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Abstract

In this paper we consider families of polynomials arising as eigenfunc-

tions of the confluent hypergeometric operator T = Q1(z) d
dz

+ Q2(z) d2

dz2

where the polynomial coefficients Q1 and Q2 are linear. We study the
location and properties of zeros of individual eigenpolynomials. The clas-
sical Laguerre polynomials appear as a special case and some well-known
results about these are recovered and generalized.

1 Introduction

The confluent hypergeometric operator studied in this paper is a special case
of a wider class of operators which we are interested in. Namely, consider the
differential operator

TQ =

k
∑

j=1

Qj(z)
dj

dzj

where the Qj are polynomials in one complex variable satisfying the condition
deg Qj ≤ j with equality for at least one j. In [3] we studied the eigenvalue
problem

TQ(pn) = λnpn

where TQ is an operator of the above kind of order k and where in particular
deg Qk = k (we call this the non-degenerate case). We proved that for such
an operator there exists a unique monic eigenpolynomial pn of degree n for all
sufficiently large integers n. The main topic in [3] was asymptotic properties of
the zeros of pn. Our main result was that when the degree n tends to infinity,
the zeros of pn are distributed according to a certain probability measure which
is compactly supported on a tree and which depends only on the leading poly-
nomial Qk. Moreover, we proved that the zeros of pn are all contained in the
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convex hull of the zeros of Qk.

An operator of the above type of order k but with the condition deg Qk < k
for the leading term is referred to as a degenerate operator. In this paper we
restrict our study to properties of zeros of eigenpolynomials of the the simplest
degenerate operator, namely the confluent hypergeometric operator1

T = Q1(z)
d

dz
+ Q2(z)

d2

dz2

where deg Q1 = deg Q2 = 1. With Q1(z) = αz + β and Q2(z) = γz + δ where
α, β, γ, δ ∈ C and α, γ 6= 0, one can show (see Lemma 2 in Section 2) that by
an appropriate affine transformation of z any such operator can be rewritten as

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

,

where δ, κ ∈ C. In what follows T will denote this operator. The corresponding
eigenvalue equation then becomes

zp
′′

n(z) + (z + κ)p
′

n(z) = npn(z), (1)

since λn = n. One can prove, using the same method as in [3], that there exists
a unique and monic eigenpolynomial pn of degree n for every integer n in (1),
see Lemma 1 in Section 2.

In this paper we study the location of zeros of individual eigenpolynomials
pn of the operator T as above. In the sequel we will extend this study to asymp-
totic properties of zeros of eigenpolynomials of arbitrary degenerate operators.

The Laguerre polynomials appear as solutions to the Kummer hypergeomet-
ric equation

zy
′′

(z) + (α + 1 − z)y
′

(z) + ny(z) = 0

when α ∈ R, α > −1 and n ∈ Z.2 Making the transformation z → −z it is easy
to see that this equation corresponds to our eigenvalue equation (1) when κ ∈ R

and κ > 0. Thus the classical Laguerre polynomials appear normalized3 as so-
lutions to the eigenvalue equation (1). One of the most important properties of
the Laguerre polynomials is that they constitute an orthogonal system with re-
spect to the weight function e−xxα on the interval [0,∞). It is well-known that
the Laguerre polynomials are hyperbolic - that is all roots are real - and that the
roots of two consecutive Laguerre polynomials pn and pn+1 are interlacing. For

1Various familiar functions of mathematical analysis such as Hermite polynomials, Laguerre
polynomials, Whittaker functions, Bessel functions and cylinder functions, are confluent hy-
pergeometric functions, that is solutions to confluent hypergeometric equations.

2Observe that this equation has a degree n polynomial solution if and only if n is an integer.
Without the condition that n is an integer we obtain the Laguerre functions.

3The nth degree Laguerre polynomial becomes monic when multiplied by n!(−1)n.
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other choices of the complex parameter α in Kummer’s equation the sequence
{pn} is in general not an orthogonal system and it can therefore not be studied
by means of the theory known for such systems.

One of the results in this paper is the characterization of the exact choices
on α for which T has hyperbolic eigenpolynomials and also for which α two
consecutive eigenpolynomials have interlacing roots. It turns out that these
properties are not restricted to the Laguerre polynomials solely. Our study can
therefore be considered as a generalization of the properties of zeros of Laguerre
polynomials to any family of polynomials appearing as eigenfunctions of the
operator T . We also recover some well-known results (Theorems 3 and 4) by
another method.

In what follows pn denotes the nth degree unique and monic eigenpolynomial
of T . These are our results:

Theorem 1. The following two conditions are equivalent:
(i) there exists a real affine transformation z → az + b such that our operator
can be written

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and κ > −1,
(ii) pn is hyperbolic for all n.

Remark. Each pn is actually strictly hyperbolic here, that is all roots are
real and simple, see Corollary 2. Note that (i)⇒(ii) for κ > 0 also follows from
the general theory of orthogonal polynomial systems, since then the pn are nor-
malized Laguerre polynomials.

Theorem 1
′

. The following two conditions are equivalent:
(i)

′

there exists a real affine transformation z → az + b such that our operator
can be written

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and κ > −1 or κ = −1,−2,−3, . . . ,−(n − 1),
(ii)

′

pn is hyperbolic.

Remark. Thus if κ is a negative integer then all pn such that n > |κ| are
hyperbolic. Note that when the degree n tends to infinity, pn is hyperbolic for
all negative integer values of κ.

The above results imply the following corollaries:

Corollary 1. The following two conditions are equivalent:
(i) there exists a complex affine transformation z → αz + β such that our oper-

3



ator can be written

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and κ > −1,
(ii) the roots of pn lie on a straight line in C for all n.

Corollary 1
′

. The following two conditions are equivalent:
(i)

′

there exists a complex affine transformation z → αz + β such that our
operator can be written

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and κ > −1 or κ = −1,−2,−3, . . . ,−(n − 1),
(ii)

′

the roots of pn lie on a straight line in C.

Remark. Thus if κ is a negative integer, then the roots of every pn such
that n > |κ| lie ona straight line in C.

Theorem 2. Let

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ, κ ∈ C. Then all roots of pn are simple, unless κ = −1,−2, . . . ,−(n−1).

Combining Theorem 1 (hyperbolicity) and Theorem 2 (simplicity) we obtain
the following

Corollary 2. The eigenpolynomials of T are strictly hyperbolic (all roots are
real and simple) for all n if and only if there exists a real affine transformation
z → az + b such that our operator can be written

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and κ > −1.

Corollary 3. Let

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ ∈ C and κ = 0,−1,−2, . . . ,−(n− 1). Then the eigenpolynomial pn has
(n+κ) distinct roots, all of which are simple except the root at the origin which
has multiplicity (1 − κ). Note that for κ = 0 all roots are simple.

Moreover, it is possible to count the exact number of real roots of pn. Namely,
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Theorem 3. Let

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and κ < −(n − 1). Then pn has no real roots if n is even,
and pn has precisely one real root if n is odd.

Theorem 4. Let

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R and −(n − 1) < κ < −1 such that κ is not an integer. Let
[κ] denote the integer part of κ. Then the number of real roots of pn equals

{

n + [κ] + 1, if [κ] is odd
n + [κ], if [κ] is even.

It is a classical fact that the roots of any two consecutive Laguerre poly-
nomials interlace along the real axis. These polynomials arise (normalized) as
eigenfunctions to our operator T when κ > 0. Here we extend this result and
prove that the interlacing property also holds for polynomials arising as eigen-
functions of T when κ = 0,−1,−2, . . . ,−(n − 1). We have the following

Theorem 5. Assume that our operator, after some complex affine transfor-
mation, can be written

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ ∈ C, κ ∈ R. Then the roots of any two consecutive eigenpolynomials pn

and pn+1 are interlacing if κ = 0,−1,−2, . . . ,−(n − 1).

Remark. If the eigenpolynomials are hyperbolic then the meaning of this
is obvious, while if they are not hyperbolic the roots interlac along a straight
line in the complex plane (see Corollary 1

′

).

Recent results on zero asymptotics. When α is arbitrary and real the poly-
nomial solutions to Kummer’s equation are referred to as generalized Laguerre
polynomials. Some properties of the zeros when α ≤ −1 have been studied in
[18]. In [23] similar results and several others are derived by considering the La-
guerre polynomials as a limiting case of the Jacobi polynomials. In this paper
we recover some of these results using yet another method. The asymptotic zero
distribution for the generalized Laguerre polynomials (and several others) with
real and degree dependent parameter αn (αn/n → ∞) have been studied in [6]
using a continued fraction technique, and the same results are derived in [11]
via a differential equation approach. It is known that when α ≤ −1 the zeros
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accumulate along certain interesting contours in the complex plane. More recent
results on this can be found in [14] where a Riemann-Hilbert formulation for the
Laguerre polynomials together with the steepest descent method (introduced in
[6]) is used to obtain asymptotic properties of the zeros. The asymptotic loca-
tion of the zeros depends on A = limn→∞ −α

n > 0, and the results show a great
sensitivity of the zeros to αn’s proximity to the integers. For A > 1 the contour
is an open arc. For 0 < A < 1 the contour consists of a closed loop together
with an interval on the positive real axis. In the intermediate case A = 1 the
contour is a simple closed contour. The case A > 1 is well-understood (see [21]),
and uniform asymptotics for the Laguerre polynomials as A > 1 were obtained
more recently, see [9], [15] and [26]. For fixed n interesting results can be found
in [7] and [8].

Acknowledgements. I wish to thank Boris Shapiro for introducing me to
this problem and for his support during my work. I would also like to thank
Harold Shapiro for valuable comments. My research was supported by Stock-
holm University.

2 Proofs

We start with the following preliminary result:

Lemma 1. Let

TQ =
k

∑

j=0

Qj(z)
dj

dzj

be a linear differential operator where the polynomial coefficients satisfy deg Q0 =
0, deg Qj = j for exactly one j ∈ [1, k], and deg Qm < m if m 6= 0, j. Then
TQ has a unique and monic eigenpolynomial pn of degree n for every integer n.
Also, using the notation Qm =

∑m
j=0 qm,jz

j, we have

lim
n→∞

λn

n(n − 1) . . . (n − j + 1)
= qj,j

where λn is the eigenvalue.

Proof. In [3] we proved that for any operator TQ as above but with the weaker
restriction deg Qj ≤ j for all j ∈ [0, n], the eigenvalue equation can be expressed
as follows:

For n ≥ 1 the coefficient vector X of pn=(an,0, an,1, . . . , an,n−1) satisfies the
linear system MX = Y , where Y is a vector and M is an upper triangular
matrix, both with entries expressible in the coefficients qm,j of the Qj .

We then used this to prove that there exists a unique monic eigenpolynomial of
degree n for all sufficiently large integers n. Here we use the same method to
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prove that for the operator in Lemma 1 we actually obtain a unique and monic
eigenpolynomial for every degree n.

If we compute the matrix M with respect to the basis of monomials 1, z, z2, . . ., a
diagonal element Mi+1,i+1 of M at the position (i+1, i+1) (where 0 ≤ i ≤ n−1)
is given by

Mi+1,i+1 =
∑

0≤m≤min(i,k)

qm,m · i!

(i − m)!
− λn

where

λn =
k

∑

m=0

qm,m · n!

(n − m)!
,

where we have used the notation Qm =
∑m

j=0 qm,jz
j . For the operator TQ in

Lemma 1 we have deg Qm < m if m 6= 0, j, and so qm,m = 0 for all m 6= 0, j.
Inserting this in the expression for λn we obtain

λn =

k
∑

m=0

qm,m · n!

(n − m)!
= q0,0 + qj,j ·

n!

(n − j)!
=

= q0,0 + qj,j · n(n − 1) . . . (n − j + 1),

and thus

lim
n→∞

λn

n(n − 1) . . . (n − j + 1)
= lim

n→∞

(

q0,0

n(n − 1) . . . (n − j + 1)
+ qj,j

)

= qj,j .

To prove the uniqueness of pn we calculate the determinant of the matrix M
and since it is upper triangular this equals the product of the diagonal elements.
Thus, if we prove that all diagonal elements are nonzero for every n, then M is
invertible for every n and the system MX = Y has a unique solution for every
n and we are done. Inserting qm,m = 0 for m 6= 0, j we get

Mi+1,i+1 =
∑

0≤m≤min(i,k)

qm,m · i!

(i − m)!
− λn =

=
∑

0≤m≤min(i,k)

qm,m · i!

(i − m)!
−

(

q0,0 + qj,j ·
n!

(n − j)!

)

=

= qj,j ·
(

i!

(i − j)!
− n!

(n − j)!

)

6= 0

where qj,j 6= 0 since degQj
= j and i < n. Note that for i < j one sets

i!/(i − j)! = 0. �

Remark. The operator

T = Q1(z)
d

dz
+ Q2(z)

d2

dz2
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which we are interested in here is a special case of the operator TQ in Lemma
1.

Lemma 2. Any operator

T = (αz + γ)
d

dz
+ (βz + δ)

d2

dz2

with α, β, γ, δ ∈ C can be written

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

for some δ, κ ∈ C.

Proof. Dividing T = (αz + γ) d
dz + (βz + δ) d2

dz2 by β we obtain

T ∗ = T/β =

(

α

β
z +

γ

β

)

d

dz
+

(

z +
δ

β

)

d2

dz2

and making the translation z̃ = z + δ
β we have

T̃ ∗ =

(

α

β

(

z̃ − δ

β

)

+
γ

β

)

d

dz̃
+

(

z̃ − δ

β
+

δ

β

)

d2

dz̃2
=

=

(

α

β
z̃ − αδ

β2
+

γ

β

)

d

dz̃
+ z̃

d2

dz̃2
.

Finally with z̄ = α
β z̃ ⇔ z̃ = β

α z̄ we have dz̄/dz̃ = α/β and so







d
dz̃ = α

β
d
dz̄

d2

dz̃2 = d
dz̄

(

d
dz̃

)

dz̄
dz̃ = d

dz̄

(

α
β

d
dz̄

)

α
β = α2

β2

d2

dz̄2

and we get

¯̃T ∗ =

(

α

β
z̃ − αδ

β2
+

γ

β

)

d

dz̃
+ z̃

d2

dz̃2
=

=

(

α

β
· β

α
z̄ − αδ

β2
+

γ

β

)

α

β

d

dz̄
+

β

α
z̄ · α2

β2

d2

dz̄2
=

=
α

β

[(

z̄ − αδ

β2
+

γ

β

)

d

dz̄
+ z̄

d2

dz̄2

]

= δ

[

(z̄ + κ)
d

dz̄
+ z

d2

dz̄2

]

where δ = α
β and κ = −αδ

β2 + γ
β . �

Note that if α, β, γ, δ ∈ R then δ, κ ∈ R.
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We will now study hyperbolicity of the eigenpolynomials of T in detail. Note
that performing the transformations in Lemma 2 above with all coefficients real
does not affect hyperbolicity of the polynomial eigenfunctions.

Proof of Theorems 1 and 1
′

and their corollaries. We first need the
following well-known corollary (see [2]):

Corollary of Sturm’s Theorem. All roots of a monic and real polynomial are
real if and only if the nonzero polynomials in its Sturm sequence have positive
leading coefficients.

Here the Sturm sequence is defined as follows. Let p = p0 be a given real
polynomial. Define p1 = p

′

(the derivative of p) and choose the pi to satisfy

p0 = p1q1 − p2, deg p2 < deg p1

p1 = p2q2 − p3, deg p3 < deg p2

p2 = p3q3 − p4, deg p4 < deg p3

...

where the qi are polynomials, and so on until a zero remainder is reached. That
is, for each i ≥ 2, pi is the negative of the remainder when pi−2 is divided
by pi−1. Then the sequence (p0, p1, p2, . . .) is called the Sturm sequence of the
polynomial p.

We now calculate the Sturm sequence for a monic and real degree n eigen-

polynomial p = pn of the operator T = δ
[

(z + κ) d
dz + z d2

dz2

]

, where δ ∈ C and
κ ∈ R. Note that p is real if κ ∈ R and any two operators differing by a complex
constant have identical polynomial eigenfunctions. Since our eigenpolynomials
by assumption are monic, the first two elements in the Sturm sequence, p and
p

′

, clearly have positive leading coefficients, namely 1 and n. Define R(i) = pi+1

in the Sturm sequence above. Then R(1) is the negative of the remainder when
p is divided by p

′

. With deg p = n we have deg R(i) = n − i − 1. The last ele-
ment in the Sturm sequence (if it has not already stopped) will be the constant
R(n − 1). We now claim that for every n and every i ≥ 1 we have

{

R(i) = A · ∑n−i−1
j=0

(

n−i−1
j

) (κ+n−i−1)!
(κ+j)! zj if i is odd

R(i) = B · ∑n−i−1
j=0

(

n−i−1
j

) (κ+n−i−1)!
(κ+j)! zj if i is even

(2)

where
{

A = (n − 1)(κ + n − 1)(n − 3)(κ + n − 3) . . . (n − i)(κ + n − i),
B = n(n − 2)(κ + n − 2)(n − 4)(κ + n − 4) . . . (n − i)(κ + n − i).

It is obvious that with κ = 0 the leading coefficients of all the R(i) are
positive and p will be hyperbolic. For κ ∈ R and κ 6= 0 we have the following
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conditions for the leading coefficients R(i)lc of the R(i) to be positive:














































R(1)lc > 0 ⇒ κ > 1 − n
R(2)lc > 0 ⇒ κ > 2 − n
R(3)lc > 0 ⇒ κ > 3 − n
...
R(i)lc > 0 ⇒ κ > i − n
...
R(n − 1)lc > 0 ⇒ κ > −1.

These conditions together yield κ > −1. Note that if some factor (κ+n−j) = 0,
then not only the leading coefficient is zero, but the whole polynomial R(i) is
zero. So for κ = j − n with j ∈ [1, n − 1] we also get hyperbolic pn since the
Sturm sequence by definition stops when a zero remainder is reached, and thus
the leading coefficients of the previous components of the Sturm sequence are
positive. So by the corollary of Sturm’s Theorem, pn is hyperbolic for all n
if and only if κ > −1, and pn is hyperbolic for a particular n if and only if
κ > −1 or κ = −1,−2, . . . ,−(n − 1). One can prove by induction that the
Sturm sequence polynomials are of the form claimed in (2) (see Appendix) .
Moreover, it is obvious that if the roots of pn lie on a straight line they can be
transformed to the real axis by some complex affine transformation, and thus
T must be on the form claimed by Theorem 1 or 1

′

, and so Corollaries 1 and 1
′

follow. �

To prove Theorem 2 we need the following

Lemma 3. Let pn =
∑n

j=0 an,jz
j be the nth degree monic polynomial eigen-

function of T = δ
[

(z + κ) d
dz + z d2

dz2

]

where δ, κ ∈ C. Note that T and δT have
identical eigenpolynomials. Then the coefficients an,j of pn are given by

an,j =

(

n

j

)

(κ + n − 1)!

(κ + j − 1)!
, ∀j ∈ [0, n].

Proof. Inserting pn =
∑n

j=0 an,jz
j in (z + κ)p

′

n + zp
′′

n = npn we have

(z + κ)

n
∑

j=1

jan,jz
j−1 + z

n
∑

j=2

j(j − 1)an,jz
j−2 = n

n
∑

j=0

an,jz
j

⇔
n

∑

j=1

jan,jz
j +

n
∑

j=1

κjan,jz
j−1 +

n
∑

j=2

j(j − 1)an,jz
j−1 =

n
∑

j=0

nan,jz
j

⇔
n

∑

j=1

jan,jz
j +

n−1
∑

j=0

κ(j + 1)an,j+1z
j +

n−1
∑

j=1

j(j + 1)an,j+1z
j =

n
∑

j=0

nan,jz
j .
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Comparing coefficients we obtain

jan,j + κ(j + 1)an,j+1 + j(j + 1)an,j+1 = nan,j

⇔

an,j =
(j + 1)(κ + j)

(n − j)
· an,j+1

Applying this iteratively and using an,n = 1 (by monicity of pn) we arrive at

an,j =

(

n

j

)

(κ + n − 1)!

(κ + j − 1)!
, ∀j ∈ [0, n].

�

Proof of Theorem 2. Let α 6= 0 be a root of pn that is not simple. Then, by
repeatedly differentiating our eigenvalue equation zp

′′

n +(z+κ)p
′

n = npn and in-

serting z = α, we get p
(j)
n (α) = 0 ∀j, which means the multiplicity of α is infinite,

which is absurd. Thus, for all κ ∈ C, any non-zero root α of pn is simple4. Next
we prove that if κ 6= −1,−2, . . . ,−(n−1) and if α = 0 is a root of pn then it must
be simple too. Let α = 0 be a root of pn of multiplicity m and write pn(z) =
zmq(z) where α = 0 is not a root of q(z). Then p

′

n(z) = mzm−1q(z) + zmq
′

(z)
and p

′′

n(z) = m(m − 1)zm−2q(z) + mzm−1q
′

(z) + mzm−1q
′

(z) + zmq
′′

(z). In-
serting this in our eigenvalue equation we obtain

λnpn(z) =zp
′′

n(z) + (z + κ)p
′

n(z)

⇔
zm−1[λnzq(z)] =m(m − 1)zm−1q(z) + mzmq

′

(z)

+mzmq
′

(z) + zm+1q
′′

(z) + mzmq(z) + zm+1q
′

(z)

+κmzm−1q(z) + κzmq
′

(z)

=zm−1[m(m − 1)q(z) + mzq
′

(z) + mzq
′

(z)

+z2q
′′

(z) + mzq(z) + z2q
′

(z) + κmq(z) + κzq
′

(z)].

Equating the expressions in the brackets and setting z = 0 we arrive at the
relation m(m − 1)q(0) + κmq(0) = 0 ⇔ m(m − 1 + κ) = 0. Thus m = 0 or
m = 1 − κ for the multiplicity m of the root α = 0. But if m = 0 then α = 0
is not a root of pn whence all roots of pn are simple and we are done. If κ = 0
then m = 0 or m = 1 (it will soon be proved that the latter is true, see below).
If κ 6= 0,−1,−2 . . . ,−(n− 1) then either m = 0 and we are done, or m = 1− κ.
Since m is the multiplicity of the root it must be a non-negative integer, and
therefore m = 1 − κ is impossible unless κ = 0,−1,−2, . . . ,−(n − 1). Thus
α = 0 is not a root of pn if κ > −1 and κ 6= 0. Also, m = 1 − κ is absurd if
κ 6∈ Z, and thus m = 0 for κ 6∈ Z. Now consider the case κ ∈ Z with κ ≤ −n.

4This also follows from the uniqueness theorem for a second order differential equation.
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Then either m = 0 or m = 1 − κ. By Lemma 3 the constant term an,0 of pn

equals

an,0 =
(κ − 1 + n)!

(κ − 1)!
= (κ − 1 + n)(κ − 2 + n)(κ − 3 + n) . . . (κ + 2)(κ + 1)κ.

and this cannot be zero if κ ∈ Z and κ ≤ −n - hence there is no zero at the
origin (m = 0). Finally we prove that for κ = −1,−2, . . . ,−(n − 1) the mul-
tiplicity of the root α = 0 is m = 1 − κ > 1 and so in this case not all roots
of pn are simple. Recall that m(m − 1 + κ) = 0, so if m 6= 0 then m = 1 − κ
and we are done. Thus we have to prove that we do have a root at the origin
for κ = 0,−1,−2, . . . ,−(n − 1). But this is only possible if an,0 = 0, and this
is indeed the case if κ = 0,−1,−2, . . . ,−(n − 1) and we can conclude that all
roots of pn are simple for all κ ∈ C r {−1,−2, . . . ,−(n − 1)}. �

Using Lemma 3 we also obtain the following

Proposition 1. Let pn(κ, z) denote the nth degree monic eigenpolynomial of

T = δ
[

(z + κ) d
dz + z d2

dz2

]

where δ, κ ∈ C. Then, using the explicit representation
of pn in Lemma 3, we obtain the identity

p(m)
n (κ, z) =

n!

(n − m)!
pn−m(κ + m, z), n = 0, 1, . . . ;m = 1, 2, . . .

and the recurrence formula

pn(κ, z) = (z + 2n + κ − 2)pn−1(κ, z) − (n − 1)(n + κ − 2)pn−2(κ, z),

where p0(κ, z) = 1 and p1(κ, z) = z + κ.

Proof of Corollary 3. By Theorem 2 all nonzero roots of pn are simple,
and from the proof of Theorem 2 we know that for κ = 0,−1,−2, . . . ,−(n − 1)
the multiplicity of the root at the origin is m = 1 − κ. We have a total of n
roots of pn and thus there are n − (1 − κ) + 1 = n + κ distinct roots. �

As stated in Theorems 3 and 4, it is possible to count the exact number
of real roots of pn if κ ∈ R in T . We use Sturm’s Theorem to count the number
of real roots in any interval:5

Sturm’s Theorem. Let (p0(t), p1(t), p2(t), . . .) be the Sturm sequence of a
polynomial p(t) (as defined in the proof of Theorems 1 and 1

′

). Let u < v be
real numbers. Assume that U is the number of sign changes in the sequence
(p0(u), p1(u), p2(u), . . .) and let V be the number of sign changes in the sequence
(p0(v), p1(v), p2(v), . . .). Then the number of real roots of p(t) between u and v
(with each multiple root counted exactly once) is exactly U − V .

5see [2].
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Remark. Combining Sturm’s Theorem with Theorem 2 and its Corollary 3
it is possible to recover Theorems 1 and 1

′

in the direction ⇒. Namely, we get
(i) ⇒ (ii) if κ > −1 and pn is the nth degree monic polynomial eigenfunction of
T , since then the Sturm sequence of pn has (n + 1) nonzero elements, all with
positive leading coefficients. With u = −∞ and v = ∞ we then have U = n
and V = 0, and therefore the number of real roots of pn is U − V = n, so pn is
hyperbolic (Theorem 1). And similarly (i)′ ⇒ (ii)′ for κ = −1,−2, . . . ,−(n−1),
since the Sturm sequence stops as soon as the zero remainder is reached, and
here it has (n + κ + 1) nonzero elements, all with positive leading coefficients.
Therefore, with u = −∞ and v = ∞, we have U = n + κ and V = 0. By
Corollary 3 all roots of pn are simple except the root at the origin which has
multiplicity 1 − κ. Thus, counted with multiplicity, pn has U − V + (−κ) = n
real roots and is therefore hyperbolic (Theorem 1

′

) .

We already know that if κ 6= −1,−2, . . . ,−(n − 1), then all roots of pn are
simple and no element in the Sturm sequence of pn is identically zero. The
leading coefficients of the elements of the Sturm sequence are (see the proof of
Theorems 1 and 1

′

) given by


































































plc = 1

p
′

lc = n
R(1)lc = (n − 1)(κ + n − 1)
R(2)lc = n(n − 2)(κ + n − 2)
R(3)lc = (n − 1)(κ + n − 1)(n − 3)(κ + n − 3)
R(4)lc = n(n − 2)(κ + n − 2)(n − 4)(κ + n − 4)
R(3)lc = (n − 1)(κ + n − 1)(n − 3)(κ + n − 3)(n − 5)(κ + n − 5)
R(4)lc = n(n − 2)(κ + n − 2)(n − 4)(κ + n − 4)(n − 6)(κ + n − 6)
...
R(n − 1)lc = . . .

We now use Sturm’s Theorem to prove Theorems 3 and 4:

Proof of Theorem 3. Let pn be the monic degree n eigenpolynomial of T
where κ < −(n − 1), i.e. κ + n − 1 < 0 and therefore κ + n − j < 0 for every
j ≥ 1. Thus we get the following for the leading coefficients of the Sturm se-
quence elements:



























































plc = 1 > 0

p
′

lc = n > 0
R(1)lc < 0
R(2)lc < 0
R(3)lc > 0
R(4)lc > 0
R(5)lc < 0
R(6)lc < 0
...
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This pattern continues up to the last element R(n−1) of the sequence. Inserting
v = ∞ in the Sturm sequence of pn we find that there is a sign change at every
R(i) where i is odd. Therefore the number of sign changes V in this sequence
equals the number of R(i) where i is odd. Thus:

V =

{

n
2 if n is even,
n−1

2 if n is odd.

Inserting u = −∞ in the Sturm sequence we find that there is a sign change
between the first two elements in the sequence and then at every R(i) where i
is even. and hence the number of sign changes U equals 1+ [the number of R(i)
where i is even]. Thus:

U =

{

n−2
2 + 1 = n

2 if n is even
n−1

2 + 1 = n+1
2 if n is odd.

By Theorem 2 all roots of pn are simple and thus the number of real roots of

pn equals U − V =

{

0 if n is even.
1 if n is odd.

�

Proof of Theorem 4. Let pn be the monic eigenpolynomial of T where κ ∈ R

and j − n < κ < j − n + 1 for j ∈ [1, n − 2]. Then (κ + n − j) > 0 and
(κ + n − j − 1) < 0 and [κ] = j − n. Again we consider the leading coefficients
in the Sturm sequence of pn. Clearly plc = 1 > 0, p

′

lc = n > 0 and R(i)lc > 0
∀i ∈ [1, j]. For the remaining leading coefficients we have











































R(j + 1)lc < 0
R(j + 2)lc < 0
R(j + 3)lc > 0
R(j + 4)lc > 0
R(j + 5)lc < 0
R(j + 6)lc < 0

...

and this pattern continues up to the last element R(n − 1) in the sequence.
Consider the sequence we obtain by inserting v = ∞ in this Sturm sequence.
We have sign changes at every R(j + l) where l is odd. Our last element is
R(n−1) = R(j+(n−j−1)). Also note that if n−j−1 = n−n−[κ]−1 = −[κ]−1
is even then [κ] is odd, and if n− j−1 is odd then [κ] is even. Thus the number
of sign changes V in this sequence is

V =

{

n−j−1
2 if [κ] is odd,

n−j
2 if [κ] is even.

Now insert u = −∞ in the Sturm sequence. The number of sign changes from
the first element p in the sequence till the element R(j) is (1 + j). For the
remaining n− j − 1 elements of this sequence we have a change of sign at every
R(j + l) where l is even. Thus the number of sign changes is (n − j − 1)/2 if

14



(n− j − 1) is even ⇔ [κ] is odd, and the number of sign changes is (n− j − 2)/2
if (n− j − 1) is odd ⇔ [κ] is even. Thus for the total number of sign changes U
in this sequence we get

U =

{

(1 + j) + n−j−1
2 = n+j+1

2 if [κ] is odd

(1 + j) + n−j−2
2 = n+j

2 if [κ] is even.

Therefore the number of real roots U − V of pn, counted with multiplicity, is
precisely

U − V =

{

n+j+1
2 − n−j−1

2 = j + 1 = n + [κ] + 1 if [κ] is odd
n+j

2 − n−j
2 = j = n + [κ] if [κ] is even.

since all roots of pn are simple in this case by Theorem 2. �

Proof of Theorem 5. The proof of the interlacing property consists of a
sequence of five lemmas. Lemmas 4 and 8 are well-known. Lemmas 4,5 and
6 are used in the proof of Lemma 7, which is proved using an idea due to S.
Shadrin presented in [20]. The five lemmas are the following:

Lemma 4. If Rn and Rn+1 are strictly hyperbolic polynomials of degrees n
and n + 1 respectively, then Rn + εRn+1 is hyperbolic for any sufficiently small
ε.

Lemma 5. Let pn and pn+1 be two polynomial eigenfunctions of the opera-

tor T = (z + κ) d
dz + z d2

dz2 with κ = 0,−1,−2, . . . ,−(n − 1). Then pn + εpn+1 is
hyperbolic for any sufficiently small ε.

Proof of Lemma 5. From Corollary 3 we know that pn and pn+1 have all
their roots simple except for the root at the origin which for both polynomials
has multiplicity 1−κ. Thus we can write pn + εpn+1 = z1−κ(Rn+κ−1 + εRn+κ),
where Rn+κ−1 and Rn+κ are strictly hyperbolic polynomials of degrees n+κ−1
and n + κ respectively. By Lemma 4, Rn+κ−1 + εRn+κ is hyperbolic for any
sufficiently small ε, and then clearly z1−κ(Rn+κ−1 +εRn+κ) = pn +εpn+1 is also
hyperbolic for any sufficiently small ε. �

Lemma 6. Let T = κ + (z + κ) d
dz + z d2

dz2 with κ = 0,−1,−2, . . . ,−(n− 1), and
let pn and pn+1 be two consecutive eigenpolynomials of T . Then letting T act
on any linear combination αpn + βpn+1 with α, β ∈ R that is hyperbolic (i.e.
has all its roots real) results in a hyperbolic polynomial.

Proof of Lemma 6. Note that the operators T = κ + (z + κ) d
dz + z d2

dz2 and

T = (z + κ) d
dz + z d2

dz2 have identical eigenpolynomials. Let f = αpn + βpn+1

be a hyperbolic linear combination with real coefficients of two consecutive
eigenpolynomials of T . Then f

′

is a hyperbolic polynomial by Gauss-Lucas
Theorem. By Rolle’s Theorem f and f

′

have interlacing roots and so by the
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well-known Lemma 8 below, (f + f
′

) is a hyperbolic polynomial. By Corol-
lary 3 both pn and pn+1 have a root at the origin of multiplicity 1 − κ. Thus
f = αpn + βpn+1 has a root at the origin of multiplicity at least 1 − κ, and
f

′

has a root at the origin of multiplicity at least −κ. Thus the polynomial
(f + f

′

) has a root at the origin of multiplicity at least (−κ) and we can write
(f + f

′

) = z−κg for some hyperbolic polynomial g. Now zκ(f + f
′

) = g is a
hyperbolic polynomial. But D[zκ(f + f

′

)] = κzκ−1(f + f
′

) + zκ(f
′

+ f
′′

) =
zκ−1[κf +(z +κ)f

′

+ zf
′′

] = zκ−1T (f) where T (f) = κf +(z +κ)f
′

+ zf
′′

. By
Gauss-Lucas Theorem one has that D[zκ(f + f

′

)] is a hyperbolic polynomial
and therefore T (f) = z1−kD[zκ(f + f

′

)] is a hyperbolic polynomial. �

Lemma 7. Let T = κ + (z + κ) d
dz + z d2

dz2 . Any linear combination αpn +
βpn+1 with real coefficients of two consecutive eigenpolynomials of T with κ =
0,−1,−2, . . . ,−(n − 1) is a hyperbolic polynomial.

Proof of Lemma 7. Applying to αpn + βpn+1 some high power T−N of
the inverse operator one gets

T−N (αpn + βpn+1) =
α

λN
n

pn +
β

λN
n+1

pn+1 =

=
α

λN
n

(pn + εpn+1),

where ε is arbitrarily small for the appropriate choice of N (since 0 < λn <
λn+1). Thus, by Lemma 5, the polynomial T−N (αpn +βpn+1) is hyperbolic for
sufficiently large N . Assume that αpn + βpn+1 is non-hyperbolic and take the
largest N0 for which RN0

= T−N0(αpn + βpn+1) is still non-hyperbolic. Then
RN0

= T (RN0+1) where RN0+1 = T−N0−1(αpn + βpn+1). Note that RN0+1 is
hyperbolic and that if κ = 0,−1,−2, . . . ,−(n − 1) then letting T act on any
hyperbolic linear combination αpn + βpn+1 with real coefficients results in a
hyperbolic polynomial by Lemma 6. Contradiction. �

Lemma 8 [classical]. If Rn and Rn+1 are any real polynomials of degrees n
and n+1, respectively, then saying that every linear combination αRn +βRn+1

with real coefficients is hyperbolic is equivalent to saying that
(i) both Rn and Rn+1 are hyperbolic, and
(ii) their roots are interlacing.

We now prove Theorem 5. Consider the operator T = (z + κ) d
dz + z d2

dz2

where κ = 0,−1,−2, . . . ,−(n − 1), and let pn and pn+1 be two consecutive
eigenpolynomials of T . Recall that δT and T have identical eigenpolynomials
and that by Corollary 1

′

the roots in this case lie on straight lines in the com-
plex plane. By Lemma 5 the linear combination pn + εpn+1 is hyperbolic for
any sufficiently small ε. Using Lemmas 5 and 6 we can therefore apply Lemma
7 which says that any linear combination αpn + βpn+1 with real coefficients α
and β is a hyperbolic polynomial. By Lemma 8 this implies that the roots of
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pn and pn+1 are interlacing and we are done. �

Remark. Note that we can recover the interlacing property for the Laguerre
polynomials using the same proof as in Theorem 5 but with a small modifica-
tion of Lemma 6. Namely, if κ > 0, then the application of T to any hyperbolic
polynomial results in a hyperbolic polynomial. For if f is a hyperbolic polyno-
mial, then f

′

is hyperbolic by Gauss-Lucas Theorem, f and f
′

have interlacing
roots by Rolle’s Theorem, and by the well-known Lemma 8 the linear combi-
nation (f + f

′

), and therefore zκ(f + f
′

), is a hyperbolic polynomial. Finally
D[zκ(f + f

′

)] = zκ−1T (f) is hyperbolic by Gauss-Lucas Theorem.

When suitably scaled, it is possible to find a limiting expansion for pn when
n → ∞ that is closely related to a Bessel function. Because of the scaling
however, the convergence to the Bessel function only gives information about
the asymptotic behaviour of pn in an infinitesimal neighbourhood of the origin.
Although other methods must be used to get information elsewhere, it is in-
teresting that on the infinitesimal scale our eigenpolynomials mimic the global
behaviour of this particular Bessel function. We have the following theorem,
where Jκ−1 denotes the Bessel function of the first kind of order (κ − 1):

Proposition 2. Let pn(κ, z) denote the unique and monic eigenpolynomial
of the operator

T = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ, κ ∈ C and κ is not a negative integer. We then have the following limit
formula:

lim
n→∞

n1−κ

n!
pn(κ, z/n) = (−z)(1−κ)/2Jκ−1(2i

√
z),

where the convergence holds for all z ∈ C and uniformly on compact z-sets.

The Bessel function of the first kind of order κ is defined by the series

Jκ(z) ≡
∞
∑

ν=0

(−1)ν(z/2)κ+2ν

ν!Γ(κ + ν + 1)

where z, κ ∈ C and |z| < ∞. Clearly z−κJκ(z) is an entire analytic function
for all z ∈ C if κ is not a negative integer. This Bessel function is a solution
to Bessel’s equation 6 of order κ, which is the second-order linear differential
equation given by

z2 d2y

dz2
+ z

dy

dz
+ (z2 − κ2)y = 0.

From now on we adopt the notational convention Γ(n + κ) = (n + κ − 1)!
for κ ∈ C, where Γ is the Gamma function. In order to prove Proposition 2, we

6Bessel’s equation is encountered in the study of boundary value problems in potential
theory for cylindrical domains. The solutions to Bessel’s equation are referred to as cylinder

functions, of which the Bessel functions are a special kind.
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will need the following technical

Lemma 9.

lim
n→∞

(

n + κ − 1

n − ν

)

n1−κ−ν =
1

Γ(κ + ν)

where n, ν ∈ R and κ ∈ C \ {−1,−2, . . .}.

Proof of Lemma 9. Using the following well-known asymptotic formula:

Corollary of the Stirling formula. 7

lim
n→∞

Γ(n + α)

Γ(n)
n−α = 1

where α ∈ C and n ∈ R,

we get

lim
n→∞

(

n + κ − 1

n − ν

)

n1−κ−ν =
1

Γ(κ + ν)
lim

n→∞

Γ(n + κ)

Γ(n − ν + 1)
n1−κ−ν

=
1

Γ(κ + ν)
lim

n→∞

Γ(n + κ)

Γ(n)
n−κ lim

n→∞

Γ(n)

Γ(n − ν + 1)
n1−ν

=
1

Γ(κ + ν)
.

Proof of Proposition 2. By Lemma 3 our eigenpolynomials have the following
explicit representation:

pn(κ, z) =
n

∑

ν=0

(

n

ν

)

(κ + n − 1)!

(κ + ν − 1)!
zν =

n
∑

ν=0

(

n + κ − 1

n − ν

)

n!

ν!
zν

where κ ∈ C.

Thus, with the scaling z → z/n and using Lemma 9, we get

lim
n→∞

n1−κ

n!
pn(κ, z/n) = lim

n→∞

n
∑

ν=0

(

n + κ − 1

n − ν

)

n1−κ 1

ν!

(

z

n

)ν

= lim
n→∞

n
∑

ν=0

(

n + κ − 1

n − ν

)

n1−κ−ν zν

ν!

=

∞
∑

ν=0

zν

Γ(κ + ν)ν!
= (−z)(1−κ)/2Jκ−1(2i

√
z).

�

7see e.g.[25]
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Remark. It is easy to prove that the power series
∑∞

ν=0
zν

Γ(κ+ν)ν! does indeed

satisfy the differential equation zu
′′

+ κu
′ − u = 0, which arises by the limiting

procedure n → ∞ from our eigenvalue equation zu
′′

+ (z + κ)u
′ − nu = 0, after

scaling the variables.

Appendix: Proof of (2) in Section 2.

Note that we have adopted the notational convention Γ(n+κ) = (n+κ−1)! for κ ∈ C, where
Γ denotes the Gamma function. I start by calculating R(1) and R(2) and so the hypothesis
(actually there are two hypotheses, one for even i and one for odd i) is true for one case of
even i and one case of odd i. With the nth degree eigenpolynomial pn =

Pn
j=0

an,jzj we
have by Lemma 3 that

an,j =
“n

j

” (κ + n − 1)!

(κ + j − 1)!
⇒ pn =

n
X

j=0

“n

j

” (κ + n − 1)!

(κ + j − 1)!
zj .

Calculation of R(1) = [the negative of the remainder when the eigenpolynomial pn is divided

by p
′

n]:

z

n
+

(n − 1 + κ)

n

n
X

j=1

j
“n

j

” (κ + n − 1)!

(κ + j − 1)!
zj−1

n
X

j=0

“n

j

” (κ + n − 1)!

(κ + j − 1)!
zj

−

» n
X

j=1

j

n

“n

j

” (κ + n − 1)!

(κ + j − 1)!
zj

–

=

n−1
X

j=0

“n

j

” (κ + n − 1)!

(κ + j − 1)!

»

1 −
j

n

–

zj

−

» n−1
X

j=0

j + 1

n

“ n

j + 1

”

(κ + n − 1)
(κ + n − 1)!

(κ + j)!
zj

–

=

n−2
X

j=0

»

“n

j

” (κ + n − 1)!

(κ + j − 1)!

„

1 −
j

n

«

−
(j + 1)

n

“ n

j + 1

”

(κ + n − 1)
(κ + n − 1)!

(κ + j)!

–

zj

and it remains to prove that the negative of this remainder equals

R(1) = (n − 1)(κ + n − 1)

n−2
X

j=0

“n − 2

j

” (κ + n − 2)!

(κ + j)!
zj .

19



Developing the coefficient in front of zj in our remainder we obtain

“n

j

” (κ + n − 1)!

(κ + j − 1)!

„

1 −
j

n

«

−
(j + 1)

n

“ n

j + 1

”

(κ + n − 1)
(κ + n − 1)!

(κ + j)!

=
n!

(n − j)!j!

(κ + n − 1)!

(κ + j − 1)!
−

n!

(n − j)!j!

j

n

(κ + n − 1)!

(κ + j − 1)!
−

(j + 1)

n

n!(κ + n − 1)

(j + 1)!(n − j − 1)!

(κ + n − 1)!

(κ + j)!

=
n(n − 1)(n − 2)!

(n − j − 2)!(n − j − 1)(n − j)j!

(κ + n − 2)!(κ + n − 1)(κ + j)

(κ + j)!

−
(n − 1)(n − 2)!(κ + n − 2)!(κ + n − 1)j(κ + j)

(n − j − 2)!(n − j − 1)(n − j)(κ + j)!j!
−

(n − 1)(n − 2)!(κ + n − 1)2(κ + n − 2)!

j!(n − j − 2)!(n − j − 1)(κ + j)!

= (n − 1)(κ + n − 1)
(n − 2)!

j!(n − j − 2)!

(κ + n − 2)!

(κ + j)!

»

n(κ + j)

(n − j − 1)(n − j)
−

j(κ + j)

(n − j − 1)(n − j)

−
(κ + n − 1)(n − j)

(n − j − 1)(n − j)

–

= (n − 1)(κ + n − 1)
“n − 2

j

” (κ + n − 2)!

(κ + j)!

»

nκ + nj − jκ − j2
− κn + κj − n2 + nj + n − j

n2 − nj − nj + j2 − n + j

–

= −(n − 1)(κ + n − 1)
“n − 2

j

” (κ + n − 2)!

(κ + j)!
,

and we are done.
Calculation of R(2) = [the negative of the remainder when p

′

n is divided by R(1)]:

nz

(n − 1)(κ + n − 1)
+

n(2n − 3 + κ)

(n − 1)(κ + n − 1)

n−2
X

j=0

“n − 2

j

” (κ + n − 2)!

(κ + j)!
(n − 1)(κ + n − 1)zj

n−1
X

j=0

(j + 1)
“ n

j + 1

” (κ + n − 1)!

(κ + j)!
zj

−

» n−1
X

j=1

n
“n − 2

j − 1

” (κ + n − 2)!

(κ + j − 1)!
zj

–

=

n−2
X

j=0

»

(j + 1)
“ n

j + 1

” (κ + n − 1)!

(κ + j)!
− n

“n − 2

j − 1

” (κ + n − 2)!

(κ + j − 1)!

–

zj

−

» n−2
X

j=0

“n − 2

j

” (κ + n − 2)!

(κ + j)!
n(2n−3+κ)zj

–

=

n−3
X

j=0

»

(κ + n − 2)!

(κ + j − 1)!

„

(j + 1)
“ n

j + 1

” (κ + n − 1)!

(κ + j)!
− n

“n − 2

j − 1

”

«

− n(2n − 3 + κ)
“n − 2

j

” (κ + n − 2)!

(κ + j)!

–

zj

and it remains to prove that the negative of this remainder equals

R(2) = n(n − 2)(κ + n − 2)

n−3
X

j=0

“n − 3

j

” (κ + n − 3)!

(κ + j)!
zj .
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Developing the coefficient in front of zj in our remainder we have

(κ + n − 2)!

(κ + j − 1)!
(j + 1)

“ n

j + 1

” (κ + n − 1)

(κ + j)
−

(κ + n − 2)!

(κ + j − 1)!
n

“n − 2

j − 1

”

−
(κ + n − 2)!

(κ + j)!

“n − 2

j

”

n(2n − 3 + κ)

=
(κ + n − 2)!

(κ + j − 1)!

n!

j!(n − j − 1)!

(κ + n − 1)

(κ + j)
−

(κ + n − 2)!

(κ + j − 1)!

n(n − 2)!

(j − 1)!(n − j − 1)!

−
(κ + n − 2)!

(κ + j)!

(n − 2)!

(j!(n − j − 2)!
n(2n − 3 + κ)

=
(κ + n − 3)!(κ + n − 2)(n − 3)!(n − 2)(n − 1)n(κ + n − 1)

(κ + j)!j!(n − j − 3)!(n − j − 2)(n − j − 1)

−
(κ + n − 3)!(κ + n − 2)n(n − 2)(n − 3)!j(κ + j)

j!(n − j − 3)!(n − j − 2)(n − j − 1)(κ + j)!

−
(κ + n − 3)!(κ + n − 2)(n − 2)(n − 3)!n(2n − 3 + κ)

(κ + j)!j!(n − j − 2)(n − j − 3)!

=
(κ + n − 3)!(n − 3)!

(κ + j)!j!(n − j − 3)!
n(n − 2)(κ + n − 2)

»

(n − 1)(κ + n − 1)

(n − j − 2)(n − j − 1)

−
j(κ + j)

(n − j − 2)(n − j − 1)
−

(2n − 3 + κ)(n − j − 1)

(n − j − 2)(n − j − 1)

–

= n(n − 2)(κ + n − 2)
“n − 3

j

” (κ + n − 3)!

(κ + j)!

»

−n2 + nj + n + nj − j2
− j + 2n − 2j − 2

n2 − nj − n − nj + j2 + j − 2n + 2j + 2

–

= −n(n − 2)(κ + n − 2)
“n − 3

j

” (κ + n − 3)!

(κ + j)!
,

and we are done.

To prove the induction hypotheses we divide R(i) by R(i + 1) to obtain R(i + 2). Here
it is assumed that i is odd. The proof with even i differs only in small details from this proof
and is therefore omitted here. For simplicity we use the notations



A = (n − 1)(κ + n − 1)(n − 3)(κ + n − 3) . . . (n − i)(κ + n − i),
B = n(n − 2)(κ + n − 2)(n − 4)(κ + n − 4) . . . (n − i)(κ + n − i).

Dividing R(i) by R(i + 1):

A

B
z +

A

B
(2n − 2i − 3 + κ)

B

n−i−2
X

j=0

“n − i − 2

j

” (κ + n − i − 2)!

(κ + j)!
zj

A

n−i−1
X

j=0

“n − i − 1

j

” (κ + n − i − 1)!

(κ + j)!
zj

−

»

A

n−i−1
X

j=1

“n − i − 2

j − 1

” (κ + n − i − 2)!

(κ + j − 1)!
zj

–

= A

n−i−2
X

j=0

»

“n − i − 1

j

” (κ + n − i − 1)!

(κ + j)!
−

“n − i − 2

j − 1

” (κ + n − i − 2)!

(κ + j − 1)!

–

zj

−

»

A

n−i−2
X

j=0

(2n−2i−3+κ)
“n − i − 2

j

” (κ + n − i − 2)!

(κ + j)!
zj

–

= A

n−i−3
X

j=0

»

“n − i − 1

j

” (κ + n − i − 1)!

(κ + j)!
−

“n − i − 2

j − 1

” (κ + n − i − 2)!

(κ + j − 1)!
− (2n − 2i − 3 + κ)

“n − i − 2

j

” (κ + n − i − 2)!

(κ + j)!

–

zj

21



and it remains to prove that the negative of this remainder equals the excpected (by hypoth-
esis)

R(i + 2) = A(n − i − 2)(κ + n − i − 2)

n−i−3
X

j=0

“n − i − 3

j

” (κ + n − i − 3)!

(κ + j)!
zj ,

i.e. we have to prove the following equality:

“n − i − 1

j

” (κ + n − i − 1)!

(κ + j)!
−

“n − i − 2

j − 1

” (κ + n − i − 2)!

(κ + j − 1)!
− (2n − 2i − 3 + κ)

“n − i − 2

j

” (κ + n − i − 2)!

(κ + j)!

= −(n − i − 2)(κ + n − i − 2)
“n − i − 3

j

” (κ + n − i − 3)!

(κ + j)!
.

But
“n − i − 1

j

” (κ + n − i − 1)!

(κ + j)!
−

“n − i − 2

j − 1

” (κ + n − i − 2)!

(κ + j − 1)!
− (2n − 2i − 3 + κ)

“n − i − 2

j

” (κ + n − i − 2)!

(κ + j)!

=
(n − i − 1)!

j!(n − i − j − 1)!

(κ + n − i − 1)!

(κ + j)!
−

(n − i − 2)!

(j − 1)!(n − i − j − 1)!

(κ + n − i − 2)!

(κ + j − 1)!

− (2n − 2i − 3 + κ)
(n − i − 2)!

j!(n − i − j − 2)!

(κ + n − i − 2)!

(κ + j)!

=
(n − i − 3)!(n − i − 2)(n − i − 1)(κ + n − i − 3)!(κ + n − i − 2)(κ + n − i − 1)

j!(n − i − j − 1)(n − i − j − 2)(n − i − j − 3)!(κ + j)!

−
(n − i − 3)!(n − i − 2)j(κ + n − i − 3)!(κ + n − i − 2)(c + j)

j!(n − i − j − 3)!(n − i − j − 2)(n − i − j − 1)(κ + j)!

− (2n − 2i − 3 + κ)
(n − i − 3)!(n − i − 2)(κ + n − i − 3)!(κ + n − i − 2)

j!(n − i − j − 3)!(n − i − j − 2)(κ + j)!

= (n − i − 2)(κ + n − i − 2)
(n − i − 3)!

j!(n − i − j − 3)!

(κ + n − i − 3)!

(κ + j)!

·

»

(n − i − 1)(κ + n − i − 1) − j(κ + j) − (2n − 2i − 3 + κ)(n − i − j − 1)

(n − i − j − 1)(n − i − j − 2)

–

= (n − i − 2)(κ + n − i − 2)
(n − i − 3)!

j!(n − i − j − 3)!

(κ + n − i − 3)!

(κ + j)!
(−1)

= −(n − i − 2)(κ + n − i − 2)
“n − i − 3

j

” (κ + n − i − 3)!

(κ + j)!
.

�
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