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Abstract

This paper offers an overview of the mobile Boolean stochastic geometric model
which is a time-dependent version of the ordinary Boolean model in a Euclidean space
of dimension d. The main question asked is that of obtaining the law of the detection
time of a fixed set. We give various ways of thinking about this which result into some
general formulas. The formulas are solvable in some special cases, such the inertial and
Brownian mobile Boolean models. In the latter case, we obtain some expressions for the
distribution of the detection time of a ball, when the dimension d is odd and asymptotics
when d is even. Finally, we pose some questions for future research.
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1 Introduction

Particles start from the points of a point process in R
d and perform i.i.d. stochastic motions.

Each particle carries a set (detection set) along (typically, a ball of fixed radius). The goal
is to find the time until one of the particles detects a fixed set K. This is a paper that
should have been written long ago. Its first version, [9] appeared in the proceedings of an
obscure conference without many proofs. After actually working out the Brownian case,
we discovered that Spitzer [8] had done most of the job for d = 2 or 3. A few years after
that, we posed some open questions [10], some of which were resolved by Peres et al. [12].
The purpose of this paper is twofold. First, because we think that an overview of the
topic is needed. Second, because there are several interesting questions that can be asked.
This overview contains some new elements too. For example, it contains a method for
computing the exact distribution of the detection time in odd dimensions and asymptotics
of the distribution in even dimensions. We also compare what happens when we run the
particles a Brownian motions vs. linear motions with random speeds. Roughly speaking,
Brownian motions discover small objects faster than linear motions.

The paper is organized as follows. First, we give an overview of the general Boolean
model. Then we pass on to the dynamic case. We then pose the detection problem and
provide some general formulas involving capacity notions. The inertial Boolean model (par-
ticles move on straight lines with constant speed) is presented next. The Brownian Boolean
model is then analyzed in detail. We conclude with some open problems. The first part
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of the paper, i.e., up to and including Section 4, is largely an overview but with organized
notation chosen so that the model can be explained in much greater generality than the
“solvable” one (the Brownian Boolean model) Section 5 is new (inertial Boolean model),
but quite simple. Section 6 deals with the Brownian Boolean model and explains the new
formulas regarding the distributions of detection times and their expectations, separately in
even and odd dimensions.

Throughout the paper we use the following notations: f(x) ∼ g(x), as x → ∞, means

f(x)/g(x) → 1, as x → ∞. Similarly, when x tends to another value. Also, f(x)
log∼ g(x)

means log f(x) ∼ log g(x). The closed unit ball in R
d centered at the origin is denoted by B.

The Euclidean norm of x ∈ R
d is denoted by |x| and the d-dimensional Lebesgue measure

of a Borel set A ⊂ R
d is denoted as vol(A). In particular, we let ωd := vol(B), keeping in

mind that

ωd =
πd/2

Γ(d2 + 1)
, d ∈ Z+,

which gives

ω2n =
πn

n!
, ω2n+1 =

2n+1πn

(2n+ 1)!!
, n ∈ Z+,

where (2n + 1)!! = 1 · 3 · 5 · · · (2n + 1). When A,B are sets (perhaps random) in R
d, then

A±B is their Minkowski sum (difference). For example, A could be a singleton and B the
trajectory of a stochastic process. The modified Bessel function of the second kind and of
order ν ∈ R is denoted by Kν . It admits the integral representation

Kν(z) =

∫ ∞

0
exp(−z cosh t) cosh(νt) dt, Re(z) > 0.

Alternative formulas for Kν when ν is a half-integer are in the appendix. We remark also
that the term “Boolean model” is not standard. Some people refer to it as germ-grain model
and allow the underlying point process to be general. In this paper, we reserve the term
“Boolean model” for the case when the underlying point process is (homogeneous) Poisson
and use “general Boolean model” for the case where the point process is more general.

2 A little background on the general Boolean model

The general Boolean model, also known as the germ-grain model [13, Ch. 4], is one the
basic objects of study of stochastic geometry. Consider a random point process Φ on R

d

(the “germs”) and a random compact set G (a “grain”). Conditionally on Φ, let {Gx, x ∈ Φ}
be i.i.d. copies1 of G. The general Boolean model is then defined by2

Ξ :=
⋃

x∈Φ
(x+Gx). (1)

(If G is a deterministic set, then Ξ can also be expressed as Ξ = Φ+G.) Alternatively, if K
is the collection of compact subsets of R2, we may consider the point process

N := {(x,Gx) : x ∈ Φ} (2)

1We think of Φ both as a random discrete set, and as a random point process. Thus {x ∈ R
d : x ∈ Φ}

stands for the random set or for the support of the random measure. When B is a Borel subset of Rd we use
Φ(B) to denote the value of the random measure at B, i.e., the number of points of the random set in B.

2When A,B ⊂ R
d, we let A + B := {a + b : a ∈ A, b ∈ B} (Minkowski addition). Similarly, A − B :=

{a− b : a ∈ A, b ∈ B}. We let x+B := {x}+B.
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as a discrete random subset of the product space R
d ×K. In fact, it is also a marked point

process because to each x there is a unique Gx ∈ K such that (x,Gx) is an element of the
random set N . Putting an appropriate probability measure on the set of marked point
processes on R

d ×K gives another way of constructing a general Boolean model.

The capacity functional of the general Boolean model is defined as

TΞ(K) := P(K ∩ Ξ 6= ∅),

for K a compact set.

The capacity functionalis a fundamental object in the theory of random sets [11]. If X
is a random locally compact subset of Rd then

TX(K) := P(K ∩X 6= ∅)

is defined on compact sets K. It is submodular, i.e., TX(K1 ∪K2) ≤ TX(K1) + TX(K1)−
TX(K1∩K2) and upper semicontinuous, i.e., TX(Kn) ↓ TX(K) whenever Kn is a decreasing
sequence of compact sets with

⋂
nKn = K. An example of a capacity functional is the one

given above. Another example is obtained by considering a Brownian motion ξ := {ξ(t), t ≥
0} in R

d started from some ξ(0) ∈ R
d. Letting

ξ(t) :=
{
ξ(s), 0 ≤ s ≤ t

}

be the initial segment of ξ up to time t, we have Tξ(t)(K) = P(ξ(t) ∩K 6= ∅). If we set

TK := inf{t ≥ 0 : ξ(t) ∈ K},

we obtain
Tξ(t)(K) = P(TK ≤ t).

Thus, t 7→ Tξ(t)(K) is the distribution function of the random variable TK .

Going back to the general Boolean model, we observe that if (the law of) Φ is invariant
under translations and ergodic, and if vol denotes the Lebesgue measure on R

d, then CΞ({0})
is the a.s. (and in L1) limit of vol(Ξ ∩ [−h, h]d)/hd, as h ↑ ∞ and is known as the volume

fraction of Ξ.

An important particular case is when Φ is a spatially homogeneous Poisson process with
intensity λ. In this case, Ξ is referred to as a Boolean model3 [14]. The Boolean model
has several computational advantages. For example, owing to the thinning property of a
Poisson process, the set of points x ∈ Φ such that x+Gx intersects a given closed set A,

ΦA := {x ∈ Φ : A ∩ (x+Gx) 6= ∅},

forms an inhomogeneous Poisson process in R
d with intensity measure

EΦA(dx) = λA(x) dx = λP(A ∩ (x+G) 6= ∅) dx.

Indeed, conditionally on Φ, the random variables
{
1(A ∩ (x + Gx) 6= ∅), x ∈ Φ

}
are

independent and 1(A ∩ (x + Gx) 6= ∅)
(d)
= 1(A ∩ (x + G) 6= ∅), for all x ∈ Φ. Since

A ∩ (x+G) 6= ∅ is equivalent to (A− x) ∩G 6= ∅, we have

λA(x) = λTG(A− x).

3The terminology is highly nonstandard. Some authors use the term “Boolean model” or “germ-grain
model” for what we called “general Boolean model”. We decided to reserve the term “Boolean model” for
the case where Φ is a Poisson process.
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Notice also that if Ξ is a Boolean model then the marked point process N introduced in (2)
is a Poisson process on R

d ×K with intensity measure λ dxP(G ∈ dg) on the space R
d ×K.

Conversely, given a finite measure µ(dg) on K, we can construct a Poisson process N on
R
d×K with intensity measure dxµ(dg). The projection of N on R

d is the set of germs and
the projection on K is the set of grains.

In applications of stochastic geometry, it is sometimes the case that the grains depend
on a parameter t (time) and increase with t. The general mobile Boolean model has a time
parameter t which principally affects the locations of the germs.

3 The general mobile Boolean model

3.1 Definitions

In its most general form, the general mobile Boolean model is defined in terms of a germ
point process Φ on R

d and of a time-dependent grain process G =
{
G(t), t ≥ 0

}
. The latter

is assumed to be a stochastic process with values in K and continuous sample paths, when
K is equipped with the topology induced by the Hausdorff metric. Conditionally on Φ, let{
Gx, x ∈ Φ

}
be i.i.d. copies of G and define, for each t ≥ 0, the general Boolean model

Ξ(t) =
⋃

x∈Φ
(x+Gx(t)).

The general mobile Boolean model is the process Ξ =
{
Ξ(t), t ≥ 0

}
. Physically, we think of

particles located at points x ∈ Φ at time 0, each having a grain Gx(0) “around it”. At time
t, point x moves to a new position and, as a result, the grain around it becomes x+Gx(t).
Notice that the set

W(t) :=
⋃

0≤s≤t

Ξ(s)

represents everything covered by the general Boolean model up to time t and is itself too a
general Boolean model with grains the points of Φ and germs being i.i.d. copies of

G(t) :=
⋃

0≤s≤t

G(s).

Indeed,

W(t) =
⋃

x∈Φ
(x+

⋃

0≤s≤t

Gx(s)) =
⋃

x∈Φ
(x+G(t)

x ). (3)

Note that W(t) is increasing in t.

3.2 The canonical form

The canonical way of introducing the distribution of the grain process
{
G(t), t ≥ 0

}
is

by considering a specific point h(G(0)) of G(0) as its “center” (where, formally, h is a
measurable function from K into R

d). Then

ξ(t) := h(G(t)), t ≥ 0,
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describes the motion of the center. We may thus describe the law of
{
G(t), t ≥ 0

}
, in two

steps. First by specifying the law of
{
ξ(t), t ≥ 0

}
and then, conditionally on

{
ξ(t), t ≥ 0

}
,

by specifying the law of
D(t) := G(t)− ξ(t), t ≥ 0.

(In the simplest case, we may assume that
{
D(t), t ≥ 0

}
is independent of

{
ξ(t), t ≥ 0}.)

We can then write
Ξ(t) =

⋃

x∈Φ
(x+ ξx(t) +Dx(t)),

where ξx(t) = h(Gx(t)), Dx(t) = Gx(t) − ξx(t). The two representations for Ξ(t) are
absolutely equivalent. Notice, however, that if we let

Φ(t) :=
{
x+ ξ(t) : x ∈ Φ

}

we can write, with a slight abuse of notation as regards the indices of Dx(t),

Ξ(t) =
⋃

x∈Φ(t)

(x+Dx(t)),

and think of Ξ(t) as a general Boolean model with germs the points of x ∈ Φ(t) and grains
Dx(t).

In the simplest case, Φ is a homogeneous Poisson process with intensity λ, and {D(t), t ≥
0} is independent of {ξ(t), t ≥ 0}. Then Φ(t) is again a homogeneous Poisson process with
intensity λ.Thus, if Ξ(0) is a Boolean model and the trajectory of the center is chosen
independently ofD, then, for each t > 0, Ξ(t) is also a Boolean model identical in distribution
to Ξ(0).

Note: Without further ado we shall, henceforth, define a mobile Boolean model to be one
for which the germ point process Φ is homogeneous Poisson and the independence between
ξ(·) = h(G(·)) and D(·) holds. Dropping the adjective homogeneous gives an inhomogeneous
mobile Boolean model. An inhomogeneous mobile Boolean model is arguably a good model
for a sensor network. Sensing devices are initially located at the points x of the inhomo-
geneous Poisson process Φ and move according to independent random motions x + ξx(t)
(assuming ξx(0) = 0). The set Dx(t) represents the part of space which can be sensed by
the sensor at time t. If the problem is to discover an unknown target, then inhomogene-
ity in Φ allows for the possibility of incorporating prior information about the location of
the target. Randomness in Dx(t) may model the different sensing abilities of the devices.
And time-dependence in Dx(t) allows for modeling of loss (or gain) of energy of the device.
Finally, randomness in the trajectories is natural too.

4 The detection problem

We now consider the problem of finding the distribution of the first time that a general
mobile Boolean model will detect a fixed compact set K. The expressions (4) and (6)
below concern, respectively, a general mobile Boolean model and an inhomogeneous mobile
Boolean model. The expressions (8), and (9) concern both a homogeneous mobile Boolean
model. The last one relates the distribution of the detection time of K by to the distribution
of the first hitting time of a set by the process x+ ξ(t) representing the random motion of
a sensing device initially located at the point x.
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4.1 Detection time for a general mobile Boolean model

Let K be a compact subset of Rd and let

SK := inf{t ≥ 0 : K ∩W(t) 6= ∅}.

This is called the detection time of the set K. We are interested in deriving information
about the law of K. Under natural assumptions on the law of Φ (e.g., if Φ is a Poisson
process), and if the grain G has nonempty interior with positive probability, then, due to
compactness, the probability that K is contained in W(0) is positive. Hence P(SK = 0) is
typically (e.g., under the previous assumptions) positive. By the monotonicity of W(t),

P(SK ≤ t) = P(K ∩W(t) 6= ∅) = TW(t)(K), (4)

and, by the expression (3) for W(t),

TW(t)(K) = P
( ⋃

x∈Φ
K ∩ (x+G(t)

x ) 6= ∅
)

= P(∃x ∈ Φ K ∩ (x+G(t)
x ) 6= ∅).

So, if we consider the point process

ΦK := {x ∈ Φ : K ∩ (x+G(t)
x ) 6= ∅)}, (5)

we have
TW(t)(K) = P(ΦK 6= 0),

which is the probability that for some point x of Φ the set x+G
(t)
x intersects K. This point

process depends on the general Boolean model in a rather complicated way.

4.2 Detection time for a (possibly inhomogeneous) mobile Boolean model

Things become simple in the case of an inhomogeneous mobile Boolean model where Φ is a
Poisson process with intensity measure λ(dx). In this case, arguing as earlier, ΦK is also a
Poisson process with intensity measure

P(G(t) ∩ (K − x) 6= ∅)λ(dx) = TG(t)(K − x)λ(dx),

and thus,

P(SK ≤ t) = TW(t)(K) = 1− exp

(
−

∫

Rd

TG(t)(K − x)λ(dx)

)
. (6)

Since (G(t) +D) ∩ (K − x) 6= ∅ iff x ∈ K −D − ξ(s) for some s ≤ t, we have, by Fubini’s
theorem,

P(SK > t) = exp

(
− Eλ

( ⋃

0≤s≤t

[K −D − ξ(s)]

))
(7)

If Φ is a spatially homogeneous Poisson process with

λ(dx) = λ · dx,
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then

P(SK > t) = exp

(
− λE vol

( ⋃

0≤s≤t

[ξ(s) +D −K]

))
. (8)

We point out that the sets involved in this union are formed by translating the set
D −K = {x − y : x ∈ D, y ∈ K} by vectors ξ(s). Put it otherwise, a particle performing
motion ξ carries a neighborhood with shape D − K. The set swept by the particle up to
time t can be called the (D − K)-sausage of ξ up to time t. The term Wiener sausage is
reserved for the case when ξ is a Brownian motion.

4.3 Detection time for a homogeneous mobile Boolean model in its canon-
ical form

Suppose now that
G(t) = ξ(t) +D,

where D is a fixed deterministic compact set, for instance a closed ball, and {ξ(t), t ≥ 0} a
random process with continuous sample paths and ξ(0) = 0; see Section 3.2. Then

G(t) =
⋃

0≤s≤t

(ξ(s) +D) = ξ(t) +D,

and

G(t) ∩ (K − x) 6= ∅ ⇐⇒ (ξ(t) +D) ∩ (K − x) 6= ∅ ⇐⇒ (x+ ξ(t)) ∩ (K −D) 6= ∅.

Therefore, if we define the first hitting time

T x
B := inf{t ≥ 0 : x+ ξ(s) ∈ B}

of a closed set B by the process x+ ξ(·), we have

TG(t)(K − x) = P(T x
K−D ≤ t).

Using (6) and (8) we obtain

P(SK > t) = exp

(
− λ

∫

Rd

P(T x
K−D ≤ t) dx

)
. (9)

In particular, if T x
K−D has density fx

K−D(t) then the hazard rate hK(t) of SK , defined by

P(SK ≤ t+ δ | SK > t) = hK(t)δ + o(δ), as δ ↓ 0,

exists and is given by

hK(t) = λ

∫

Rd

fx
K−D(t) dx.

Computing the distribution of SK exactly may be hard, but asymptotics may be possible,
via knowledge of the Laplace transform of T x

K−D and Tauberian theorems.
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4.4 The isotropic case

Suppose that the process {ξ(t), t ≥ 0}, with ξ(0) = 0, is isotropic, i.e., that if Q is a proper
rotation of Rd then {Qξ(t), t ≥ 0} has the same law as {ξ(t), t ≥ 0}. Assuming further that

D = rB, K = r0B, (10)

where B = {x ∈ R
d : |x| ≤ 1} is the unit ball of radius 1 centered at the origin, then, clearly,

the integral in (9) can be simplified. Indeed, with e1 = (1, 0, . . . , 0),

T x
K−D = inf{t ≥ 0 : |x+ ξ(t)| ≤ r + r0}

(d)
= inf{t ≥ 0 :

∣∣ |x|e1 + ξ(t)
∣∣ ≤ r + r0},

so, letting
T ρ
r+r0 := inf{t ≥ 0 : |ρe1 + ξ(t)| ≤ r + r0} (11)

be the first hitting time of r + r0 by the radial process |ρe1 + ξ(t)|, we have

∫

Rd

P(T x
K−D ≤ t) dx = σd−1

∫ ∞

0
P(T ρ

r+r0 ≤ t) ρd−1 dρ

= ωd(r + r0)
d + σd−1

∫ ∞

r+r0

P(T ρ
r+r0 ≤ t) ρd−1 dρ,

where ωd = πd/2/Γ(1 + d/2) is the d-dimensional Lebesgue measure of the unit ball in R
d

and σd−1 = dωd. Hence

P(SK > t) = e−λωd(r+r0)d exp

(
− λσd−1

∫ ∞

r+r0

ρd−1
P(T ρ

r+r0 ≤ t) dρ

)
. (12)

Although the integral has been reduced from a d-dimensional one to 1-dimensional, finding
the distribution of (11) is still a d-dimensional problem.

5 The inertial Boolean model

We take ξ to be a linear stochastic motion. Let v be a random variable in R
d and let the

motion of a typical particle be
ξ(t) := tv, t ≥ 0.

The random set covered by time t is

W(t) =
⋃

x∈Φ
(x+ {vs, 0 ≤ s ≤ t}+K).

Letting ξ(t) := {ξ(s), 0 ≤ s ≤ t}, and G(t) := ξ(t) +D, we have

TG(t)(K − x) = P
(
(ξ(t) +D) ∩ (K − x) 6= ∅

)

= P
(
{x+ sv, 0 ≤ s ≤ t} intersects K −D

)
, (13)

which is laborious (but not impossible) to compute explicitly (but we don’t need the explicit
formula). Assume that the particles are initially placed at the points of a Poisson process
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with intensity measure λ(dx). Then, from (7), the distribution of the detection time of K
is

P(SK > t) = exp

(
− Eλ

( ⋃

0≤s≤t

[K −D − sv]

))
.

Take now K = rB, D = r0B, with B the unit ball in R
d. Then K −D = (r + r0)B. Let

R := r + r0.

Assuming further that λ is isotropic (invariant under rotations), so that

λ(dx) = dθ |x|d−1 µ(d|x|),

where dθ is the natural spherical measure on the boundary of the unit ball and µ a measure
on R+, we have

λ

( ⋃

0≤s≤t

(K −D − sv)

)
=

1

2
λ(RB) +

1

2
λ(RB+ tve1) + λ(CR,tv),

where CR,tv is a cylinder with height tv. Specifically, CR,tv contains the x ∈ R
d such that

x · v ≤ t|v|2,
|v|2x− (x · v)v ∈ |v|2 ∈ RB.

Even when the law of v is assumed isotropic, the integrals can be quite hard to compute
exactly unless we further assume invariance under translations for λ, i.e., take now λ to be
a multiple of the Lebesgue measure:

λ(dx) = λ · dx.

In this case, things are very simple:

λ

( ⋃

0≤s≤t

(K −D − sv)

)
= λ ·Rdωd + λ ·Rd−1σd−1t|v|. (14)

Therefore, if K−D = RB, and if the original location of particles is a homogeneous Poisson
process with intensity λ then, assuming that E|v| < ∞,

P(SK > t) = exp(−λRdωd) exp(−λRd−1σd−1(E|v|)t). (15)

This gives

ESK =
e−λωdR

d

λdωd(E|v|)Rd−1
=

1

λdωd(E|v|)
1

Rd−1
− 1

d
R+ o(R), as R ↓ 0. (16)

However, if E|v| = ∞, then the Poisson process (5) has intensity measure proportional to (13)
which integrates, with respect to the d-dimensional Lebesgue measure, to the expectation
of (14) and this is infinity if t > 0. Therefore,

if E|v| = ∞ then SK = 0, a.s.
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A more elaborate problem is the computation of the law of

inf{t ≥ 0 : r0B ∩W(t) 6= ∅, a 6∈ W(t)}

where
W(t) =

⋃

x∈Φ
(x+ {vs, 0 ≤ s ≤ t}+ rB),

which is the set covered up to time t by the inertial Boolean model when the particles carry
balls of radii r each. In other words, the problem is that of finding information about the
first time that the particles will detect a fixed ball of radius r0 before anyone of them goes
close to some point a (the enemy). This problem will be addressed in the future.

6 The Brownian Boolean model

We now specialize further and take ξ to be a standard Brownian motion in R
d. In other

words, ξ(0) = 0 and ξ = (ξ1, . . . , ξd), where the ξi, i = 1, . . . , d are i.i.d. standard Brownian
motions in R. Let D and K be balls with radii r and r0, respectively, as in (10), and let S
be the detection time of K. The distribution of S depends on r0 and r through their sum,
so we write

R = r0 + r

for convenience. Let
̺(t) := |ρe1 + ξ(t)|.

Then ̺ is standard Bessel process of dimension d started at ̺(0) = ρ, denoted as BESd(ρ)
by Revuz and Yor [15]. It is a strong Markov process (in fact, a Feller diffusion) satisfying
the Itô equation

̺(t) = ̺(0) + β(t) +
d− 1

2

∫ t

0

1

̺(s)
ds,

where β is a standard Brownian motion in R. Letting T ρ
R be the first hitting time of the

closed ball of radius R centered at the origin by the Bessel process started at ρ, we have,
from (12),

P(S > t) = exp

(
− λσd−1

∫ ∞

0
ρd−1

P(T ρ
R ≤ t) dρ

)
=: e−λV R(t). (17)

The infinitesimal generator A of ̺ is the radial part of 1
2∆, where ∆ is the Laplacian on

R
d:

Af(ρ) =
1

2

1

ρd−1

∂

∂ρ

(
ρd−1∂f

∂ρ

)
=

1

2
f ′′(ρ) +

d− 1

2ρ
f ′(ρ),

acting on C2 functions. Therefore, for s > 0, the function

L(ρ) := E[e−sT ρ
R ]

satisfies
AL = sLa

i.e., the ODE
1

2
L′′(ρ) +

d− 1

2ρ
L′(ρ) = sL(ρ), R < ρ < ∞, (18)
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with boundary conditions
L(R+) = 1, lim

ρ→∞
L(ρ) = 0. (19)

Change variables using
L(ρ) = ρbL̃(aρ), (20)

for appropriate constants a > 0, b ∈ R. The ODE reduces to

a2ρ2L̃′′(aρ) + (d− 1 + 2b)aρL̃′(aρ) + (b2 − 2b+ bd− 2sρ2)L̃(aρ) = 0.

Choosing

b =
d

2
− 1

gives
a2ρ2L̃′′(aρ) + aρL̃′(aρ)− (b2 + 2sρ2)L̃(aρ) = 0.

Letting
a =

√
2s (21)

(and letting x := aρ), we obtain the following ODE

x2L̃′′(x) + xL̃′(x)− (b2 + x2)L̃(x) = 0. (22)

We recognize this as the modified Bessel ODE [5, Sec. 3.7] the fundamental solutions of which
are the modified Bessel functions I±b and Kb. The standard Bessel ODE differs from (22)
by a change of sign in the last term. The fundamental solutions of the standard Bessel ODE
are the Bessel functions of first and second kind J±b, Nb, whose series representations are
easily obtained from the ODE; see equations (3.82), (3.83) and (3.85) in [5]. The modified
Bessel functions I±b and Kb (of first and second kind, respectively) are related to I±b and
Kb via

I±b(x) = i−bJ±b(ix)

Kb(x) =
π

2
ib[iJb(ix)−Nb(ix)],

and are real-valued, despite appearances; see (3.100), (3.101) and (3.86) in [5]. Since I±b

explodes as x → ∞, we are left with only one choice for (22):

L̃(x) = CKb(x),

where C is a constant. In terms of the original function, i.e., using the change of variables
(21), (20),

L(ρ) = Cρ−bK(ρ
√
2s).

The boundary conditions (19) determine C:

C = Rb/Kb(R
√
2s).

So the solution to the ODE (18) with boundary conditions (19) is given by

L(ρ) = E[e−sT ρ
R ] =

ρ−bKb(ρ
√
2s)

R−bKb(R
√
2s)

, ρ ≥ R. (23)
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Compare now (17) with (8). Since
⋃

0≤s≤t(ξ(s) + D − K) =
⋃

0≤s≤t(ξ(s) + RB), the
quantity in the exponent in (17) is the expected volume of the Wiener sausage

WR(t) :=
⋃

0≤s≤t

(ξ(s) +RB);

see comments at the end of §4.2. We have

V R(t) := E volWR(t) =

∫

Rd

P(T x
R ≤ t) dx = ωdR

d + σd−1

∫ ∞

R
ρd−1

P(T ρ
R ≤ t) dρ.

Via (23), we have an expression for the Laplace transform of the the expected volume of
the Wiener sausage:

V̂ R(s) :=

∫ ∞

0
e−stV R(t) dt =

ωdR
d

s
+

σd−1

s

∫ ∞

R

(
Ee−sT ρ

R
)
ρd−1 dρ

=
ωdR

d

s
+

σd−1

s

∫ ∞

R

R
d
2
−1

ρ
d
2
−1

K d
2
−1(ρ

√
2s)

K d
2
−1(R

√
2s)

ρd−1 dρ

=
ωdR

d

s
+

σd−1R
d
2
−1

sK d
2
−1(R

√
2s)

∫ ∞

R
K d

2
−1(ρ

√
2s)ρd/2 dρ. (24)

We now use a couple of facts about the functions Kb; see [1]. First, we have the recursion
formula

Kb+1(x)−Kb−1(x) =
2b

x
Kb(x).

Second, we have the derivative

K ′
b(x) =

b

x
Kb(x)−Kb+1(x).

Combining these we get
d

dx

(
Kb(x)x

b
)
= −Kb−1(x)x

b,

and so ∫ ∞

x
K d

2
−1(y)y

d
2 dy = K d

2
(x)x

d
2 ,

and, for λ > 0, ∫ ∞

x
K d

2
−1(λy)y

d
2 dy =

1

λ
K d

2
(λx)x

d
2 .

The last integral in (24) evaluates to

R
d
2√
2s

K d
2
(R

√
2s),

and so

V̂ R
d (s) =

ωdR
d

s
+

σd−1R
d−1

√
2s3

K d
2
(R

√
2s)

K d
2
−1(R

√
2s)

,

where we added a subscript d to indicate dependence on the dimension. We can save some
space by observing that, due to Brownian scaling,

V R
d (t) = RdV 1

d (t/R
2), (25)
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V̂ R
d (s) = Rd+2V̂ 1

d (R
2s).

and so it is only

V̂ 1
d (s) =

ωd

s
+

σd−1√
2s3

K d
2
(
√
2s)

K d
2
−1(

√
2s)

(26)

we should be looking for. Since Kb = K−b, the case d = 1 is trivial:

V̂ 1
1 (s) =

2

s
+

2√
2s3

. (27)

Inverting this Laplace transform gives

V 1
1 (t) = 2 +

√
8t

π
.

By the scaling relation (25),

V R
1 (t) = 2R+

√
8t

π
,

that is, the expected change of volume (=length) from its initial value does not depend on
R.

6.1 Odd dimensions

Consider now the case where

d = 2n+ 1, n = 0, 1, . . .

We will produce an algorithm for computing V̂ 1
2n+1(s) recursively, and carry out its first few

steps. The modified Bessel functions of half-integer order have a simple form:

Kn+ 1
2
(x) =

√
π

2

e−x

√
x
yn(1/x), n = 0, 1, . . . ,

where yn(x) is a polynomial of degree n with integer coefficients:

yn(x) :=
n∑

k=0

(n+ k)!

(n− k)!k!

(
x

2

)k

, n = 0, 1, . . . ,

known as the Bessel polynomial of degree n; see [6, formula (3)]. Note, in particular, that

yn(x) = (2n− 1)!!xn + (2n− 1)!!xn−1 + · · ·+ n(n+ 1)

2
x+ 1,

i.e., the coefficients of the two highest powers are equal to the double factorial

(2n− 1)!! =
(2n)!

n!2n
= (2n− 1)(2n− 3)(2n− 5) · · · 3 · 1.

See Appendix A for a table of the first few Bessel polynomials and their corresponding
Bessel functions. Consequently,

V̂ 1
2n+1(s) =

ω2n+1

s
+

ω2n+1

s

2n+ 1√
2s

yn(1/
√
2s)

yn−1(1/
√
2s)

, n = 0, 1, . . . , (28)
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where
y−1(x) := 1,

as follows by comparison to (27). We thus have

1

ω3
V̂ 1
3 (s) =

1

s
+

3

s

√
2s+ 1

2s

1

ω5
V̂ 1
5 (s) =

1

s
+

5

s

(2s)3/2 + 6s+ 3
√
2s

(2s)3/2 [
√
2s+ 1]

1

ω7
V̂ 1
7 (s) =

1

s
+

7

s

(2s)3/2 + 12s+ 15
√
2s+ 15√

2s [(2s)3/2 + 6s+ 3
√
2s]

1

ω9
V̂ 1
9 (s) =

1

s
+

9

s

(2s)5/2 + 40s2 + 45(2s)3/2 + 210s+ 105
√
2s

(2s)3/2 [(2s)3/2 + 12s+ 15
√
2s+ 15]

.

These Laplace transforms can, in principle, be inverted by using partial fraction expansion
and the fact that (see Erdélyi et al. [3, Ch. 7, p. 233])

1√
s+ β

=

∫ ∞

0
e−st

[
1√
πt

− βeβ
2t erfc(β

√
t)

]
dt,

where

erfc(t) := 1− erf(t), erf(t) :=
2√
π

∫ ∞

t
e−u2

du.

For example, writing
1

ω3
V̂ 1
3 (s) =

1

s
+

3√
2s3

+
3

2s2
,

we obtain
1

ω3
V 1
3 (t) = 1 +

6√
π

√
t+

3

2
t.

Expanding V̂ 1
5 (s), we obtain

1

ω5
V̂ 1
5 (s) =

1

s
+

10

2s

[
1√

2s+ 1
+

3√
2s(

√
2s+ 1)

+
3

2s(
√
2s+ 1)

]
.

Since

1

s(
√
s+ 1)

=

∫ ∞

0
e−st[1− et erfc(

√
t)] dt

1

s
√
s(
√
s+ 1)

=
1

s
√
s
− 1

s(
√
s+ 1)

=

∫ ∞

0
e−st

[
2

√
t

π
− 1 + et erfc(

√
t)

]
dt

1

s2(
√
s+ 1)

=

∫ ∞

0
e−st

[
1 + t− 2

√
t

π
− et erfc(

√
t)

]
dt,

letting g1(t), g2(t), g3(t) be the functions in the square brackets of the last three lines, we
have

1

ω5
V 1
5 (t) = 1 + 10

[
1

2
g1(t/2) +

3

2
g2(t/2) +

3

2
g3(t/2)

]
= 6− 5et/2 erfc(

√
t/2) +

15

2
t.
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Using the scaling relation (25), we can now obtain V R
d (t), for d = 1, 3, 5 and, therefore, the

distribution of the detection time via (17).

d = 1 : P(S > t) = exp
(
− 2λR− 4λ

√
t/π

)
. (29)

d = 3 : P(S > t) = exp
(
− 4πλ

3
R3 − 8

√
πtλR2 − 2πλtR

)
. (30)

d = 5 : P(S > t) = exp
(
− 16π2

5
R2 +

8R5

3
et/2R

2
erfc(R−1

√
t/2)− 4π2R3t

)
(31)

Notice that the exponent is not a polynomial in R, as is apparent for the d = 5 case.4

A more efficient way of doing the above is by means of the recursion formula

yn(x) = (2n− 1)xyn−1(x) + yn−2(x), n = 1, 2, . . . ,

with initial conditions y−1(x) = y0(x) = 1. See [6, §7]. Let

Hn(s) :=

√
2s

2n+ 1

(
s
V̂ 1
2n+1(s)

ω2n+1
− 1

)
.

From (28) we have

Hn(s) =
yn(1/

√
2s)

yn−1(1/
√
2s)

,

and so, from the recursion formula for Bessel polynomials,

Hn(s) =
2n− 1√

2s
+

1

Hn−1(s)
, n = 1, 2, . . . ,

where H0(s) = 1. This gives a recursive way for computing V̂ 1
2n+1(s).

Let

an(s) :=
2n− 1√

2s
.

A “closed” formula can also be obtained:

V̂ 1
2n+1(s)

ω2n+1
=

1

s
+

an+1(s)

s





an(s) +
1

an−1(s) +
1

an−2(s) +
1

. . . + 1
a1(s)+1





(32)

=
1

s
+

2n+ 1

2s2





(2n− 1) +

√
2s

(2n− 3) +

√
2s

(2n− 5) +

√
2s

. . . +
√
2s

1+
√
2s





(33)

4Answering a question posed by Günter Last to me a few years ago.
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6.2 Large time asymptotics in all dimensions

Expression (26) allows us to find logarithmic asymptotics for P(S > t), as t → ∞, in any
dimension d. We repeat the expression here:

1

ωd
V̂ 1
d (s) =

1

s
+

d√
2s3

K d
2
(
√
2s)

K d
2
−1(

√
2s)

=:
1

s
+ ĝd(s).

The following asymptotics are known for Bessel functions [1]. For any b > 0, as z → 0,

Kb(z) ∼ 2b−1Γ(b)z−b.

Therefore, for d ≥ 3, we have

ĝd(s) ∼
d(d− 2)

2s2
, s → 0.

Hence

gd(t) ∼
d(d− 2)

2
t, t → ∞.

By the scaling equation (25) and expression (17), we obtain

P(S > t) = exp(−λωdR
d − λωdR

dgd(t/R
2)).

log∼ exp

(
− λωd

d(d− 2)

2
Rd−2t

)
, d ≥ 3.

The case d = 2 has to be treated differently as it requires the behavior of K0 near zero
which is different:

K0(z) ∼ log(1/z), z → 0.

Hence

ĝ2(s) =
2√
2s3

K1(
√
2s)

K0(
√
2s)

∼ 2√
2s3

1√
2s log 1√

2s

=
2

s2 log(1/s)

Notice that
ĝ2(s) = s−2ℓ(1/s),

where the function ℓ(z) = 2/ log(z) is slowly varying at infinity, viz., ℓ(κz)/ℓ(z) → 1, as
z → ∞, for all κ > 0. Combining Karamata’s Tauberian theorem with the monotone density
theorem (g2(t) is increasing function of t) we conclude that

g2(t) ∼ tℓ(t) =
2t

log t
, as t → ∞.

Arguing as before, this means that, as t → ∞,

P(S > t) = exp(−λω2R
2 − λω2R

2g2(t/R
2))

log∼ exp

(
− 2πλt

log t

)
.

This agrees with the result of [8, Theorem 2].
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6.3 Expectations

For d = 1, using
∫∞
0 exp(−

√
t) dt = 2, we can compute the expectation of S explicitly by

integrating (29):

ES :=
π

8

e−2λR

λ2
.

For d = 2, we have no explicit expression, but the earlier asymptotic expression for large
t tells us that, as R → 0, ES converges to a constant. This is a manifestation of the fact
that Brownian motion is neighborhood recurrent in 2 dimensions.

For d = 3, we can use the integral
∫∞
0 exp(−

√
t − t) dt = 1 + πe1/4

2 (erf(1/2) − 1) to
integrate (31):

ES =
e−

4
3
πλR3

2(πλR)3/2

[√
πλR+ 2

√
2πλR2e8λR

3(
erf(2

√
2λR3/2)− 1

)]

For higher dimensions, we can translate the previous asymptotics for t → ∞ into asymp-
totics for R ↓ 0 and obtain that

ES ∼ cd
Rd−2

, as R ↓ 0, (34)

where cd is a constant depending on d only. This estimate holds for all d ≥ 2. Comparing
(34) with (16) we find that in any dimension d ≥ 2, it is better to make particles (sensors)
perform Brownian motions rather than random straight lines with finite mean velocity if
the goal is to detect a small object.5

7 Concluding remarks and open problems

In this paper, we reviewed the mobile Boolean model, focusing, in particular, in the inertial
and Brownian cases. For the inertial case, we have an explicit expression (15) for the
distribution of the detection time of in any dimension. For the Brownian case, we have
explicit expressions (29), (30), (31) in dimensions d = 1, 3 and 5, an algorithm for computing
an explicit expression when d is odd (Section 6.1) and logarithmic asymptotics when d is
even (Section 6.2). We worked with a target set K which is a ball. This enabled us to reduce
the a multi-dimensional problem to one dimension. We also gave formulas or estimates for
expectations.

For general compact set K, and dimension d = 3, Spitzer’s [8] paper gives asymptotic es-
timates for the expected volume of a K-Wiener sausage, in terms of the Newtonian capacity
cap(K) of K, using entirely probabilistic methods:

E vol(ξ(t) +K) = vol(K) + cap(K) t+ 4(2π)−3/2 cap(K)2
√
t+ o(

√
t), d = 3.

Translating this into a detection time probability estimate, and using the scaling relation,
we have

P (SRK > t) = exp
(
vol(K)R3 + cap(K)R2t+ 4(2π)−3/2 cap(K)2R

√
t+ o(R

√
t)
)
.

We next pose some open problems.

5This answers a question posed by Venkat Anantharam a few years ago, who, jokingly, commented that
an engineer would never have sensors perform Brownian motions.
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Open problem 1. We did not touch at all the coverage problem, i.e., the law of the
random variable inf{t ≥ 0 : K ⊂ W(t)}. For the Brownian Boolean model, and when
the diameter of R tends to infinity, the problem has been solved in [12]. What are the
corresponding asymptotics for the inertial cases?

Open problem 2. Let K1 and K2 be two sets (e.g., balls of radii r1, r2), and let SK1 , SK2

be their detection times. Find the probability P (SK1 < SK2).

Open problem 3. For the inertial Boolean model, find the distribution of the detection
time of a ball before a fixed point is hit. (See remarks at the end of Section 5.)

Open problem 4. Investigate further the algorithm of Section 6.1 and, in particular, the
“closed” formula (32)-(33).

Open problem 5. Let there be an independent space-time Poisson process Ψ in R
d×R+

with fixed intensity. Interpret its points as “customers”. The Brownian Boolean model is
a space-time serving mechanism clearing points whenever it meets them. Find necessary
and sufficient stability conditions. This problem is related to a number of recent stability
problems in queueing theory where the spatial dimension is just as important as the time
dimension [4, 2, 7].

A Modified Bessel functions of second kind of half-integer
order and their corresponding Bessel polynomials

Kn+ 1
2
(x) =

√
π

2

e−x

√
x

yn(x) =
n∑

k=0

(n+ k)!

(n− k)!k!

(
x

2

)k

K1/2(x) =

√
π

2

e−x

√
x

y0(x) = 1

K3/2(x) =

√
π

2

e−x

x3/2
(x+ 1) y1(x) = 1 + x

K5/2(x) =

√
π

2

e−x

x5/2
(x2 + 3x+ 3) y2(x) = 1 + 3x+ 3x2

K7/2(x) =

√
π

2

e−x

x7/2
(x3 + 6x2 + 15x+ 15) y3(x) = 1 + 6x+ 15x2 + 15x3

K9/2(x) =

√
π

2

e−x

x9/2
(x4 + 10x3 + 45x2 + 105x+ 105) y4(x) = 1 + 10x+ 45x2 + 105x3 + 105x4.
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