i > 0 : xi > 0},

which takes value +∞ at the origin of Z∗
+, but this poses no difficulty.
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Corollary 3. Let λ(R∗) be the run of least length in N∗ − 1 coin tosses. Then

P
∗(λ(R∗) ≥ ℓ) =

γ(1− α+ αℓ)

γ − β(1− α+ αℓ)
, ℓ ∈ N.

The random variable λ(R∗) is defective with P(λ(R∗) = ∞) = γ(1− α)/(γ − β(1− α)).

Proof. Fix ℓ ∈ N and let h(x) = 1{λ(x) ≥ ℓ} in (2). We work out that h(0) = 1 and, for

j ∈ N, h(ej) = j, h(x+ ej) = h(x)1{j ≥ ℓ}. The rest is elementary algebra.

Since Z
∗ is a vector space, there are linear functions from Z

∗ into R.

Corollary 4. If h : Z∗ → R is linear then

Eh(R∗) =
(1− α)2

γ

∑

j≥0

αjh(ej)

Setting h(x) = xℓ gives again the earlier formula for ER∗
ℓ .

As another example of the versatility of the portmanteau formula, we specify the joint

distribution of finitely many components of R∗ together with L∗.

Corollary 5.

E
[
z
R∗

1

1 · · · z
R∗

ℓ−1

ℓ−1 ; L∗ < ℓ
]
= γ

1 +
∑ℓ−1

j=1 α
jzj

1− β − β
∑ℓ−1

j=1 α
jzj

.

Proof. Let h(x) = zx1

1 · · · z
xℓ−1

ℓ−1 1{λ(x) < ℓ} in (2). Then h(0) = 0, h(ej) = zj1{j < ℓ},

h(x + ej) = h(x)h(ej), j ∈ N. Again, substitution into (2) and simple algebra gives the

formula.

For verification, note that taking ℓ → ∞ in the last display gives the previous formula

for EzR
∗

, while letting z1 = · · · = zℓ−1 = 1 gives the previous formula for P(L∗ < ℓ).

The joint moments and binomial moments of the components of R∗ can be computed

explicitly.

Corollary 6. Consider positive integers ν, ℓ1, . . . , ℓν , and nonnegative integers r1, . . . , rν ,

such that r0 := r1 + · · · + rν ≥ 1. Let ℓ := (ℓ1, . . . , ℓν) and r := (r1, . . . , rν) and set

ℓ · r = ℓ1r1 + · · ·+ ℓνrν . Then

Ez
R∗

ℓ1

1 · · · z
R∗

ℓν
ν =

1 + (1− α)
∑ν

j=1 α
ℓj (zj − 1)

1− (1−α)β
γ

∑ν
j=1 α

ℓj (zj − 1)
(4)
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and

E

(
R∗

ℓ1

r1

)
· · ·

(
R∗

ℓν

rν

)
=

r0!

r1! · · · rν !

αℓ·rβr0−1(1− α)r0+1

γr0
(5)

Proof. By Theorem 1,

Ez
R∗

ℓ1

1 · · · z
R∗

ℓν
ν = γ

( ν∑

j=1

αℓjzj +
∑

j 6∈{ℓ1,...,ℓν}

αj

)
+ β

( ν∑

j=1

αℓjzj +
∑

j 6∈{ℓ1,...,ℓν}

αj

)
Ez

R∗

1

1 · · · zR
∗

ν
ν

= γ

( ν∑

j=1

αℓj (zj − 1) +
∑

j≥0

αj

)
+ β

( ν∑

j=1

αℓj (zj − 1) +
∑

j≥0

αj

)
Ez

R∗

1

1 · · · zR
∗

ν
ν ,

from which the formula (4) follows. Expanding the denominator in (4), we obtain

Ez
R∗

ℓ1

1 · · · z
R∗

ℓν
ν =

(
1 + (1− α)

ν∑

j=1

αℓj (zj − 1)

) ∞∑

k=0

(
(1− α)β

γ

)k ( ν∑

j=1

αℓj (zj − 1)

)k

= 1 +
∞∑

k=1

(
(1− α)β

γ

)k ( ν∑

j=1

αℓj (zj − 1)

)k

+
γ

β

∞∑

k=1

(
(1− α)β

γ

)k( ν∑

j=1

αℓj (zj − 1)

)k

= 1 +
1− α

β

∞∑

k=1

(
(1− α)β

γ

)k ∑

i1,...,iν
i1+···+iν=k

k!

i1! · · · iν !
αℓ1ν1+···+ℓν iν (z1 − 1)i1 · · · (zν − 1)iν .

Now,

Ez
R∗

ℓ1

1 · · · z
R∗

ℓν
ν = E(1 + (z1 − 1))

R∗

ℓ1 · · · (1 + (zν − 1))R
∗

ℓν

=
∑

i1,...,iν

E

(
R∗

ℓ1

r1

)
· · ·

(
R∗

ℓν

rν

)
(z1 − 1)i1 · · · (zν − 1)iν ,

and so formula (5) is obtained by inspection.

Sometimes [2, 10] people are interested in the distribution of the number of runs exceeding

a given length:

Gℓ(n) :=
∑

k≥ℓ

Rk(n).

Consider the Z
∗
+–valued random variable

G(n) := (G1(n), G2(n), . . .).

We work up to a geometric random variable. Thus, let

G∗ := G(N∗ − 1).

We can compute EzG
∗

easily from the first formula of Theorem 2 by replacing zj by z1 · · · zj :
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Corollary 7.

EzG
∗

= γ
1 +

∑
j≥1 α

jz1 · · · zj

1− β − β
∑

j≥1 α
jz1 · · · zj

.

Marginalizing, we see that

Corollary 8. G∗
ℓ has geo(α̃ℓ, β̃ℓ) distribution with

α̃ℓ =
γ(1− αℓ)

γ + βαℓ
, β̃ℓ =

βαℓ

γ + βαℓ

This follows from direct comparison of the EθG
∗

ℓ with the formula for the probability

generating function of a geo(α, β) random variable.

3 Number of runs of given (or exceeding a given) length in

n coin tosses

Our interest is obtaining in information about the distributions of Rℓ(n) and Gℓ(n). Since

R∗
ℓ and G∗

ℓ have both distribution of geo(α, β) type, with explicitly known parameters, and

since3

L{G∗
ℓ} = (1− w)

∑

n≥0

wn L{G(n)}

(likewise for R∗
ℓ ) the problem is, in principle, solved. Moreover, such formulas exist in the

numerous references. See, e.g., [2]. Our intent in this section is to give an independent

derivation of the formulas but also point out their relations with hypergeometric functions.

It turns out that (i) formulas for Gℓ(n) are simpler than those for Rℓ(n) and (ii) binomial

moments for both variables are simpler to derive than moments. We therefore start by

computing the r-th binomial moment of Gℓ(n). By Corollary 2, G∗
ℓ is a geo(α̃ℓ, β̃ℓ) random

variable, and, from the formulas following Definition 1, we have

E

(
G∗

ℓ

r

)
=

1− α̃ℓ

β̃ℓ

(
β̃ℓ

1− β̃ℓ

)r

=
1− α

β

(
βαℓ

γ

)r

= (1− wp)(wq)r−1(wp)ℓr(1− w)−r

= (1− w)pℓrqr−1 × (1− wp)wℓr+r−1(1− w)−r−1

︸ ︷︷ ︸
3If X is a random variable, we let L{X} be its law.
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Now use

(1− w)−r−1 =
∞∑

k=0

(
r + k

r

)
wk (6)

to get that the under-braced term above equals

(1− wp)
∞∑

k=0

(
r + k

r

)
wℓr+r−1+k =

∞∑

k=0

(
r + k

r

)
wℓr+r−1+k − p

∞∑

k=0

(
r + k

r

)
wℓr+r+k

=
∑

n

(
n+ 1− ℓr

r

)
wn − p

∑

n

(
n− ℓr

r

)
wn

=
∑

n

[(
n+ 1− ℓr

r

)
− p

(
n− ℓr

r

)]
wn.

So, by inspection,

E

(
Gℓ(n)

r

)
= pℓrqr−1

[(
n+ 1− ℓr

r

)
− p

(
n− ℓr

r

)]
. (7)

In particular, we have

EGℓ(n) = pℓ[(n− ℓ+ 1)− p(n− ℓ)], n ≥ ℓ,

and, since Rℓ(n) = Gℓ(n)−Gℓ(n+ 1),

ERℓ(n) = pℓ[(n− ℓ+ 1)− 2(n− ℓ)p+ (n− ℓ− 1)p2], n > ℓ,

while ERn(n) = pn. Notice that

lim
n→∞

1

n
ERℓ(n) = pℓq2,

as expected by the ergodic theorem.

We now use the standard formula relating probabilities to binomial moments: 4

P(Gℓ(n) = x) =
∑

r≥x

(−1)r−x

(
r

x

)
E

(
Gℓ(n)

r

)
. (8)

Substituting the formula for the binomial moment and changing variable from r ≥ x to

m = r − x ≥ 0 we obtain

P(Gℓ(n) = x) =
∑

m≥0

(−1)m
(
x+m

x

)
pℓ(x+m)qx+m−1

[(
n+ 1− ℓ(x+m)

x+m

)
−p

(
n− ℓ(x+m)

x+m

)]

= pℓxqx−1

[ ∑

m≥0

(−pℓq)m
(
x+m

x

)(
n+ 1− ℓ(x+m)

x+m

)
−p

∑

m≥0

(−pℓq)m
(
x+m

x

)(
n− ℓ(x+m)

x+m

)]
.

4The binomial coefficient
(

a

b

)

is taken to be zero if b > a or if a < 0.
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It is perhaps interesting to notice the relation of the distribution of Gℓ(n) to hypergeometric

functions. Recall the notion of the hypergeometric function [9, Section 5.5.] (the notation

is from this book and is not standard):

F

(
a1, . . . , am

b1, . . . , bn

∣∣∣∣ z
)

=
∑

k≥0

ak1 · · · a
k
m

bk1 · · · b
k
n

zk

k!
,

where m,n ∈ Z+, a1, . . . , am ∈ C, b1, . . . , bn ∈ C \ {0,−1,−2, . . .}, z ∈ C, and xk :=

x(x+ 1) · · · (x+ k − 1). A little algebra gives

Hℓ(x, y; z) :=
∑

m≥0

zm
(
x+m

x

)(
x+ y − ℓm

x+m

)
=

(
x+ y

x

)
F

(
Vℓ+1(y)

Vℓ(x+ y)

∣∣∣∣−
(ℓ+ 1)ℓ+1

ℓℓ
z

)
,

(9)

where Vℓ+1(y) and Vℓ(x+ y) denote arrays of sizes ℓ+ 1 and ℓ respectively, defined via

Vk(u) := −
1

k

(
u, u− 1, . . . , u− k + 1

)
.

Looking back at the expression for P(Gℓ(n) = x) we recognize that the two terms in the

bracket are expressible in terms of the function Hℓ:

P(Gℓ(n) = x) = pℓxqx−1
[
Hℓ(x, n+ 1− (ℓ+ 1)x − pℓq)−Hℓ(x, n− (ℓ+ 1)x − pℓq)

]

The point is that the probabilities P(Gℓ(n) = x) are expressible in terms of the function Hℓ

which is itself expressible in terms of a hypergeometric function as in (9). This does not solve

the problem other than it expresses the distribution of Gℓ(n) via hypergeometric functions

which are efficiently computable in standard computer packages (we use MapleTM.)

Ultimately, the hypergeometric functions appearing above are nothing but polynomials.

So the problem is, by nature, of combinatorial character. Instead of digging the literature

for recursions for these functions, we prefer to transform the portmanteau identity into a

recursion which can be specialized and iterated.

4 Portmanteau recursions in the time domain

Recall the identity (2). We pass from “frequency domain” (variable “w”) to “time domain”

(variable “n”), we do obtain a veritable recursion in the space Z
∗
+. Recalling that α, β, γ

12



are given by (1) and that

L{h(R∗)} =
∑

n≥0

(1− w)wn L{h(R(n)},

we take each of the terms in (2) and bring out its dependence on w explicitly. The left-hand

side of (2) is

Eh(R∗) = (1− w)
∑

n≥0

wn
Eh(R(n)). (10)

The first term on the right-hand side of (2) is

γ
∑

n≥0

αjh(en) = (1− w)
∑

n≥0

wnpnh(en). (11)

As for the second term of (2), we have

β
∑

j≥0

αj
Eh(R∗ + ej) = wq

∑

j≥0

wjpj(1− w)
∑

n≥0

wn
Eh(R(n) + ej)

= (1− w)q
∑

j≥0

∑

n≥0

w1+j+npjEh(R(n) + ej)

Change variables by

(j, n) 7→ (j, m = 1 + j + n)

to further write

β
∑

j≥0

αj
Eh(R∗ + ej) = (1− w)q

∑

m≥0

∑

0≤j≤m−1

wmpjEh(R(m− j − 1) + ej)

= (1− w)
∑

n≥0

wnq
∑

0≤j≤n−1

pjEh(R(n− j − 1) + ej). (12)

Using (2) and (10), (11), (12), we obtain

Theorem 3. Let h : Z∗
+ → R be any function. Then, for all n ∈ N,

Eh(R(n)) = q
n−1∑

j=0

pjEh(R(n− j − 1) + ej) + pnh(en). (13)

Remark 1. (i) We say “any function” because R(n) takes finitely many values for all n.

(ii) This is a linear recursion but, as expected, it does not have bounded memory.

(iii) It can easily be programmed. It is initialized with Eh(R(0)) = h(0).

(iv) Of course, this recursion is nothing else but “explicit counting”.

(v) One could provide an independent proof of Theorem 3 and obtain the result of Theorem

13



1. This is a matter of taste.

(vi) We asked Maple to run the recursion a few times and here is what it found:

Eh(R(1)) = qh(0) + ph(e1)

Eh(R(2)) = q2h(0) + 2qph(e1) + p2h(e2)

Eh(R(3)) = q3h(0) + 3q2ph(e1) + qp2h(2e1) + 2qp2h(e2) + p3h(e3)

Eh(R(4)) = q4h(0) + 4q3ph(e1) + 3q2p2h(2e1) + 3q2p2h(e2) + 2qp3h(e1 + e2) + 2qp3h(e3)

+ p4h(e4),

which could be interpreted combinatorially.

Since G(n) = σ(R(n)) where σ : Z∗
+ → Z

∗
+ is given by

σ(x)k :=
∑

j≥k

xj ,

if f : Z∗
+ → R is any function then, letting h = f◦σ in the recursion of Theorem 3, and

noting that σ(en) = e1 + · · ·+ en, we have

Corollary 9. Let f : Z∗
+ → R is any function. Then, for all n ∈ N,

Ef(G(n)) = q
n−1∑

j=0

pjEf(G(n− j − 1) + ej) + pnf(e1 + · · ·+ en).

These two recursions can be made into recursions for probability generating functions.

Recalling that zx =
∏

j≥1 z
xj

j , for x ∈ Z
∗, we consider

Φn(z) := EzR(n), Ψn(z) := EzG(n), z ∈ C
N,

and immediately obtain

Corollary 10. The probability generating functions Φn and Ψn of the random elements

R(n) and G(n), respectively, of Z∗
+ satisfy Φ0(z) = Ψ0(z) = 1, and, for n ∈ N,

Φn(z) = qΦn−1(z) + q
∑

1≤j≤n−1

pjzjΦn−j−1(z) + pnzn

Ψn(z) = qΨn−1(z) + q
∑

1≤j≤n−1

pjz1 · · · zjΨn−j−1(z) + pnz1 · · · zn.
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Let us now look at ℓ-th marginal of the law of G(n). Consider the probability generating

function

Ψn,ℓ(θ) := EθGℓ(n), θ ∈ C.

Clearly, Ψn,ℓ(θ) = 1, for n < ℓ and

Ψn,ℓ(θ) = Ψn(1+ (θ − 1)eℓ)

where 1 ∈ Z
N is the infinite repetition of 1’s. We thus have

Corollary 11. For n < ℓ, we have Ψn,ℓ(θ) = 1, and

Ψn,ℓ =





q
n−ℓ−1∑

j=0

pjΨn−j−1,ℓ + pn−ℓ + (θ − 1)pℓ, ℓ ≤ n ≤ 2ℓ

q
ℓ−1∑

j=0

pjΨn−j−1,ℓ + qθ
n−ℓ−1∑

j=ℓ

pjΨn−j−1,ℓ + qθ(pn−ℓ − pℓ) + θpm, n ≥ 2ℓ+ 1

5 Longest run, Poisson and other approximations

Recall that L(n) = λ(R(n)) is the length of the longest run in n coin tosses. Although there

is an explicit formula (see Corollary 2) for

(1− w)

∞∑

n=0

wn
P(L(n) < ℓ) = P(L∗ < ℓ) =

(1− w)(1− (wp)ℓ)

1− w + (wq)(wp)ℓ
, (14)

inverting this does not result into explicit expressions. To see what we get, let us, instead,

note that

P(L(n) < ℓ) = P(Gℓ(n) = 0) =
∑

r≥0

(−1)r E

(
Gℓ(n)

r

)

and use the binomial moment formula (7) to obtain

Fℓ(n) := P(L(n) < ℓ) = 1 +
∑

r≥1

(−1)r
[(

n− ℓr

r

)
pℓrqr +

(
n− ℓr

r − 1

)
pℓrqr−1

]
. (15)

It is easy to see the function n 7→ Fℓ(n) satisfies a recursion.

Proposition 1. Let ℓ ∈ N. Define Fℓ(0) = 1 and, for n ≥ 1, Fℓ(n) = P(L(n) < ℓ). Then

Fℓ(n) = qFℓ(n− 1) + qpFℓ(n− 2) + · · ·+ qpℓ−1Fℓ(n− ℓ).

Proof. This can be proved directly by induction. But, since Theorem 3 is available, set

h(x) := 1{λ(x) < ℓ}, observe that h(x+ ej) = h(x)1{j < ℓ} and substitute into (13).
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5.1 The Poisson regime for large lengths

According to Feller, [5, Section XIII.12, Problem 25, page 341] asymptotics for L(n) go back

to von Mises [14]. Very sharp asymptotics for L(n) are also known; see Erdős and Rényi

[3], its sequel paper by Erdős, and Révész [4] and the review paper by Révész [13]. But it

is a matter of elementary analysis to see that the distribution function ℓ 7→ Fℓ(n) exhibits a

cutoff at ℓ of the order of magnitude of logn. To see this in a few lines, consider the formula

(7) for the binomial moment of Gℓ(n). Then

Lemma 1. Keep 0 < p < 1 fixed and let ℓ = ℓ(n) → ∞ so that

npℓ(n)q → θ,

as n → ∞, for some θ > 0. Then

E

(
Gℓ(n)(n)

r

)
→

θr

r!
,

and

P(Gℓ(n)(n) = 0) → e−θ.

Proof. Expanding the binomial coefficients in (7),

E

(
Gℓ(n)(n)

r

)
=

1

r!

r−1∏

j=0

[
(n− ℓ(n)r − j)pℓ(n)q

]
+

1

(r − 1)!

r−2∏

j=0

[
(n− ℓ(n)r − j)pℓ(n)q

]
× pℓ(n)

→
1

r!
θr +

1

(r − 1)!
θr−1 × 0 =

θr

r!
, as n → ∞.

For the second assertion, use (8):

P(Gℓ(n)(n) = 0) =
∑

r≥0

(−1)rE

(
Gℓ(n)(n)

r

)
→

∑

r≥0

(−1)r
θr

r!
= e−θ, as n → ∞.

Since P(Gℓ(n) = 0) = P(L(n) < ℓ) for all n and ℓ, the last asymptotic result can be

translated immediately into the following:

Corollary 12. Let 0 < α < ∞, 0 < β ≤ +∞. Then

P(L(n) < α log1/p n+ log1/p β) →





e−q/β , if α = 1

1 , if α > 1

0 , if α < 1

.
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In Figure 1, we take p = 1/2 and plot the function ℓ 7→ P(L(n) ≥ ℓ) for three values of

n.

Figure 1: Plot (piecewise linear interpolation) of ℓ 7→ P(L(n) ≥ ℓ) for n = 10, 100, 1000 and p = 1/2.

The vertical lines are at ℓ = log
2
(n).

Corollary 12 suggests the following practical approximation:

P(L(n) < ℓ)
.
= exp(−EGℓ(n)) = exp(−(n− ℓ)pℓq − pℓ), (16)

which is valid for large n and ℓ, roughly when ℓ is of order log1/p n or higher. In table 5.1

we compare the exact result with the approximation for n = 104, p = 1/2, and ℓ ranging

from slightly below log2 10
4 ≈ 13.288 to much higher values. We programmed (15) in Maple

to obtain the exact values of P(L(n) ≥ ℓ). We note that for values of ℓ smaller than 10, a

straightforward coding of (15) is too time-consuming and point out to Section 5.2 for better

approximations in this case.

In Figure 2 we plot ℓ 7→ P(L(n) ≥ ℓ) for n = 1000 and three different values of p. We also

plot the analytical approximation given by the right-hand side of (16). Notice that, visually

at least, there is no way to tell the difference between real values and the approximating

curves.

The result of Lemma 1 easily implies that the law of Gℓ(n)(n) converges weakly, as n → ∞

to a Poisson law with mean θ.

Corollary 13. Under the assumptions of Lemma 1, we have

L{Gℓ(n)(n)} → Poisson(θ).
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Table 1: Comparing exact and approximate values for P(L(n) ≥ ℓ) when

p = 1/2 and n = 104

ℓ P(L(n) ≥ ℓ) 1− exp(−(n− ℓ)pℓq − pℓ)

10 0.992583894386551 0.992394672192560

11 0.913367688920047 0.912770175666911

12 0.705167040532444 0.704616988848744

13 0.456748458590744 0.456475326366319

14 0.262835671849087 0.262736242068365

15 0.141377186760083 0.141346252684305

20 0.004748524931253 0.004748478671106

50 4.41957581641815 ×10−12 4.42000000000001 ×10−12

Proof. It is enough to establish convergence of binomial moments to those of a Poisson law.

Recall that if N is Poisson(θ) then E
(
N
r

)
= θr/r!. Lemma 1 tells us that the r-th binomial

moment of Gℓ(n)(n) converges to θr/r! and this establishes the result.

More interestingly, using the result of Corollary 6, we arrive at

Proposition 2. Consider ν ∈ N, positive real numbers θ1, . . . , θν , and sequences ℓj(n),

j = 1, . . . , ν of positive integers, such that

lim
n→∞

npℓj(n)q = θj , j = 1, . . . , ν.

Then

L{Rℓ1(n)(n), . . . , Rℓν(n)(n)} → Poisson(θ1q)× · · · × Poisson(θνq),

as n → ∞.

Proof. It suffices to show that the joint binomial moments converge to the right thing,

namely, that

lim
n→∞

E

(
Rℓ1(n)(n)

r1

)
· · ·

(
Rℓν(n)(n)

rν

)
=

(θ1q)
r1

r1!
· · ·

(θνq)
rν

rν !
,

for all nonnegative integers r1, . . . , rν . Fix ℓ1, . . . , ℓν , r1, . . . , rν , set r0 = r1 + · · ·+ rν , and,

using the abbreviations (1) for α, β and γ, write the expression (5) for the joint binomial
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Figure 2: Plot of ℓ 7→ P(L(1000) ≥ ℓ) and p = 0.25, 0.5, 0.75. The dots correspond to the actual

values. The solid lines correspond to the analytical approximation (16)

moments as

E

(
R∗

ℓ1

r1

)
· · ·

(
R∗

ℓν

rν

)
= (1− w)

r0!

r1! · · · rν !
pℓ·rqr0−1wℓ·r+r0−1 (1− wp)r0+1

(1− w)r0+1

Expand (1− wp)r0+1 using the binomial formula, and (1− w)r0+1 using (6) to write

(1− wp)r0+1

(1− w)r0+1
=

∞∑

k=0

r0+1∑

s=0

(−p)swk+s

(
r0 + 1

s

)(
r0 + k

r0

)

and obtain

E

(
R∗

ℓ1

r1

)
· · ·

(
R∗

ℓν

rν

)
= (1− w)

r0!

r1! · · · rν !
pℓ·rqr0−1

∞∑

k=0

r0+1∑

s=0

(−p)swℓ·r+r0−1+k+s

(
r0 + 1

s

)(
r0 + k

r0

)

= (1− w)
∞∑

n=0

wn
r0+1∑

s=0

r0!

r1! · · · rν !
pℓ·rqr0−1(−p)s

(
r0 + 1

s

)(
n+ 1− ℓ · r − s

r0

)
.

Therefore,

E

(
Rℓ1(n)

r1

)
· · ·

(
Rℓν (n)

rν

)
=

r0!

r1! · · · rν !
pℓ·rqr0−1

r0+1∑

s=0

(−p)s
(
r0 + 1

s

)(
n+ 1− ℓ · r − s

r0

)

=
q−1

r1! · · · rν !

r0+1∑

s=0

(−p)s
(
r0 + 1

s

)
(n+ 1− ℓ · r − s)r0

ν∏

j=1

(pℓjq)rj ,

where (N)r0 = N(N − 1) · · · (N − r0 + 1). Using the assumptions, we have

lim
n→∞

(n+ 1− ℓ · r − s)r0

ν∏

j=1

(pℓjq)rj = θr11 · · · θrνν ,
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and so

lim
n→∞

E

(
Rℓ1(n)(n)

r1

)
· · ·

(
Rℓν(n)(n)

rν

)
= q−1

r0+1∑

s=0

(−p)s
(
r0 + 1

s

)
θr11
r1!

· · ·
θrνν
rν !

= q−1(1− p)r0+1 θ
r1
1

r1!
· · ·

θrνν
rν !

= qr1+···+rν θr11
r1!

· · ·
θrνν
rν !

,

establishing the assertion.

5.2 A better approximation for small length values

We now pass on to a different approximation for Fℓ(n) = P(L(n) < ℓ). Consider again (14),

∞∑

n=0

wn Fℓ(n) =
1− (wp)ℓ

1− w + (wq)(wp)ℓ
, (17)

and look at the denominator

f(w) := 1− w + pℓq wℓ+1,

considered as a polynomial in w ∈ C, of degree ℓ+ 1. It is the smallest zeros of f(w) which

govern the behavior of n 7→ Fℓ(n), for n large (and all ℓ.)

Proposition 3. The equation

f(w) = 0, w ∈ C,

has two real roots w0 = w0(ℓ) and 1/p, such that

1 < w0 <
ℓ+ 1

ℓ
<

1

p((ℓ+ 1)q)1/ℓ
<

1

p
, p <

ℓ

ℓ+ 1

1 <
1

p
<

ℓ+ 1

ℓ
<

1

p((ℓ+ 1)q)1/ℓ
< w0, p >

ℓ

ℓ+ 1

1 < w0 =
1

p
, p =

ℓ

ℓ+ 1
,

and all other roots are outside the circle with radius max(w0, 1/p) in the complex plane.

Moreover, limℓ→∞w0(ℓ) = 1.

Proof. We check the behavior of f(w) for real w. First, we have f(1/p) = 0. Now, f ′(w) =

−1 + (ℓ + 1)pℓqwℓ, and so the only real root of f ′(w) = 0 is w∗ = 1/p((ℓ + 1)q)1/ℓ. Since
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f ′′(w) = ℓ(ℓ + 1)pℓqwℓ−1, the function f is strictly convex on [0,∞) and so f(w∗) is a

global minimum of f on [0,∞). Notice that f(w∗) = 1 − ℓw∗/(ℓ + 1). We claim that

f(w∗) ≤ 0, or, equivalently, that w∗ ≥ (ℓ + 1)/ℓ. Upon substituting with the value of

w∗, this last inequality is equivalent to pℓ(1 − p) ≤ (ℓ/(ℓ + 1))ℓ. But this is true, since

max0≤p≤1 p
ℓ(1 − p) = ℓℓ/(ℓ + 1))ℓ+1 ≤ (ℓ/(ℓ + 1)ℓ). Hence f(w∗) ≤ 0 with equality if and

only if p = ℓ/(ℓ + 1). On the other hand, f(0) = 1 and limw→∞ f(w) = ∞. Therefore

f(w) = 0 has two positive real roots straddling w∗. One of them is 1/p. Denote the other

root by w0. Since f((ℓ + 1)/ℓ) = −1
ℓ + ((ℓ + 1)/ℓ)ℓ+1pℓq < 0, and f(w∗) < 0, provided

that p 6= ℓ/(ℓ+ 1), it actually follows that, in this case, w0 and 1/p are outside the interval

[(ℓ+1)/ℓ, w∗]. Depending on whether p is smaller or larger than ℓ/(ℓ+1), we have w0 < 1/p

or w0 > 1/p, respectively. If p = ℓ(ℓ + 1) then w∗ = (ℓ + 1)/ℓ and then 1/p = w0 = w∗.

Since f(1) = pℓq, it follows that w0 > 1, in all cases. Finally, for all sufficiently large ℓ, we

have p < ℓ/(ℓ+ 1) and so 1 < w0 < (ℓ+ 1)/ℓ, showing that the limit of w0, as ℓ → ∞, is 1.

To show that the only roots f(w) = 0 with |w| ≤ max(w0, 1/p) are w0 and 1/p, we need an

auxiliary lemma which is probably well-known but whose proof we supply for completeness:

Lemma 2. Consider the polynomial P (z) := c0+c1z+· · ·+cnz
n, z ∈ C, with real coefficients

such that c0 > c1 > · · · > cn > 0. Then all the zeros of P (z) lie outside the closed unit ball

centered at the origin.

Proof. Fix λ > 1 such that c0 > c1/λ > c2/λ
2 > · · · > cn/λ

n and notice that

c0 + (z − 1)P (z/λ) = (c0 −
c1
λ
)z + (

c1
λ

−
c2
λ2

)z2 + · · ·+ (
cn−1

λn−1
−

cn
λn

)zn +
cn
λn

zn+1.

Therefore, on |z| = 1,

∣∣c0 + (z − 1)P (z/λ)
∣∣ ≤ (c0 −

c1
λ
) + (

c1
λ

−
c2
λ2

) + · · ·+ (
cn−1

λn−1
−

cn
λn

) +
cn
λn

= c0 = | − c0|.

Rouché’s theorem [1, page 153] implies that (z − 1)P (z/λ) and −c0 have the same number

of zeros inside the open unit ball centered at the origin. That is, all zeros of P (z/λ) lie

outside the open unit ball. Since λ > 1, it follows that all zeros of P (z) lie outside the

closed unit ball.

End of proof of Proposition 3. By polynomial division, write f(w) as

f(w) = −q(1− pw)(w − w0)P (w/w0),
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where

P (z) = c0 + c1z + · · ·+ cℓ−1z
ℓ−1,

and

cj =
1− (w0p)

ℓ−j

1− w0p
pj , j = 0, 1, . . . , ℓ− 1.

The polynomial P (z) satisfies the assumptions of Lemma 2 and thus all its zeros lie outside

the closed unit circle centered at the origin.

We translate this result into an approximation for the distribution function of L(n).

Proposition 4. Let w0 = w0(ℓ) be the root of the equation f(w) = 0 defined in Proposition

3. If p 6= ℓ/(ℓ+ 1) then 5

P(L(n) < ℓ) ∼
1− (w0p)

ℓ

1− (ℓ+ 1)q(w0p)ℓ
w−n−1
0 , as n → ∞.

If p = ℓ/(ℓ+ 1) then

P(L(n) < ℓ) ∼ 2(ℓ/(ℓ+ 1))n+1, as n → ∞.

Proof. Suppose first that p 6= ℓ/(ℓ + 1) and, using partial fraction expansion, write the

expression (17) as

g(w)

f(w)
=

1− (wp)ℓ

1− w + (wq)(wp)ℓ
=

c0
1− w/w0

+
h(w)

j(w)
. (18)

To do this, we use the fact that w0 is a zero of the denominator f(w) = 1− w + (wq)(wp)ℓ

but not a zero of the numerator g(w) = 1− (wp)ℓ. Also, w0 6= 1/p, and both g(w) and f(w)

have a zero at 1/p. Hence h(w) and j(w) are polynomials with degrees ℓ − 2 and ℓ − 1,

respectively, and j(w0) 6= 0. Hence

c0 =
1

w0
lim

w→w0

(w0 − w)g(w)

f(w)
=

g(w0)

−f ′(w0)

1

w0
=

1− (w0p)
ℓ

1− (ℓ+ 1)q(w0p)ℓ
1

w0
.

Now, the zeros of j(w) are, from Proposition 3, all outside the circle with radius w0. Using

this result, and inverting the expression (18), we obtain

P(L(n) < ℓ) ∼ c0w
−n
0 , as n → ∞,

which proves the first assertion.

5a(n) ∼ b(n) stands for lim a(n)/b(n) = 1.
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The case p = ℓ(ℓ + 1) corresponds, again from the result of Proposition 3, to the case

where the numerator g(w) has a simple zero at 1/p and the denominator f(w) a double zero

at w0 = 1/p. Taking this into account and the partial fraction expansion (18), we find

c0 = −
g′(w0)
1
2f

′′(w0)

1

w0
.

But g′(w) = −pℓqwℓ−1, f ′′(w) = pℓqℓ(ℓ+ 1)wℓ−1, so

c0 =
2

q(ℓ+ 1)

1

w0
=

2

(1− p)(ℓ+ 1)
=

2

w0
.

Therefore,

P(L(n) < ℓ) ∼
2

w0
w−n
0 = 2w−n−1

0 = 2(ℓ/(ℓ+ 1))−n−1,

proving the second assertion.

Since these approximations are valid for all ℓ, they nicely complement the Poisson ap-

proximation discussed earlier.

For n, ℓ → ∞, such that npℓ ≍ 1, we have

w0(ℓ) = 1 + pℓq +O(ℓ/n2).

From the approximation above, we find

P(Lℓ(n) < ℓ) ≈ e−npℓq,

which is asymptotically equivalent to the Poisson approximation.

5.3 Numerical comparisons of the two approximations

We numerically compute P(L(n) ≥ ℓ), first using the exact formula (15), then using the

Poisson approximation (16), and finally using the approximation suggested by Proposition

4. We see, as expected, that for small values of ℓ compared to n, the second approximation

outperforms the first one.

First, we let ℓ = 2. Then

f(w) = 1− w + p2qw3 = (pw − 1)(pqw2 + qw − 1),
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and so

w0 =

√
1 + 4p/q − 1

2p
.

The approximation suggested by Proposition 4 is

P(L(n) < 2) ∼
1− (w0p)

2

1− 3q(w0p)2
w−n+1
0 ,

assuming that p 6= 2/3, whereas, for p = 2/3, we have

P(L(n) < 2) ∼ 2(2/3)−(n+1).

Let p = 1/2, 1/3 and 4/5.

P(L(n) ≥ ℓ) for p = 1/2 and ℓ = 2

n exact Poisson approx. (error) second approx. (error)

5 0.59375 0.59375 (21.7%) 0.59426 (0.086%)

7 0.73438 0.58314 (20.6%) 0.73445 (0.01%)

10 0.85938 0.71350 (17%) 0.8594 (0.002%)

20 0.98311 0.91792 (6.63%) 0.98312 (0.0010%)

P(L(n) ≥ ℓ) for p = 1/3 and ℓ = 2

n exact Poisson approx. (error) second approx. (error)

5 0.32510 0.28347 (12.8%) 0.64762 (99%)

7 0.44033 0.38213 (13.2%) 0.44080 (0.11%)

10 0.57730 0.50525 (12.5%) 0.57780 (0.09%)

20 0.83415 0.76411 (8.4%) 0.83454 (0.05%)

P(L(n) ≥ ℓ) for p = 4/5 and ℓ = 2

n exact Poisson approx. (error) second approx. (error)

5 0.94208 0.64084 (32.0%) 0.94382 (0.18%)

7 0.98509 0.72196 (26.71%) 0.98526 (0.0173%)

10 0.9980232 0.8106201 (18.78%) 0.9980173 (0.00059%)

20 0.9999975 0.9473453 (5.265%) 0.9999975 (10−7%)

In the last two tables, we increase the value of ℓ and pick two different values for p. We

solve, in each case, the equation f(w) = 0 numerically.
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P(L(n) ≥ ℓ) for p = 1/2 and ℓ = 7

n exact Poisson approx. (error) second approx. (error)

100 0.31752 0.31002 (2.36%) 0.19644 (38.13%)

500 0.86364 0.85537 (0.96%) 0.8372 (3.06%)

1500 0.99757 0.99709 (0.048%) 0.99700 (0/057%)

3000 0.9999941986 0.9999916997 (0.00025%) 0.9999931928 (0.00010%)

P(L(n) ≥ ℓ) for p = 2/3 and ℓ = 10

n exact Poisson approx. (error) second approx. (error)

100 0.43531 0.41583 (4.475%) 0.46433 (6.667%)

500 0.95209 0.94214 (1.045%) 0.95480 (0.285%)

1500 0.999900 0.999821 (0.00790%) 0.999905 (0.00050%)

3000 0.9999999904 0.9999999694 (2.1×10−6%) 0.9999999908 (0.04 ×10−6%)

6 Discussion and open problems

We mention the paper of Gordon, Schilling and Waterman [7] developing an extreme value

theory for long runs. As mentioned therein, it is intriguing that the longest run possesses

no limit distribution, and this is based on an older paper by Guibas and Odlyzko [8].

We have not touched upon the issue of more general processes generating heads and tails.

For example, Markovian processes. The portmanteau identity can be generalized to include

the Markovian dependence and this can be the subject for future work, especially in the

light of suitable applications.

Another set of natural questions arising is to what extent we have weak approximation

of R(n) on a function space (convergence to a Brownian bridge?), as well as the quality of

such an approximation.
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