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Abstract

In this paper we partially settle our conjecture from [1] on the roots
of eigenpolynomials for degenerate exactly-solvable operators. Namely,
for any such operator we establish a lower bound (which supports our
conjecture) for the largest modulus of all roots of its unique and monic
eigenpolynomial pn as the degree n tends to infinity. The main theorem
below thus extends earlier results obtained in [1] for a restrictive class of
operators.

1 Introduction

We are interested in roots of eigenpolynomials satisfying certain linear differen-
tial equations. Namely, consider an operator

T =

k
∑

j=1

QjD
j

where D = d/dz and the Qj are complex polynomials in one variable satisfying
the condition deg Qj ≤ j, with equality for at least one j, and in particular
deg Qk < k for the leading term. Such operators are referred to as degenerate

exactly-solvable operators1, see [1]. We are interested in eigenpolynomials of T ,
that is polynomials satisfying

T (pn) = λnpn (1)

for some value of the spectral parameter λn, where n is a positive integer and
deg pn = n. The importance of studying eigenpolynomials for these operators
is among other things motivated by numerous examples coming from classical
orthogonal polynomials, such as the Laguerre and Hermite polynomials, which

1Correspondingly, operators for which deg Qk = k are called non-degenerate exactly-

solvable operators. We have treated roots of eigenpolynomials for these operators in [2].
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appear as solutions to (1) for certain choices on the polynomials Qj when k = 2.
Note however that for the operators considered here the sequence of eigenpoly-
nomials {pn} is in general not an orthogonal system.
Let us briefly recall our previous results:

A. In [2] we considered eigenpolynomials of non-degenerate exactly-solvable op-

erators, that is operators of the above type but with the condition deg Qk = k
for the leading term. We proved that when the degree n of the unique and
monic eigenpolynomial pn tends to infinity, the roots of pn stay in a compact
set in C and are distributed according to a certain probability measure which
is supported by a tree and which depends only on the leading polynomial Qk.

B. In [1] we studied eigenpolynomials of degenerate exactly-solvable operators

(deg Qk < k). We proved that there exists a unique and monic eigenpolynomial
pn for all sufficiently large values on the degree n, and that the largest mod-
ulus of the roots of pn tends to infinity when n → ∞. We also presented an
explicit conjecture and partial results on the growth of the largest root. Namely,

Conjecture (from [1]). Let T =
∑k

j=1 QjD
j be a degenerate exactly-solvable

operator of order k and denote by j0 the largest j for which deg Qj = j. Let

rn = max{|α| : pn(α) = 0}, where pn is the unique and monic nth degree

eigenpolynomial of T . Then

lim
n→∞

rn

nd
= c0,

where c0 > 0 is a positive constant and

d := max
j∈[j0+1,k]

(

j − j0
j − deg Qj

)

.

Extensive computer experiments listed in [1] confirm the existence of such a
constant c0. Now consider the scaled eigenpolynomial qn(z) = pn(ndz). We
construct the probability measure µn by placing a point mass of size 1/n
at each zero of qn. Numerical evidence indicates that for each degenerate
exactly-solvable operator T , the sequence {µn} converges weakly to a proba-
bility measure µT which is (compactly) supported by a tree. In [1] we deduced
the algebraic equation satisfied by the Cauchy transform of µT .2 Namely, let

T =
∑k

j=1 Qj(z)Dj =
∑k

j=1

(
∑deg Qj

i=0 qj,iz
i
)

Dj and denote by j0 the largest j
for which deg Qj = j. Assuming wlog that Qj0 is monic, i.e. qj0,j0 = 1, we have

zj0Cj0(z) +
∑

j∈A

qj,deg Qj
zdeg Qj Cj(z) = 1,

where C(z) =
∫ dµT (ζ)

z−ζ is the Cauchy transform of µT and A = {j : (j−j0)/(j−

deg Qj) = d}, where d is defined in the conjecture. Below we present some

2It remains to prove the existence of µT and to describe its support explicitly.
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typical pictures of the roots of the scaled eigenpolynomial qn(z) = pn(ndz).

Fig.1: Fig.2: Fig.3:
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Fig.1: T1 = zD + zD2 + zD3 + zD4 + zD5.
Fig.2: T2 = z2D2 + D7.
Fig.3: T3 = z3D3 + z2D4 + zD5.

In this paper we extend the results from [1] by establishing a lower bound for
rn for all degenerate exactly-solvable operators and which supports the above
conjecture.3 This is our main result:

Main Theorem. Let T =
∑k

j=1 QjD
j be a degenerate exactly-solvable op-

erator and denote by j0 the largest j for which deg Qj = j. Let pn be the unique

and monic nth degree eigenpolynomial of T and rn = max{|α| : pn(α) = 0}.
Then there exists a positive constant c > 0 such that

lim
n→∞

rn

nd
≥ c,

where

d := max
j∈[j0+1,k]

( j − j0
j − deg Qj

)

.

Acknowledgements. The authors are greatly obliged to Professor Boris
Shapiro for introducing us to this very fascinating subject. Our research was
supported by Stockholm University.

2 Proofs

Lemma 1. For any monic polynomial p(z) of degree n ≥ 2 for which all the

zeros are contained in a disc of radius A ≥ 1, there exists an integer n(j) and

an absolute constant Cj depending only on j, such that for every j ≥ 1 and

3It is still an open problem to prove the upper bound.
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every n ≥ n(j) we have

1

Cj
·

nj

Aj
≤

∣

∣

∣

∣

∣

∣

∣

∣

p(j)(z)

p(z)

∣

∣

∣

∣

∣

∣

∣

∣

2A

≤ Cj ·
nj

Aj
(2)

where p(j)(z) denotes the jth derivative of p(z), and where we have used the

maximum norm ||p(z)||2A = max|z|=2A |p(z)|.

Remark. The right-hand side of the above inequality actually holds for all
n ≥ 2, whereas the left-hand side holds for all n ≥ n(j).

Proof. To obtain the inequality on the right-hand side we use the notation
p(z) =

∏n
i=1(z − αi) where by assumption |αi| ≤ A for every complex root

of p(z). Then p(j)(z) is the sum of n(n − 1) · · · (n − j + 1) terms, each be-
ing the product of (n − j) factors (z − αi).

4 Thus p(j)(z)/p(z) is the sum of
n(n− 1) · · · (n− j +1) terms, each equal to 1 divided by a product consisting of
n − (n − j) = j factors (z − αi). If |z| = 2A we get |z − αi| ≥ A ⇒ 1

|z−αi|
≤ 1

A ,

and thus
∣

∣

∣

∣

p(j)

p

∣

∣

∣

∣

2A
≤

n(n − 1) · · · (n − j + 1)

Aj
≤ Cj ·

nj

Aj
.

Here we can choose Cj = 1 for all j, but we refrain from doing this since we
will need Cj large enough to obtain the constant 1/Cj in the left-hand side in-
equality. To prove the left-hand side inequality we will need inequalities (i)-(iv)
below, where we need (i) to prove (ii), and we need (ii) and (iii) to prove (iv),
from which the left-hand side inequality of this lemma follows.

For every j ≥ 1 we have

(i)
∣

∣

∣

∣

d
dz

(p(j)(z)
p(z)

)∣

∣

∣

∣

2A
≤ j · nj

Aj+1 .

For every j ≥ 1 there exists a positive constant C ′
j depending only on j, such that

(ii)

∣

∣

∣

∣

∣

∣

∣

∣

p(j)

p − (p′)j

pj

∣

∣

∣

∣

∣

∣

∣

∣

2A

≤ C ′
j ·

nj−1

Aj .

(iii)
∣

∣

∣

∣

p′

p

∣

∣

∣

∣

2A
≥ n

3A .

For every j ≥ 1 there exists a positive constant C ′′
j and some integer n(j)

such that for all n ≥ n(j) we have

(iv)
∣

∣

∣

∣

p(j)

p

∣

∣

∣

∣

2A
≥ C ′′

j · nj

Aj .

To prove (i), let p(z) =
∏n

i=1(z − αi), where |αi| ≤ A for each complex root

4Differentiating p(z) =
Q

n

i=1(z −αi) once yields
`

n

1

´

= n terms each term being a product

of (n−1) factors (z−αi), differentiating once again we obtain n
`

n−1
1

´

= n(n−1) terms, each
being the product of (n − 2) factors (z − αi), etc.
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αi of p(z). Then again p(j)(z)/p(z) is the sum of n(n − 1) · · · (n − j + 1) terms
and each term equals 1 divided by a product consisting of j factors (z − αi).
Differentiating each such term we obtain a sum of j terms each being on the
form (−1) divided by a product consisting of (j + 1) factors (z − αi).

5 Thus
d
dz

(p(j)(z)
p(z)

)

is a sum consisting of j · n(n − 1) · · · (n − j + 1) terms, each on the

form (−1) divided by (j + 1) factors (z − αi). Using 1
|z−αi|

≤ 1
A for |z| = 2A

since |αi| ≤ A for all i ∈ [1, n], we thus get

∣

∣

∣

∣

d

dz

(p(j)(z)

p(z)

)∣

∣

∣

∣

2A
≤

j · n(n − 1) · · · (n − j + 1)

Aj+1
≤ j ·

nj

Aj+1
.

To prove (ii) we use (i) and induction over j. The case j = 1 is trivial

since p′

p − (p′)1

p1 = 0. If we put j = 1 in (i) we get
∣

∣

∣

∣

d
dz

(

p′

p

)
∣

∣

∣

∣

2A
≤ n

A2 . But

d
dz

(

p′

p

)

= p(2)

p − (p′)2

p2 , and thus
∣

∣

∣

∣

p(2)

p − (p′)2

p2

∣

∣

∣

∣ ≤ n
A2 , so (ii) holds for j = 2.

We now proceed by induction. Assume that (ii) holds for some j = p ≥ 2, i.e.
∣

∣

∣

∣

p(p)

p − (p′)p

pp

∣

∣

∣

∣

2A
≤ C ′

p · np−1

Ap . Also note that with j = p in (i) we have

∣

∣

∣

∣

p(p+1)

p
−

p(p) · p′

p2

∣

∣

∣

∣

2A
=

∣

∣

∣

∣

d

dz

(p(p)

p

)∣

∣

∣

∣

2A
≤ p ·

np

Ap+1
,

and also || p
′

p ||2A ≤ n
A (from the right-hand side inequality of this lemma). Thus

we have
∣

∣

∣

∣

∣

∣

∣

∣

p(p+1)

p
−

(p′)p+1

pp+1

∣

∣

∣

∣

∣

∣

∣

∣

2A

=

∣

∣

∣

∣

∣

∣

∣

∣

p(p+1)

p
−

p(p) · p′

p2
+

p(p) · p′

p2
−

(p′)p+1

pp+1

∣

∣

∣

∣

∣

∣

∣

∣

2A

≤

∣

∣

∣

∣

∣

∣

∣

∣

p(p+1)

p
−

p(p) · p′

p2

∣

∣

∣

∣

∣

∣

∣

∣

2A

+

∣

∣

∣

∣

∣

∣

∣

∣

p′

p

(

p(p)

p
−

(p′)p

pp

)
∣

∣

∣

∣

∣

∣

∣

∣

2A

≤ p ·
np

Ap+1
+

n

A
· C ′

p ·
np−1

Ap

= (p + C ′
p) ·

np

Ap+1
= C ′

p+1 ·
np

Ap+1
.

To prove (iii) observe that p′(z)
p(z) =

∑n
i=1

1
(z−αi)

=
∑n

i=1
1
z ·

1
1−

αi
z

. By assumption

|αi| ≤ A for all complex roots αi of p(z), so for |z| = 2A we have |αi

z | ≤ A
2A = 1

2
for all i ∈ [1, n]. Writing wi = 1

1−
αi
z

we obtain

|wi − 1| =

∣

∣

∣

∣

1

1 − αi

z

−
1 − αi

z

1 − αi

z

∣

∣

∣

∣

=

∣

∣

αi

z

∣

∣

∣

∣1 − αi

z

∣

∣

≤
1

2
|wi|,

5With D = d/dz consider for example D 1
Qj

i=1(z−αi)
=

−1·D
Qj

i=1(z−αi)
Qj

i=1(z−αi)2
, which is a sum

of j terms, each being on the form (−1) divided by a product consisting of 2j−(j−1) = (j+1)
factors (z − αi).
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which implies

Re

(

1

1 − αi

z

)

= Re(wi) ≥
2

3
∀i ∈ [1, n] ⇒ Re

( n
∑

i=1

1

1 − αi

z

)

≥
2n

3
.

Thus
∣

∣

∣

∣

∣

∣

∣

∣

p′(z)

p(z)

∣

∣

∣

∣

∣

∣

∣

∣

2A

= max
|z|=2A

∣

∣

∣

∣

p′(z)

p(z)

∣

∣

∣

∣

= max
|z|=2A

1

|z|
·

∣

∣

∣

∣

n
∑

i=1

1

1 − αi

z

∣

∣

∣

∣

≥
1

2A
·

∣

∣

∣

∣

n
∑

i=1

1

1 − αi

z

∣

∣

∣

∣

2A

≥
1

2A
· Re

( n
∑

i=1

1

1 − αi

z

)

≥
n

3A
.

To prove (iv) we note that from (iii) we obtain
∣

∣

∣

∣

(

p′

p

)j∣
∣

∣

∣

2A
≥ nj

3jAj , and this

together with (ii) yields

∣

∣

∣

∣

∣

∣

∣

∣

p(j)

p

∣

∣

∣

∣

∣

∣

∣

∣

2A

=

∣

∣

∣

∣

∣

∣

∣

∣

(

p′

p

)j

+
p(j)

p
−

(

p′

p

)j∣
∣

∣

∣

∣

∣

∣

∣

2A

≥

∣

∣

∣

∣

∣

∣

∣

∣

(

p′

p

)j∣
∣

∣

∣

∣

∣

∣

∣

2A

−

∣

∣

∣

∣

∣

∣

∣

∣

p(j)

p
−

(

p′

p

)j∣
∣

∣

∣

∣

∣

∣

∣

2A

≥
nj

3jAj
− C ′

j ·
nj−1

Aj
=

nj

Aj

(

1

3j
−

C ′
j

n

)

≥ C ′′
j ·

nj

Aj
,

where C ′′
j is a positive constant such that C ′′

j ≤
(

1
3j −

C′
j

n

)

for all n ≥ n(j).

The left-hand side inequality in this lemma now follows from (iv) if we choose
the constant Cj on right-hand side inequality so large that 1

Cj
≤ C ′′

j . �

To prove Main Theorem we will need the following lemma, which follows from
Lemma 1:

Lemma 2. Let 0 < s < 1 and d > 0 be real numbers. Let p(z) be any
monic polynomial of degree n ≥ 2 such that all its zeros are contained in a disc
of radius A = s · nd, and let Qj(z) be arbitrary polynomials. Then there exists
some positive integer n0 and positive constants Kj such that

1

Kj
· nd(deg Qj−j)+j ·

sdeg Qj

sj
≤

∣

∣

∣

∣

∣

∣

∣

∣

Qj(z) ·
p(j)

p

∣

∣

∣

∣

∣

∣

∣

∣

2snd

≤ Kj · n
d(deg Qj−j)+j ·

sdeg Qj

sj

for every j ≥ 1 and all n ≥ max(n0, n(j)), where n(j) is as in Lemma 1.

Proof. Let Qj(z) =
∑deg Qj

i=0 qj,iz
i. Then for |z| = 2A >> 1 we have

|Q(z)|2A = |qj,deg Qj
|2deg Qj Adeg Qj

(

1 + O(
1

A
)

)

.

6



Since A = s ·nd there exists some integer n0 such that n ≥ n0 ⇒ A ≥ A0 >> 1,
and thus by Lemma 1 there exists a positive constant Kj such that the following
inequality holds for all n ≥ max(n(j), n0) and all j ≥ 1:

1

Kj
·

nj

Aj
· Adeg Qj ≤

∣

∣

∣

∣

∣

∣

∣

∣

Qj(z) ·
p(j)

p

∣

∣

∣

∣

∣

∣

∣

∣

2A

≤ Kj ·
nj

Aj
· Adeg Qj .

Inserting A = s · nd in this inequality we obtain

1

Kj
·

nj

sjndj
· sdeg Qj nd·deg Qj ≤

∣

∣

∣

∣

∣

∣

∣

∣

Qj(z) ·
p(j)

p

∣

∣

∣

∣

∣

∣

∣

∣

2snd

≤ Kj ·
nj

sjndj
· sdeg Qj nd·deg Qj

⇔

1

Kj
· nd(deg Qj−j)+j ·

sdeg Qj

sj
≤

∣

∣

∣

∣

∣

∣

∣

∣

Qj(z) ·
p(j)

p

∣

∣

∣

∣

∣

∣

∣

∣

2snd

≤ Kj · n
d(deg Qj−j)+j ·

sdeg Qj

sj

for every j ≥ 1 and all n ≥ max(n0, n(j)). �

Proof of Main Theorem. Let d = maxj∈[j0+1,k]

(

j−j0
j−deg Qj

)

where j0 is

the largest j for which deg Qj = j in the degenerate exactly-solvable opera-

tor T =
∑k

j=1 QjD
j , where Qj(z) =

∑deg Qj

i=0 qj,iz
i. Let pn(z) be the nth degree

unique and monic eigenpolynomial of T and denote by λn the corresponding
eigenvalue. Then the eigenvalue equation can be written

k
∑

j=1

Qj(z) ·
p
(j)
n (z)

pn(z)
= λn (3)

where λn =
∑j0

j=1 qj,j ·
n!

(n−j)! . We will now use the result in Lemma 2 to esti-

mate each term in (3).

* Denote by jm the largest j for which d is attained. Then d = (jm −
j0)/(jm−deg Qjm

) ⇒ d(deg Qjm
−jm)+jm = j0, and jm−deg Qjm

= (jm−j0)/d.
By Lemma 2 we have:

1

Kjm

· nj0 ·
1

s
jm−j0

d

≤

∣

∣

∣

∣

∣

∣

∣

∣

Qjm
(z) ·

p(jm)

p

∣

∣

∣

∣

∣

∣

∣

∣

2snd

≤ Kjm
· nj0 ·

1

s
jm−j0

d

. (4)

Note that the exponent of s is positive since jm > j0 and d > 0. In what follows
we will only need the left-hand side of the above inequality.

* Consider the remaining (if there are any) j0 < j < jm for which d is
attained. For such j we have (using the right-hand side inequality of Lemma
2):

∣

∣

∣

∣

∣

∣

∣

∣

Qj(z) ·
p(j)

p

∣

∣

∣

∣

∣

∣

∣

∣

2snd

≤ Kjn
j0 ·

1

s
j−j0

d

= Kjn
j0 ·

1

s
jm−j0

d

· s
jm−j

d

≤ Kjn
j0 ·

1

s
jm−j0

d

· s1/d (5)
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where we have used that (jm − j) ≥ 1 and s < 1 ⇒ s(jm−j)/d ≤ s1/d.

* Consider all j0 < j ≤ k for which d is not attained. Then (j −deg Qj) > 0
and (j − j0)/(j − deg Qj) < d ⇒ d(deg Qj − j) + j < j0 and we can write
d(deg Qj − j) + j ≤ j0 − δ where δ > 0. Then we have:

∣

∣

∣

∣

∣

∣

∣

∣

Qj(z) ·
p(j)

p

∣

∣

∣

∣

∣

∣

∣

∣

2snd

≤ Kj · n
d(deg Qj−j)+j ·

sdeg Qj

sj
≤ Kj · n

j0−δ ·
sdeg Qj

sj

≤ Kj · n
j0−δ ·

1

sk
, (6)

where the last inequality follows since deg Qj ≥ 0 ⇒ sdeg Qj ≤ s0 = 1 and
j ≤ k ⇒ sj ≥ sk since 0 < s < 1.

* For j = j0 by definition deg Qj0 = j0 and thus:

∣

∣

∣

∣

∣

∣

∣

∣

Qj0(z) ·
p(j0)

p

∣

∣

∣

∣

∣

∣

∣

∣

2snd

≤ Kj0 · n
d(deg Qj0

−j0)+j0 ·
sdeg Qj0

sj0
= Kj0 · n

j0 . (7)

* Now consider all 1 ≤ j ≤ j0 − 1. Since n ≥ n0 ⇒ A = snd >> 1 we get
(snd)j−deg Qj ≥ 1 and thus:

∣

∣

∣

∣

∣

∣

∣

∣

Qj(z) ·
p(j)

p

∣

∣

∣

∣

∣

∣

∣

∣

2snd

≤ Kj · n
d(deg Qj−j)+j ·

sdeg Qj

sj
= Kj · n

j · (snd)(deg Qj−j)

= Kj · n
j ·

1

(snd)j−deg Qj
≤ Kj · n

j ≤ Kj · n
j0−1. (8)

* Finally we estimate the eigenvalue λn =
∑j0

i=1 qj,j ·
n!

(n−j)! , which grows as

nj0 for large n, since there exists an integer nj0 and some positive constant K ′
j0

such that for all n ≥ nj0 we obtain:

|λn| ≤

j0
∑

j=1

|qj,j | ·
n!

(n − j)!
= |qj0,j0 | ·

n!

(n − j0)!

[

1 +
∑

1≤j<j0

∣

∣

∣

∣

qj,j

qj0,j0

∣

∣

∣

∣

·
(n − j0)!

(n − j)!

]

≤ K ′
j0 · n

j0 . (9)

Finally we rewrite the eigenvalue equation (3) as follows:

Qjm
(z) ·

p
(jm)
n (z)

pn(z)
= λn +

∑

j 6=jm

Qj(z)
p
(j)
n (z)

pn(z)
.

8



Applying inequalities (5)-(9) to this we obtain

∣

∣

∣

∣

∣

∣

∣

∣

Qjm
·
p
(jm)
n (z)

pn(z)

∣

∣

∣

∣

∣

∣

∣

∣

2snd

≤ |λn| +
∑

j 6=jm

∣

∣

∣

∣

∣

∣

∣

∣

Qj
p
(j)
n (z)

pn(z)

∣

∣

∣

∣

∣

∣

∣

∣

2snd

≤ K ′
j0n

j0 + Kj0n
j0 +

∑

1≤j<j0

Kjn
j0−1

+
∑

j0<j≤k:

(
j−j0

j−deg Qj
<d

)Kj
nj0−δ

sk
+

∑

j0<j<jm

(
j−j0

j−deg Qj
=d

)Kjn
j0

s1/d

s
jm−j0

d

≤ K · nj0 + K ·
nj0−δ

sk
+ K · nj0

s1/d

s
jm−j0

d

(10)

for all n ≥ max(n0, n(j), nj0), where K is some positive constant and 0 < s < 1.
For the term on the left-hand side of the rewritten eigenvalue equation above
we obtain using (4) the following estimation:

1

K
· nj0 ·

1

s
jm−j0

d

≤
1

Kjm

· nj0 ·
1

s
jm−j0

d

≤

∣

∣

∣

∣

∣

∣

∣

∣

Qjm
·
p
(jm)
n (z)

pn(z)

∣

∣

∣

∣

∣

∣

∣

∣

2snd

(11)

for some constant K ≥ Kjm
which also satisfies (10). Now combining (10) and

(11) we get

1

K
· nj0 ·

1

s
jm−j0

d

≤ K · nj0 + K ·
nj0−δ

sk
+ K · nj0

s1/d

s
jm−j0

d

.

Dividing this inequality by nj0 and multiplying by K we have

1

s
jm−j0

d

≤ K2 + K2 ·
1

nδ
·

1

sk
+ K2 ·

s1/d

s
jm−j0

d

.

⇔

1

sw
≤ K2 +

K2

sk
·

1

nδ
+ K2 ·

s1/d

sw

⇔

1

sw
[1 − K2 · s1/d] ≤ K2 +

K2

sk
·

1

nδ
. (12)

where w = (jm − j0)/d > 0.

In what follows we will obtain a contradiction to this inequality for some
small properly chosen 0 < s < 1 and all sufficiently large n. Since jm ∈ [j0+1, k]
we have w = (jm − j0)/d ≥ 1/d, and since s < 1 we get sw ≤ s1/d ⇒ 1/sw ≥
1/s1/d. Now choose s1/d = 1

4K2 , where K is the constant in (12). Then
estimating the left-hand side of (12) we get

1

sw
[1 − K2 · s1/d] ≥

1

s1/d
[1 − K2 · s1/d] = 4K2 − K2 = 3K2

9



and thus from (12) we have

3K2 ≤
1

sw
[1 − K2 · s1/d] ≤ K2 +

K2

sk
·

1

nδ

⇔

2K2 ≤
K2

sk
·

1

nδ

⇔

nδ ≤
1

2
·

1

sk
=

1

2
(2K)2dk.

We therefore obtain a contradiction to this inequality, and hence to inequal-
ity (12) and thus to the eigenvalue equation (3), if nδ > 1

2 (2K)2dk and s =
1/(2K)2d, and consequently all roots of pn cannot be contained in a disc of ra-
dius s · nd for such choices on s and n, whence rn > s · nd where rn denotes the
largest modulus of all roots of pn, so clearly there exists some positive constant
c such that limn→∞

rn

nd ≥ c. �

3 Open Problems and Conjectures

3.1 The upper bound

Based upon numerical evidence from computer experiments (some of which is
presented in [1]) we are led to assert that there exists a constant C0, which
depends on T only, such that

rn ≤ C0 · n
d (13)

holds for all sufficiently large integers n. We refer to this as the upper-bound
conjecture. Computer experiments confirm that the zeros of the scaled eigen-
polynomial qn(z) = pn(ndz) are contained in a compact set when n → ∞.

3.2 The measures {µn}

Consider the sequence of discrete probability measures

µn =
1

n

ν=n
∑

ν=1

δ(
αν

nd
)

where α1, . . . , αn are the roots of the eigenpolynomial pn and d is as in Defini-
tion 1. Assuming (13) the supports of {µn} stay in a compact set in C. Next,
by a tree we mean a connected compact subset Γ of C which consists of a
finite union of real-analytic curves and where Ĉ \ Γ is simply connected (here

Ĉ = C ∪ ∞ is the extended complex plane). Computer experiments from [1]
lead us to the following

Conjecture 1. For each operator T the sequence {µn} converges weakly to
a probability measure µT which is supported on a certain tree ΓT .
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3.3 The determination of µT

Given T =
∑k

j=1 Qj(z)Dj and Qj(z) =
∑deg Qj

i=0 qj,iz
i we obtain an algebraic

function yT (z) which satisfies the following algebraic equation (also see [1]):

qj0,j0 · z
j0 · yj0

T (z) +
∑

j∈J

qj,deg Qj
· zdeg Qj · yj

T (z) = qj0,j0 ,

where J = {j : (j − j0)/(j − deg Qj) = d}, i.e. the sum is taken over all j for
which d is attained. In addition yT is chosen to be the unique single-valued
branch which has an expansion

yT (z) =
1

z
+

c2

z2
+

c3

z3
+ . . .

at ∞ ∈ Ĉ. Let DT be the discriminant locus of yT , i.e. this is a finite set in
C such that the single-valued branch of yT in an exterior disc |z| > R can be

continued to an (in general multi-valued) analytic function in Ĉ \ DT . If ΓT is
a tree which contains DT , we obtain a single-valued branch of yT in the simply
connected set ΩΓT

= Ĉ \ ΓT . It is easily seen that this holomorphic function in
ΩΓT

defines a locally integrable function in the sense of Lebesgue outside the
nullset ΓT . A tree ΓT which contains DT is called T -positive if the distribution
defined by

νΓT
=

1

π
· ∂̄yT /∂̄z̄

is a probability measure.

3.4 Main conjecture

Now we announce the following which is experimentally confirmed in [1]:

For each operator T , the limiting measure µT in Conjecture 1 exists. More-

over, its support is a T -positive tree ΓT and one has the equality µT = νΓT

which means that when z ∈ Ĉ \ ΓT the following holds:

yT (z) =

∫

ΓT

dµT (ζ)

z − ζ
.

Remark. For non-degenerate exactly-solvable operators (i.e. when deg Qk = k)
it was proved in [2] that the roots of all eigenpolynomials stay in a compact
set of C, and the unscaled sequence of probability measures {µn} converge to
a measure supported on a tree, i.e. the analogue of the main conjecture above
holds in the non-degenerate case.
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