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Abstract. Using a quiver algebra of a cyclic quiver, we construct a
faithful categorical action of the extended braid group of affine type A on
its bounded homotopy category of finitely generated projective modules.
The algebra is trigraded and we identify the trigraded dimensions of the
space of morphisms of this category with intersection numbers coming
from the topological origin of the group.
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Introduction

In their seminal work, Khovanov and Seidel [KS02] constructed two re-
lated (weak) categorical actions of the braid group. The first one is of
algebraic nature and the second of geometric origin. They prove that both
actions are faithful. The striking fact is that the proof of faithfulness relies
on the topological nature of the braid group through its description as a
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mapping class group.

The constructions use various descriptions of the braid group: the finite
Artin presentation, the description as a mapping class group and the descrip-
tion as the fundamental group of a configuration space. It turns also out
that the braid group fits into the theory of Artin-Tits groups, as the Artin-
Tits group of finite type A. When considering other Artin-Tits groups and
looking which ones have all these various aspects or descriptions, one is led
to look at the Artin-Tits group of finite type B. We construct in this paper
a faithful algebraic categorical action of the Artin-Tits group of finite type
B, seen as an extended braid group of affine type A. Before proceeding to
a more detailed description, we expand a little bit on the current situation
about group actions on categories and the question of faithfulness.

There are plenty of actions of the braid groups which are now know, in
particular with their connections to higher representation theory and link
homologies. We mention here a couple of them in an non-exhaustive man-
ner: Deligne [Del97], Seidel-Thomas [ST01], Khovanov [Kho02], Stroppel
[Str05], Mazorchuk-Stroppel [MS05, MS07], Rouquier [Rou06], Khovanov-
Rozansky [KR08], Webster [Web12], Cautis-Kamnitzer [CK12], Lipshitz-
Ozsvath-Thurston [LOT13]... Many of them are known to be faithful. The
constructions of Deligne and Rouquier put the braid group into the Artin-
Tits group context and as such their constructions admit a immediate gen-
eralization to all finite Artin-Tits group of finite type. Categorical actions
of Rouquier in type ADE are known to be faithful by a result of Brav and
Thomas [BT11]. In addition Riche and Bezuriakhov [Ric08, BR12] con-
structed a faithful action of the affine braid group on a derived category of
coherent sheaves. For all we know most of the results of faithfulness rely on
the result of Khovanov and Seidel.

Looking at categorical actions of the whole mapping class groups of an
oriented surface with boundary components, the situation is drastically dif-
ferent, there is essentially only one such action given by Lipschitz-Ozsvath-
Szabo in the context of bordered Heegaard-Floer homology and the proof
of faithfulness in their setting is the same in spirit as the one of Khovanov
and Seidel and as in this paper: the dimensions of the space of morphisms
count certain minimal intersection numbers.

Let us also mention here some work generalizing Khovanov-Seidel-Thomas
[KS02, ST01] and making use of the spherical twists they introduced, in par-
ticular through cluster categories, see Smith [Smi13], Grant-Marsh [GM14],
Qiu-Zhou [Qiu14, QZ14], Ishii-Ueda-Uehara [IUU10]. In these latest papers,
the authors recover faithfulness results for the (non-extended) affine type A
braid group.

The main features of the construction presented in this paper are the var-
ious gradings that we construct on the algebra under consideration. This
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gradings are natural in the sense that they correspond to gradings that ap-
pear when describing the Artin-Tits group as a mapping class group of a
punctured surface and considering natural homological representation. In-
deed under this topological description, the extended affine type A braid
group is simply the subgroup of the finite type A braid group consisting
of mapping classes fixing one chosen puncture, and as such acts on a Z

2-
covering of a punctured disk. One of the gradings corresponds to a winding
number around the fixed puncture and this grading appears in a very non
obvious way on the algebra (see Section 3). This specific grading allows us
to obtain the main result of this paper.

Theorem. There exists a trigraded algebra Rn such that

• The homotopy category of finitely generated trigraded projective mod-

ules over Rn carries an action of the extended affine type A braid

group by exact endofunctors.

• This categorical action is faithful.

• The induced action on the Grothendieck group is a 2-parameter ho-

mological representation of the extended affine type A braid group.

The connections with the work of Qiu-Zhou and Riche-Bezuriakhov are
not clear even if there seem to be some. The complete connection with the
symplectic side of the picture is still under investigation. Let us also under-
line that a Lie theoretic interpretation is also missing. Such a description
might help to make a link with the categorical action coming from Mackaay-
Thiel [MT13] and would probably allow to prove its faithfulness.

The paper is organized as follows. In the first section, we review various
definitions of the extended braid group of affine type A and in the sec-
ond, various representations of this group. In the third section, we define a
(weak) categorical action of this braid group and describe in particular the
algebra Rn and the induced action at the level of the Grothendieck group.
In the fourth section, we introduced some trigraded intersection numbers
using a certain covering of the real projectivization of the tangent bundle
of a punctured disk. In the last section, we prove that one recovers from
some spaces of morphisms the trigraded intersection numbers and deduce
the faithfulness of the categorical action.

1. Braid groups

Let n be a fixed integer with n ≥ 3.

1.1. Braid groups by generators and relations. The extended affine
type A braid group B̂

Ân−1
is generated by

σ1, . . . , σn, ρ,

subject to the relations

σiσj = σjσi for distant i, j = 1, . . . , n (1.1)

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n (1.2)

ρσiρ
−1 = σi+1 for i = 1, . . . , n (1.3)
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where the indices have to be understood modulo n, e.g. σn+1 = σ1 by
definition. We say that i and j are distant (resp. adjacent) if j 6≡ i ± 1
mod n (resp. i ≡ j ± 1 mod n).

One can do without the generator σn at the cost of adding the relations
ρnσiρ

−n = σi for all i = 1, . . . , n−1 or equivalently the relation ρσn−1ρ
−1 =

ρ−1σ1ρ.

In particular, the center Z
(

B̂
Ân−1

)

of the extended affine type A braid

group is infinite cyclic generated by ρn.
This group can be depicted by diagrams on the cylinder as shown in

Figure 1 with the convention that a diagram drawn from bottom to top
corresponds to a braid word read from right to left. The generator σi consists
in a crossing between the strands labelled i and i + 1 modulo n while ρ
consists in a cyclic permutation of the points 1 to n.

1
i−1 i

i+1

i+2
n

1
2 i

i+1

i+2
n−1n

Figure 1. The affine braid generators σi and ρ

Remarks 1.1. The group B̂
Ân−1

• possesses as subgroups the finite type A braid group BAn−1 gener-
ated by σ1, . . . , σn−1, but also the affine type A braid group B

Ân−1

generated by σ1, . . . , σn. In fact, B̂
Ân−1

is simply isomorphic to the

semi-direct product B
Ân−1

⋊ 〈ρ〉 of the latter and of the infinite cyclic

group generated by ρ, where the action of ρ on B
Ân−1

given by con-

jugation permutes cyclically the generators σi;
• is isomorphic to the finite type B braid group BBn−1 generated by
σ1, . . . , σn−1 and τ such that the σi are subject to the finite braid
relations (1.1) for i = 1, . . . , n− 1 and (1.2) for i = 1, . . . , n− 2 and
that the following relations are satisfied:

σiτ = τσi for i = 2, . . . , n− 1 (1.4)

τσ1τσ1 = τσ1τσ1. (1.5)

This isomorphism identifies the generators σi for i = 1, . . . , n − 1
while it sends ρ to the product τσ1 . . . σn−1;

• is a subgroup of the finite type A braid group BAn
generated by

the σi for i = 0, . . . , n − 1 subject to the finite braid relations (1.1)
for i = 0, . . . , n− 1 and (1.2) for i = 0, . . . , n− 2. It consists exactly
in the subgroup generated by the elements of BAn

that leave the
first strand (labelled by 0) fixed. One hence recovers the cylindrical
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pictorial description of B̂
Ân−1

by ”inflating” this fixed strand that

can be seen as the core of the cylinder, see e.g. Figure 2 depicting
the image σ2

0σ1 . . . σn−1 of ρ in BAn
. Note that the generator σn

is sent to σ2
0σ1 . . . σn−2σn−1σ

−1
n−2 . . . σ

−1
1 σ−2

0 , and that in the type B

presentation of this group, τ is simply sent to σ2
0.

1
2 i

i+1

i+2
n−1n

7−→

0 1 n−2 n−1 n

Figure 2. Image of ρ

See [All02], [tD98], [KP02] or [CP03] for more details about this subject.

1.2. Braid groups as mapping class groups. Let M be an orientable
surface possibly with boundary. We will denote by MCG(M,n + 1) the
mapping class group of the surface M with n+ 1 marked points defined as
the group of orientation-preserving homeomorphisms of M that fix the n+1
marked points setwise and the boundary pointwise up to isotopy. We will
use the notation ∆ for the set {0, . . . , n} of marked points and sometimes
consider these marked points as punctures and view M as a n+1-punctured
surface.

For a fixed set S ⊂ ∆, we will also consider the subgroup MCG(M,n +
1, S) of MCG(M,n + 1) consisting in all mapping classes fixing pointwise
the punctures of M belonging to the set S.

The finite type A braid group BAn
is isomorphic to the mapping class

group MCG(D, n+1) of the n+1-punctured 2-disk D depicted in Figure 3.

D

. . .
0 1 2 n−1 n

Figure 3. The n+ 1-punctured 2-disk D

Each generator σi corresponds to the mapping class with support a small
open disk enclosing the punctures i and i+1 and consisting in rotating this
disk by π as described by Figure 4. We call this mapping class the half-twist
along the arc bi and denote it by tbi . It swaps the punctures i and i+1 and
leaves all the others fixed pointwise.
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i i+1

bi
7−→

Figure 4. The half-twist along the arc bi

Its subgroup MCG(D, n+1, {0}) is isomorphic to the finite type B braid
group BBn−1 where once again the half-twists tbi are identified to the gen-

erators σi for i = 1, . . . , n − 1, while τ corresponds to the full twist t2b0 .

But BBn−1 being isomorphic to B̂
Ân−1

, one might prefer to work with the

extended affine A presentation of this group. Then, to depict the generating
mapping class corresponding to ρ, it is more convenient to draw the n+ 1-
punctured 2-disk as in Figure 5. In this setting, ρ will simply correspond to
the 1/n-twist t∂ with support an open disk enclosing all the punctures and
consisting in rotating this disk by 2π/n . It sends the ith puncture to the
i+ 1st mod n, for i = 1, . . . , n while leaving the 0th puncture fixed.

0

1

2

n

i

i+1

i+2

n−1

Figure 5. The affine configuration of the n + 1-punctured
2-disk D

Remark 1.2. Let us consider the case where M is the n-punctured annulus
A. Its mapping class group can be described as follows:

MCG(A, n) ∼= B
Ân−1

⋊Z
2 ∼= B̂

Ân−1
⋊ Z

with Z
2 = 〈µ, η〉 where µ corresponds to the 1/n-twist tm with support

an open annulus enclosing all the punctures and consisting in rotating this
annulus by 2π/n while η corresponds to the full twist tc along a curve
parallel to the central hole of A. Note that when one collapses this central
hole to a point, this last twist tc becomes trivial while tm equals t∂ and one
recovers B̂

Ân−1
as MCG(D, n+ 1, {0}).

In the sequel of this paper, we will sometimes use indistinctly the same
notation for a braid and a homeomorphism representing its mapping class.

2. Representations

2.1. Artin representation & braids as automorphisms of free groups.

When the finite type A braid group BAn
is topologically interpreted as the
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mapping class group MCG(D, n + 1), it leads to a natural action on the
fundamental group π1(D, n + 1, p) of the n + 1-punctured 2-disk. This lat-
ter group is the free group with n + 1 generators Fn+1 and is depicted on
Figure 6. The action of the mapping class corresponding to σi is described

D

p

. . .
0 1 2 n−1 n

x0 x1 x2 xn−1 xn

=

p

0

1

2

n−1

n

i

i+1

i+2

Figure 6. The fundamental group of the n + 1-punctured
2-disk D

in Figure 7. One hence obtains the well-known faithful Artin representation

p

xi xi+1

i i+1 7−→

p

Figure 7. Topological description of the action of σi

ρA of BAn
into the group of automorphisms of Fn+1 = 〈x0, . . . , xn〉:

ρA(σi)(xj) =











xj+1 if j = i,

x−1
j xj−1xj if j = i+ 1,

xj otherwise.

In particular

ρA(σ
−1
i )(xj) =











xjxj+1x
−1
j if j = i,

xj−1 if j = i+ 1,

xj otherwise.

Note that one reads a word in π1(D, n+1, b) from right to left. In particular,
the loop in π1(D, n+1, b) that goes along the boundary counterclockwise is
x0 . . . xn.

When it comes to restricting ρA to the subgroup B̂
Ân−1

of BAn
, it is more

convenient to picture the fundamental group π1(D, n + 1, p) in the affine
configuration as shown also in Figure 6. Let us just make explicit the images
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of the generators ρ±1 and σn of B̂
Ân−1

under the Artin representation:

ρA(ρ)(xj) =











x−1
1 x0x1 if j = 0,

x−1
n . . . x−1

0 x1x0 . . . xn if j = n,

xj+1 otherwise,

ρA(ρ
−1)(xj) =











x0 . . . xnx
−1
n−1 . . . x

−1
1 x0 . . . xn−1x

−1
n . . . x−1

0 if j = 0,

x0 . . . xnx
−1
n−1 . . . x

−1
0 if j = 1,

xj−1 otherwise,

ρA(σn)(xj) =



















x−1
1 x0 . . . xnx

−1
n−1 . . . x

−1
1 x0 . . . xn−1x

−1
n . . . x−1

0 x1 if j = 0,

x−1
1 x0 . . . xnx

−1
n−1 . . . x

−1
0 x1 if j = 1,

x−1
n . . . x−1

0 x1x0 . . . xn if j = n,

xj otherwise.

2.2. Linear representation. Out of these representations into the auto-
morphisms group of the free group, one can construct, via Magnus expan-
sion, linear representations of our braid groups. See [Jac], [Bir74], [KT08]
for details about this procedure. Applied to ρA, the resulting linear repre-
sentation is the famous Burau representation of BAn

into GLn+1

(

Z
[

t±1
])

.
But here we are interested in another way of defining this linear represen-

tation. The Burau representation (resp. its reduced version) can indeed be
reconstructed homologically by considering the action of the finite type A
braid group BAn

, viewed as mapping class group of the n+1–punctured disk,
on the first relative homology group (resp. on the first homology group) of
the infinite cyclic cover of (D, n + 1) that has a structure of free Z

[

t±1
]

-
module of rank n + 1 (resp. of rank n). There exists a n + 1 parameters
generalisation of the Burau representation of BAn

, at the cost of restricting
oneself to pure braids (the ones whose underlying permutation is the iden-
tity). The Gassner representation is then a linear representation of the pure
braid group PAn

into GLn+1

(

Z
[

t±1
1 , . . . , t±1

n

])

. And similarly, the Gassner
representation has a homological interpretation.

For details on the finite case, see [KT08], [Oht02], [Abd09]. We will focus
here in defining an analogous homological linear representation but in the
affine case.

2.2.1. Double infinite cyclic cover. Consider the fundamental group π1(D, n+
1, p) of the n+ 1-punctured disk depicted in Figure 6 on which acts the ex-

tended affine type A braid group B̂
Ân−1

viewed as the mapping class group

MCG(D, n+1, {0}) via Artin representation. Let us consider the surjective
group homomorphism φG from π1(D, n+1, p) to G = Z×Z defined as follows

xm1
i1

xm2
i2

. . . xmk

ik
7→









∑

j=1,...,k
ij 6=0

mj ,
∑

j=1,...,k
ij=0

mj









.

The cover D̃G, depicted in Figure 8, associated to the kernel of this morphism
has group of Deck transformations that is isomorphic to G = Z × Z ∼=
〈t〉 × 〈q〉. Here we consider that the n + 1-punctured disk, base of this
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covering, is displayed as in Figure 3. The homology group H1

(

D̃G, Gp̃,Z
)

relative to the G–orbit of a fixed lift p̃ of the basepoint p of (D, n + 1) has
a structure of Z

[

t±1, q±1
]

–module by inducing on the homology the action

of G on D̃G. As a Z
[

t±1, q±1
]

–module, it is free of rank n + 1 and hence

its automorphism group is isomorphic to GLn+1

(

Z
[

t±1, q±1
])

. While the

homology group H1

(

D̃G,Z
)

is a free Z
[

t±1, q±1
]

–module of rank n with

automorphism group isomorphic to GLn

(

Z
[

t±1, q±1
])

.

x̃0
x̃1

x̃np̃

tp̃

qp̃

tqp̃

Figure 8. The cover D̃G

Indeed recall that n + 1-punctured disk D deformation retracts onto a
bouquet of n + 1 circles (or rose) generated by the loops x0, . . . , xn based

at p. Then the double infinite cyclic cover D̃G deformation retracts onto
the infinite graph ΓG, see Figure 9. For i = 1, . . . , n, let x̃i be the lift of xi
going from p̃ to tp̃ and let x̃0 be the lift of x0 going from p̃ to qp̃ depicted on
Figure 8. The set of vertices of ΓG is the G–orbit of p̃, i.e. {tkqlp̃; k, l ∈ Z}
while its set of edges is given by {tkqlx̃i; k, l ∈ Z, i = 0, . . . , n}. So the
simplicial complex associated to ΓG (resp. to the pair (ΓG, Gp̃)) is zero
except in homological degree 1 and 0 (resp. degree 1). Then it first follows
directly that

H1

(

D̃G, Gp̃,Z
)

= H1 (ΓG, Gp̃,Z) ∼= Z [G] [[x̃0] , . . . , [x̃n]] . (2.1)

where [γ] denotes the homology class of a path γ in D̃G.

On the other hand, the Z [G]–module H1

(

D̃G,Z
)

is free since the de-

gree 2 chain of ΓG is zero. If one computes the kernel of the only non-zero

differential of this simplicial complex, one obtains a basis for H1

(

D̃G,Z
)

:

H1

(

D̃G,Z
)

= H1 (ΓG,Z) ∼= Z [G] [[γ̃1] , . . . , [γ̃n−1] , [γ̃n]] (2.2)
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. . . . . . . . .

. . .. . .. . .

Figure 9. The graph ΓG

with
[γ̃i] = [x̃i+1]− [x̃i] for i = 1, . . . , n− 1,

the path γ̃i being x̃−1
i x̃i+1 in D̃G and

[γ̃n] = (1−t) [x̃n]+t(1−t) [x̃n−1]+· · ·+tn−1(1−t) [x̃1]+tn(1−t) [x̃0]+qtn [x̃1]−[x̃n] ,

the path γ̃n being

x̃−1
n (tx̃n)

−1 . . . (tnx̃1)
−1 (tn+1x̃0

)−1
(qtnx̃1) (t

nx̃0)
(

tn−1x̃1
)

. . . x̃n

in D̃G.
Consider the group H = Z ∼= 〈t〉 and the group homomorphism φH which

is the composite of φG by the projection fromG toH that sends (a, b) to a+b.
The original Burau representation can be constructed by lifting the action
of any mapping class to the corresponding cover D̃H and then inducing to its
first relative homology group. Note that this cover D̃H is a quotient of the
cover D̃G we are working with. Here we mimic the homological construction
of Burau but with this new cover D̃G. Before detailing this construction, let
us also mention what happens if one plays the same game with the cover D̃L

associated to the abelianization map φL, i.e. L being Z
n+1 ∼= 〈t0〉×· · ·×〈tn〉,

the first homology group of the n + 1-punctured disk D. In that case one
obtains a representation of the subgroup consisting of all mapping classes
which action commutes with φL, namely the Torelli subgroup. In our case,
where the surface is the disk D, this Torelli subgroup is the pure braid group
PAn

, and this homologically constructed representation is precisely the n+1
parameters t0, . . . , tn Gassner representation.

2.2.2. Homological representations. Now let us turn to the construction of
the homological linear representation of B̂

Ân−1
associated to the cover D̃G.

For any braid σ in B̂
Ân−1

and loop x in π1(D, n+ 1, p), the elements x and

ρA(σ)(x) have same image under the homomorphism φG (this is not true
for any braid in BAn

). This allows to construct a unique lift σ̃ acting on

D̃G of the mapping class σ that fixes p̃ and commutes with the action of G
on D̃G (and so fixes Gp̃ pointwise). Let us denote by ρH(σ) the automor-

phism of H1

(

D̃G, Gp̃,Z
)

∼= Z
[

t±1, q±1
]n+1

induced by σ̃, this provides an

homological representation

ρH : B̂
Ân−1

→ GLn+1

(

Z
[

t±1, q±1
])
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In fact we are looking for an homological representation of rank n and
not n+ 1, but let us still make ρH explicit to understand how things work.
For i 6= 0, n, the lift σ̃i leaves x̃k fixed for k 6= i, i + 1, turns x̃i into x̃i+1

and stretches x̃i+1 to (tx̃i+1)
−1 (tx̃i) x̃i+1. One sees then immediately that

it induces the following morphism ρH(σi) on the homology:

[x̃k] 7→ [x̃k] for k 6= i, i+1, [x̃i] 7→ [x̃i+1] and [x̃i+1] 7→ t [x̃i]+(1− t) [x̃i+1]

or written matricially in the basis given in (2.1):

ρH(σi) =









Ii 0 0 0
0 0 t 0
0 1 1− t 0
0 0 0 In−1−i









Similarly σ̃2
0 leaves x̃k fixed for k 6= 0, 1, while it stretches x̃0 to (qx̃1)

−1 (tx̃0) x̃1
and x̃1 to (tx̃1)

−1 (t2x̃0
)−1

(tqx̃1) (tx̃0) x̃1 which induces the following on the
homology:

ρH(σ2
0) =





t t(1− t) 0
1− q 1 + tq − t 0
0 0 In−1





And finally ρ̃ sends x̃k to x̃k+1 if k 6= 0, n, while it stretches x̃0 to (qx̃1)
−1 (tx̃0) x̃1

and x̃1 to

(tx̃n)
−1 (t2x̃n−1

)−1
. . . (tnx̃1)

−1 (tn+1x̃0
)−1

(qtnx̃1) (t
nx̃0)

(

tn−1x̃1
)

. . . (tx̃n−1) x̃n

which induces the following on the homology:

ρH(ρ) =



















t 0 0 . . . 0 tn(1− t)
1− q 0 0 . . . 0 tn−1(1− t+ qt)
0 1 0 . . . 0 tn−2(1− t)
...

. . .
. . .

. . .
...

...
0 . . . 0 1 0 t(1− t)
0 . . . . . . 0 1 1− t



















Now let us make explicit the homological representation of dimension n
we are interested in. For any braid σ in B̂

Ân−1
, its lift σ̃ acting on D̃G induces

an automorphism denoted ρRH(σ) of H1

(

D̃G,Z
)

∼= Z
[

t±1, q±1
]n

and hence

the following homological representation:

ρRH : B̂
Ân−1

→ GLn

(

Z
[

t±1, q±1
])

Let us again detail how the lifts of braid generators act on paths in the
cover D̃G and then what is the induced linear action on its homology.
For i = 2, . . . , n − 1, the lift σ̃i leaves γ̃k fixed for k 6= i − 1, i, i + 1,
turns the path γ̃i = x̃−1

i x̃i+1 into (x̃i+1)
−1 (tx̃i+1)

−1 (tx̃i) x̃i+1, turns the

path γ̃i−1 = x̃−1
i−1x̃i into x̃−1

i−1x̃i+1 and turns the path γ̃i+1 = x̃−1
i+1x̃i+2 into

(x̃i+1)
−1 (tx̃i)

−1 (tx̃i+1) x̃i+2. One sees then immediately that it induces the
following morphism ρRH(σi) on the homology:

[γ̃k] 7→ [γ̃k] for k 6= i− 1, i, i+ 1, [γ̃i−1] 7→ [γ̃i−1] + [γ̃i] ,

[γ̃i] 7→ −t [γ̃i] and [γ̃i+1] 7→ [γ̃i+1] + t [γ̃i]
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or matricially in the basis (2.2):

ρRH(σi) =













Ii−2 0 0 0 0
0 1 0 0 0
0 1 −t t 0
0 0 0 1 0
0 0 0 0 In−1−i













for i = 2, . . . n− 1,

The lift σ̃1 acts similarly on γ̃1 and γ̃2, so we only have to observe that it
turns the path

γ̃n = x̃−1
n (tx̃n)

−1 . . . (tnx̃1)
−1 (tn+1x̃0

)−1
(qtnx̃1) (t

nx̃0)
(

tn−1x̃1
)

. . . x̃n

into

x̃−1
n (tx̃n)

−1 . . . (tnx̃1)
−1 (tn+1x̃0

)−1
(qtnx̃2) (t

nx̃0)
(

tn−1x̃1
)

. . . x̃n

and hence induces the following morphism ρRH(σ1) on the homology:

[γ̃k] 7→ [γ̃k] for k 6= n, 1, 2, [γ̃n] 7→ [γ̃n] + qtn [γ̃1] ,

[γ̃1] 7→ −t [γ̃1] and [γ̃2] 7→ [γ̃2] + t [γ̃1]

i.e.

ρRH(σ1) =









−t t 0 tnq
0 1 0 0
0 0 In−3 0
0 0 0 1









Finally, it is obvious that the lift ρ̃ sends γ̃k to γ̃k+1 for all k 6= n, while it
turns γ̃n into

(x̃n)
−1 (tx̃n−1)

−1 . . .
(

tn−1x̃1
)−1

(tnx̃0)
−1 (qtnx̃1)

−1 (qtnx̃2) (t
nx̃0)

(

tn−1x̃1
)

. . . (tx̃n−1) x̃n

so induces the morphism ρRH(ρ) on the homology:

[γ̃k] 7→ [γ̃k+1] for k 6= n, [γ̃n] 7→ qtn [γ̃1]

i.e.

ρRH(ρ) =

(

0 tnq
In−1 0

)

The images of σ2
0, σn and ρ−1 under ρRH can be obtained using the ones

already expressed and the affine braid relations.

3. Action on a module category

In [KS02], Khovanov and Seidel construct a categorical representation of
the finite type A braid group BAn

in the homotopy category of the category
of graded projective left modules over a certain quotient of the path algebra
of a finite type A quiver. This representation is faithful and it decategorifies
on a linear one parameter representation equivalent to the Burau represen-
tation of BAn

. Our aim is, following Khovanov and Seidel’s ideas, to use
an affine type A quiver in order to obtain a categorical representation of
the extended affine type A braid group B̂

Ân
. This latter representation is

designed to decategorify on the linear 2-parameters representation ρRH con-
structed in Section 2.2.2, and hence requires to work with a module category
endowed with a rich algebraic structure, namely a trigrading.
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This section is devoted to the definitions of those affine quiver algebra,
trigraded module category and categorical representation.

3.1. The quiver algebra Rn. The notation used here for paths is taken
from [KS02]. Start with the cyclic quiver Γn pictured in Figure 10 and let

1

2

n−1

n

i

i+1

i+2

Figure 10. The affine type A quiver Γn

Rn be the quotient of the path ring of the quiver Γn by the relations:

(i|i+ 1|i) = (i|i− 1|i) for i = 1, . . . n,

(i− 1|i|i+ 1) = (i+ 1|i|i− 1) = 0 for i = 1, . . . n,

where the integers are taken modulo n. This ring is trigraded and unital,
with a family of mutually orthogonal idempotents (i) summing up to the
unit element. The three gradings on Rn are defined as follows:

• the first grading is defined by setting that the degree of (i|i+ 1) is
one while the degree of any other generator is zero (which is the
opposite convention as the one chosen by Khovanov and Seidel);

• the second grading is simply the path length grading. Note that with
the given relations, any path is at most of length 2 in Rn, hence this
second grading will be considered as a Z/2Z grading;

• the third grading is defined by setting that the degree of (n|1) is 1,
the degree of (1|n) is −1 while the degree of any other element in
Rn is zero.

These three gradings are well-defined and one will denote by {−} a shift in
the first grading, by (−) a shift in the second and by 〈−〉 a shift in the third.
The convention being that the ith summand of a module shifted by k is the
(i− k)th summand of the original module.

As an abelian group Rn is free of rank 4n.

Remark 3.1. If one forgets about the two last gradings on Rn, and just
consider it as a singly graded algebra, it is in fact a particular case of the
general construction of algebras associated to graphs by Huerfano and Kho-
vanov, see [HK01]. Note that, in this paper, they are also considering actions
of quantum groups and braid groups on certain module categories over these
algebras.
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The category of finitely generated trigraded left modules Rn−mod has a
Grothendieck ring K (Rn −mod) which is isomorphic to Z

[

t±1, s±1
]

⊗ Z
n.

The Z
[

t±1, s±1
]

-module structure coming from the self–equivalences {1}
and 〈1〉 of Rn − mod consisting in shifting the first and third gradings by
one. The problem with this category is that the isomorphism classes of the
indecomposable left projective modules Pi = Rn(i) do not form a basis as
in the finite Khovanov-Seidel case because Rn has infinite global dimension.

Note that in the sequel, we will denote the right indecomposable projective
modules iP = (i)Rn and the isomorphism class of a module M by [M ].

Hence we will rather work over the category Rn − proj of finitely gen-
erated trigraded projective left modules. This category, unlike Rn − mod,
is not abelian, but only additive, though its split Grothendieck ring is also
isomorphic to Z

[

t±1, s±1
]

⊗ Z
n, with basis f = {[Pi] , i = 1, . . . , n}. While,

as before, the first grading (resp. the third) decategorifies onto the Z
[

t±1
]

-

module (resp. Z
[

s±1
]

-module) structure, the second grading, which is a
Z/2Z grading, decategorifies as a sign (which will sometimes be denoted ǫ).

Let tρ be the automorphism of the ringRn that sends any path (i1|i2| . . . |ik)
to (i1+1|i2+1| . . . |ik+1). One can observe that this automorphism do not
preserve the trigrading on Rn, but only the two first gradings. This implies
that, if one constructs a bimodule Rρ

n by simply twisting the right action
on the regular bimodule Rn by tρ, i.e. r ∈ Rn acts on Rρ

n on the right by
multiplication by tρ(r), the resulting bimodule is not trigraded anymore. So,
in order to define a trigraded twisted bimodule, one cannot only twist the
action on the regular bimodule Rn but one has to construct a new bimodule
in the more subtle way that we will describe now.

Let T ρ
n be the trigraded Rn–bimodule generated by all elements of Rn

set to be in the same first and second degree as in Rn, but with the third
grading shuffled as follows:

• the degree of (1), (2|1), (1|n) and (1|2|1) is −1
• the degree of any other element is zero.

The left action of Rn on T ρ
n is simply the multiplication while its right

action is the multiplication twisted by tρ. Let us also consider the trigraded
Rn–bimodule ρTn constructed similarly but with the third grading shuffling
given by:

• the degree of (1), (n|1), (1|2) and (1|2|1) is 1
• the degree of any other element is zero.

Here Rn acts on the right on ρTn by multiplication and on the left by mul-
tiplication twisted by tρ.

Lemma 3.2. T ρ
n and ρTn are well-defined trigraded Rn–bimodules.

Proof. It is easy to check that, for any r ∈ Rn and a, b ∈ T ρ
n , one gets

deg(r) + deg(a) = deg(r.a) = deg(ra) and deg(r) + deg(b) = deg(b.r) =
deg(btρ(r)). And similarly for ρTn. �

Remark 3.3. The chosen shufflings of the third grading appear to be nat-
ural when one observes that, as a trigraded left Rn–module, T ρ

n is simply
isomorphic to P1 〈−1〉⊕P2⊕ . . .⊕Pn while, as a trigraded right Rn–module,
ρTn is isomorphic to 1P 〈1〉 ⊕ 2P ⊕ . . .⊕ nP .
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The following lemma can be verified by simple computations that we omit
here.

Lemma 3.4. We have the following isomorphisms of trigraded Rn–bimodules

T ρ
n ⊗Rn

ρTn
∼= Rn

∼= ρTn ⊗Rn
T ρ
n ,

of trigraded left Rn–modules

T ρ
n ⊗Rn

Pi
∼= Pi+1

for all i = 1, . . . , n− 1, and

T ρ
n ⊗Rn

Pn
∼= P1 〈−1〉

and of trigraded right Rn–modules

iP ⊗Rn

ρTn
∼= i+1P

for all i = 1, . . . , n− 1, and

nP ⊗Rn

ρTn
∼= 1P 〈1〉

In particular this implies that

ρTn ⊗Rn
Pi+1

∼= Pi

for all i = 1, . . . , n− 1, and

ρTn ⊗Rn
P1

∼= Pn 〈1〉 .

3.2. Categorical representation. We consider Cn to be the homotopy
category of bounded cochain complexes of Rn–proj. Its Grothendieck ring
is also isomorphic to Z

[

t±1, s±1
]

⊗ Z
n, with basis the isomorphism classes

of projectives, see [Ros11].
For all i = 1, . . . , n, the two complexes Fi and F ′

i of Rn–bimodules are
defined as in [KS02]:

Fi : 0 → Pi ⊗Z iP
di−→ Rn → 0

F ′
i : 0 → Rn

d′i−→ Pi ⊗Z iP{−1} → 0

with Rn sitting in cohomological degree zero and where the respective dif-
ferentials of these length one complexes are:

di((i)⊗ (i)) = (i)

d′i(1) = (i− 1|i)⊗ (i|i− 1) + (i+ 1|i)⊗ (i|i+ 1)

+ (i)⊗ (i|i− 1|i) + (i|i− 1|i)⊗ (i)

where the integers again have to be understood modulo n.
Consider also the two following complexes of Rn–bimodules of length zero

concentrated in cohomological degree zero:

Fρ : 0 → T ρ
n → 0

F ′
ρ : 0 → ρTn → 0
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Remark 3.5. Consider the functors

F i = Fi ⊗Rn
−, F ′

i = F ′
i ⊗Rn

−, Fρ = Fρ ⊗Rn
− and F ′

ρ = F ′
ρ ⊗Rn

−.

Since the bimodules Pi⊗Z iP , T ρ
n and ρTn are projective as left modules, the

former functors are well-defined endofunctors of the category Cn. Plus these
bimodules being also projective as right modules, these functors are actually
exact. Hence they induce linear maps on the Grothendieck ring K (Cn).

Proposition 3.6.

(i) There is a weak action of the braid group B̂
Ân−1

on Cn given on the

generators σi by the functors F i, on their inverses σ−1
i by the func-

tors F ′
i, on the generator ρ by the functor Fρ, on its inverse ρ−1 by

the functor F ′
ρ and on any braid word σ by the functor Fσ consist-

ing in tensoring on the left by the tensor product of the complexes

associated to the generators appearing in the braid word.

(ii) This action induces a linear representation ρAKS of B̂
Ân−1

on the

Grothendieck ring K (Cn) ∼= Z
[

t±1, s±1
]n

which is given in the basis

f = {[Pi] , i = 1, . . . , n} of K (Cn) by:

ρAKS(σi) =













Ii−2 0 0 0 0
0 1 0 0 0
0 1 −t −t 0
0 0 0 1 0
0 0 0 0 In−i−1













for i = 2, . . . n− 1,

ρAKS(σ1) =









−t t 0 s−1

0 1 0 0
0 0 In−3 0
0 0 0 1









ρAKS(σn) =









1 0 0 0
0 In−3 0 0
0 0 1 0
ts 0 1 −t









ρAKS(ρ) =

(

0 s−1

In−1 0

)

ρAKS(ρ
−1) =

(

0 In−1

s 0

)

(iii) The linear representation obtained by decategorification ρAKS and

the homological linear representation ρRH are related as follows:

ρAKS|s=q−1t−n = ρRH

Proof. The first point (i) follows from the results obtained by Khovanov and
Seidel in the finite type A case and from Lemma 3.4.

The second point (ii) is easy computations. Let us detail the case of
σ1 and ρ. The linear map ρAKS(σ1) is given by [F1 ⊗Rn

−] = [Id] −
[P1 ⊗Z 1P ⊗Rn

−]. Hence the image of the basis f = {[Pi] , i = 1, . . . , n}
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of K (Cn) is

ρAKS(σ1)([P1]) = [P1]− [P1 ⊗Z 1P ⊗Rn
P1]

= [P1]− [P1 ⊗Z (1)]− [P1 ⊗Z (1|2|1)]

= [P1]− [P1]− tǫ2 [P1]

= −t [P1]

ρAKS(σ1)([P2]) = [P2]− [P1 ⊗Z 1P ⊗Rn
P2]

= [P2]− [P1 ⊗Z (1|2)]

= [P2]− tǫ [P1]

= [P2] + t [P1]

ρAKS(σ1)([Pi]) = [Pi]− [P1 ⊗Z 1P ⊗Rn
Pi]

= [Pi] for i = 3, . . . n− 1

ρAKS(σ1)([Pn]) = [Pn]− [P1 ⊗Z 1P ⊗Rn
Pn]

= [Pn]− [P1 ⊗Z (1|n)]

= [Pn]− s−1ǫ [P1]

= [Pn] + s−1 [P1]

On the other hand, the linear map ρAKS(ρ) is given by [Fρ ⊗Rn
−] =

[T ρ
n ⊗Rn

−], acting on our basis elements as follows (see Lemma 3.4):

ρAKS(ρ)([Pi]) = [T ρ
n ⊗Rn

Pi]

= [Pi+1] for i = 1, . . . n− 1

ρAKS(ρ)([Pn]) = [T ρ
n ⊗Rn

Pn]

= [P1 〈−1〉]

= s−1 [P1] .

The third point (iii) is trivial. �

4. Geometric and trigraded intersection numbers

In this section, the objects considered and their properties are modelled
on the ones Khovanov and Seidel introduced in the Section 3 of [KS02],
but in a slightly more general setting. In order for this paper to be self-
contained, we give here the (variants of) their definitions and results and
precise the proofs when theirs do not apply straightforwardly to our affine
setting.

4.1. Geometric intersection numbers. The curves we will consider are
oriented, though sometimes we will forget about their orientation. They
are either simple and closed or the image of the embedding of a segment
whose endpoints are sent to a pair of distinct marked points or points on
the boundary of D. Two curves are isotopic if one is the image of the other
under an element of the mapping class group MCG(D, n + 1, {0}), isotopy
of curves is denoted by ≃. Two curves are said to have minimal intersection
if their intersection points do not form an empty bigon (i.e. containing no
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marked point) unless these two intersection points are marked points. If c0
and c1 do not have minimal intersection, one can always find c′1 ≃ c1 such
that c0 and c′1 have minimal intersection. Hence we can define geometric
intersection numbers as follows:

I(c0, c1) =



















2 if c0, c1 are closed and isotopic,

#{c0 ∩ c′1\∆+ 1
2#{c0 ∩ c′1 ∩∆}

if c0, c1 do not intersect on ∂D,

I(c+0 , c1) otherwise,

(4.1)

where c+0 is obtained by slightly pushing c0 along the flow of a vector field
Z that is obtained by extending a positively oriented vector field on ∂D to
a smooth vector field on D that vanishes on ∆.

Remark 4.1. Note that in the two first cases, the geometric intersection
number is symmetric, which is no longer true in the third case. Note also
that the geometric intersection numbers are mapping class-invariant i.e. for
any mapping class σ and curves c0, c1, we have

I(σ(c0), σ(c1)) = I(c0, c1).

Consider the basic set of curves bi depicted on Figure 11. A curve c is
called admissible if there exist a mapping class σ and i ∈ {1, . . . , n} such
that c = σ(bi). Conversely any curve whose endpoints lie in {1, . . . , n} is
admissible.

0

1

2

n

i

i+1

bi

bn

b1

Figure 11. The arcs bi

From now on and until mention of the contrary, we forget the orientation
of the curves.

Lemma 4.2. If a mapping class σ ∈ MCG(D, n+1, {0}) satisfies σ(bi) ≃ bi
for all i = 1, . . . , n, then σ is in 〈ρn〉, the center of MCG(D, n+ 1, {0}).

Recall that under the isomorphism MCG(D, n+1, {0}) ≃ B̂
Ân−1

, the map-

ping class t∂ corresponds to the braid ρ so we might use the two notations
indistincly.

Proof. The restriction of such a mapping class to an annulus enclosing the
punctures {1, . . . , n} is equal to the identity. Moreover the mapping class
group of a one-punctured disk being trivial, it actually implies that σ re-
stricted to a disk enclosing the punctures {0, . . . , n} is the identity. Hence
σ is equal to tpn∂ for some p ∈ Z. �



CATEGORICAL ACTION OF THE EXTENDED AFFINE TYPE A BRAID GROUP 19

Lemma 4.3. If c is admissible and there exists i ∈ {1, . . . , n} such that

I(bj , c) = I(bj , bi) for all j = 1, . . . , n, then c is isotopic either to bi, to ai
or to a′i, see Figure 12.

0

1

2

n

i

i+1

ai

bn

b1

0

1

2

n

i

i+1

a′
i

bn

b1

Figure 12. The curves ai and a′i

Proof. Since I(bi±1, c) = I((bi±1, bi) = 1/2, the curves c and bi±1 have ex-
actly one endpoint in common and do not intersect else. Moreover, the
assumption I(bi±2, c) = I((bi±2, bi) = 0 implies that these latter endpoints
must be the ones of bi. Again these two points are the only intersection
points in between c and bi. Finally the nullity of the remaining intersection
numbers forces c to also have no intersection with the bj for j 6= j, j ± 1.
Hence c is necessarly isotopic to bi, ai or a

′
i. �

Remark 4.4. The curve ai is isotopic to ρiσ2
0ρ

−i while the curve a′i is
isotopic to ρi+1σn−1 . . . σ2σ1ρ

−i.

Lemma 4.5. If a mapping class σ ∈ MCG(D, n+1, {0}) satisfies I(bj , σ(bi)) =
I(bj , bi) for all j, i = 1, . . . , n, then σ = ρpn for some p ∈ Z.

Proof. By Lemma 4.3, the curves σ(bi) are all isotopic to some explicit
predicted curves. If there exist a bi such that σ(bi) ≃ ai (resp. ≃ a′i) then
no other bj is such that σ(bj) ≃ aj (resp. ≃ a′j). Indeed if such a bj existed

then we would have I(σ(bj), σ(bi)) = 2 if j 6= i± 1 or 3/2 if j = i± 1. This
contradicts the fact that I(bj , bi) = 0 if j 6= i± 1 or 1/2 if j = i± 1 and the
invariance of geometric intersection numbers, see Remark 4.1. Now let us
rule some of the remaining possibilities out:
• Suppose σ(bi) ≃ ai and σ(bj) ≃ bj for all j 6= i. Consider the closed curve
c consisting in the concatenation bn . . . b1. The curve c borders a disk with
one marked point, hence so should do the image of c under any mapping
class. But here σ(c) borders an empty disk, so this case cannot occur.
• The case where σ(bi) ≃ a′i and σ(bj) ≃ bj for all j 6= i can be ruled out
using the exact same argument.
• Now we treat the case where there are two integers i and j such that
σ(bi) ≃ ai and σ(bj) ≃ a′j . In the two previous cases, we used in disguise
the fact the winding number around the central puncture is preserved by
mapping classes. To talk about winding numbers, we now have to remember
the orientation of curves. Let c be as before with the orientation induced
by the ones of the bi’s as in Figure 11. For continuity reasons, if k 6= i, j the
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curve σ(bk) ≃ bk has to carry the same orientation as bk while σ(bi) ≃ ai
and σ(bj) ≃ a′j have to be oriented as in Figure 12. This leads then to
a contradiction, the curve c having a winding number around the central
puncture equal to 1 while the one of σ(c) is −1.
• So we are left with only one possibility which is that σ(bi) ≃ bi for all
i = 1, . . . , n and we use Lemma 4.2 to conclude. �

4.2. Tangent bundle and trigraded intersection numbers. Mimick-
ing [KS02] we will now consider the real projectivization P = PT (D\∆) and
a covering of it with deck transformation group Z

3. Consider an oriented
embedding of D as an open subset of R2 so thatits tangent bundle TD has
a canonical oriented trivialization. As a consequence the projectivization
of TD in restriction over D\∆ identifies to

PT (D\∆) = RP 1 × (D\∆).

For any puncture i in ∆, we will denote by λi : S1 → D\∆ the choice
of a small loop winding positively around the puncture i. As the classes
[point× λi] together with the class of a fibre [RP 1 × point] form a basis of
H1(P ;Z), we define a class C ∈ H1(P ;Z3) by specifying its images on these
elements, namely:

C([point× λi]) = (−2, 1, 0) for i = 1, . . . , n

C([point× λ0]) = (−2, 0, 1)

C([RP 1 × point]) = (1, 0, 0).

We will denote by P̌ the covering classified by C and by χ the Z
3-action on

it.

Remark 4.6. In this section, we will work with the group Diff(D,∆, {0}) of
smooth orientation preserving diffeomorphisms of D which fix the boundary
of the disk pointwise, preserve the set ∆ and fix the point {0}, instead of the
corresponding group of homeomorphisms as in Section 1.2. This is possible
as any orientation-preserving homeomorphism that fixes the boundary of D
and the point {0} pointwise and ∆\{0} setwise is isotopic to a diffeomor-
phism in Diff(D,∆, {0}). Moreover MCG(D, n+ 1, {0}) is also equal to the
group Diff(D,∆, {0}) up to smooth isotopy (see for example [FM12, Section
1.4]). As we will prove results that will not depend of the diffeomorphisms
inside their isotopy class, we will abuse notation and use the same letters
for a diffeomorphism and its class in MCG(D, n+1, {0}). In particular, the
twists tbi and t∂ may denote in the following, depending on the context, the
mapping class group represention of the generators of the braid group as in
Section 1.2 or smooth diffeomorphisms in Diff(D,∆, {0}) representing them.

Let f be an element of Diff(D,∆, {0}), its differential Df is a diffeomor-
phism of the tangent bundle of D\∆ which is linear in the fibres of T (D\∆)
and thus induces a diffeomorphism PDf of P . As such a map f preserves
winding numbers and as Df sends a fibre to another fibre, the map PDf
preserves the class C and can be lifted to an equivariant diffeomorphism
of P̌ . We will denote by f̌ the unique lift of PDf which acts trivially on
the fibre of P̌ over the points of P|∂D.
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Note that any curve c has a canonical section sc : c\∆ → P by taking the
class in each fiber of its tangent line: sc(z) = [Tzc]. One defines a trigrading
of c to be a lift č of sc to P̌ and a trigraded curve to be a pair (c, č) of
a curve and a trigrading of that curve. The Z

3-action on P̌ induces a Z
3-

action on the set of trigraded curves and the lifts of diffeomorphisms induce
a Diff(D,∆, {0})-action on this set that commutes to the Z

3-action. One
can also lift the isotopy relation so that these actions induce actions of these
same group on the set of isotopy classes of trigraded curves.

The arguments of [KS02] adapt to our trigraded case so that we have the
following properties:

Lemma 4.7.

(i) A curve c admits a trigrading if and only if it is not a simple closed

curve.

(ii) The Z3-action on the set of isotopy classes of trigraded curves is free :

a trigraded curve č is never isotopic to χ(r1, r2, r3)č for any (r1, r2, r3) 6=
0.

(iii) Let c be a curve which joins two points of ∆, none of them being the

puncture 0, let tc ∈ Diff(D,∆, {0}) be the half twist along it and ťc
its preferred lift to P̌ . Then ťc(č) = χ(−1, 1, 0)č for any trigrading č
of c.

We now define some local index of intersection of curves just as in [KS02]
but in our now trigraded case. Let (c0, č0) and (c1, č1) be two trigraded
curves, and let z ∈ D\∂D be a point where c0 and c1 intersect transversaly.
To define a local intersection index at z for the two curves one considers a
small circle ℓ ⊂ D\∆ around z, and take α : [0, 1] → ℓ to be an embedded
arc which moves clockwise along ℓ such that α(0) ∈ c0 and α(1) ∈ c1 and
for t ∈]0, 1[, α(t) 6⊂ c0 ∪ c1. If z is a puncture, then α is unique up to a
change of parametrization, otherwise, there are two possibilities which are
distinguished by their endpoints. Then take a smooth path π : [0, 1] → P
with π(t) ∈ Pα(t) for all t, from π(0) = Tα(0)c0 to π(1) = Tα(1)c1, and such
that π(t) 6= Tα(t)ℓ for all t (π is a family of tangent lines to D along α which

are all transverse to ℓ). Take the lift π̌ : [0, 1] → P̌ of π with π̌(0) = č0(α(0)).
The end points π̌(1) and č1(α(1)) are lifts of the same point in P so that
there exists (µ1, µ2, µ3) ∈ Z

3 such that

č1(α(1)) = χ(r1, r2, r3)π̌(1).

As this triple of integers is independant of all the choices made, one can
then define the local index of č0, č1 at z as

µtrigr(č0, č1; z) = (µ1, µ2, µ3) ∈ Z
3.

The local index has an analog symmetry property as the one in [KS02],
namely:

Lemma 4.8. If (c0, č0) and (c1, č1) are two trigraded curves such that c0
and c1 have minimal intersection, then

µtrigr(č1, č0; z) =







(1, 0, 0)− µtrigr(č0, č1; z) if z 6∈ ∆
(0, 1, 0)− µtrigr(č0, č1; z) if z ∈ ∆\{0}
(0, 0, 1)− µtrigr(č0, č1; z) if z ∈ {0}.
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Let č0 and č1 be two trigraded curves such that c0 and c1 have no inter-
section point in ∂D. Take a curve c′1 isotopic to c1 with minimal intersection
with c0. Then one can find a unique (by 4.7) trigrading č′1 of c′1 such that č′1
is isotopic to č1. Then the trigraded intersection number of č0 and č1 is

Itrigr(č0, č1) =(1 + q−1
1 q2)





∑

z∈(c0∩c′1)\∆

q
µ1(z)+nµ3(z)
1 q

µ2(z)−nµ3(z)
2 q

−µ3(z)
3





+
∑

z∈(c0∩c′1)∩{1,...,n}

q
µ1(z)+nµ3(z)
1 q

µ2(z)−nµ3(z)
2 q

−µ3(z)
3

+
1

2
(1 + q−n

1 qn+1
2 q3)

∑

z∈(c0∩c′1)∩{0}

q
µ1(z)+nµ3(z)
1 q

µ2(z)−nµ3(z)
2 q

−µ3(z)
3

where (µ1(z), µ2(z), µ3(z)) = µtrigr(č0, č1; z). This trigraded intersection num-
ber is independent of the choice of c′1 and is an invariant of the isotopy classes
of č0 and č1. In the case c0 and c1 have intersection in ∂D, one uses a flow
which moves ∂D in the positive sense and define the trigraded intersection
number as above, but this case will not occur in the sequel.

Lemma 4.9. The trigraded intersection number has the following properties:

(T1) I(c0, c1) =
1
2I

trigr(č0, č1)|q1=q2=q3=1.

(T2) For any f ∈ Diff(D,∆, {0}), Itrigr(f̌(č0), f̌(č1)) = Itrigr(č0, č1).
(T3) For any (r1, r2, r3) ∈ Z

3,

Itrigr(č0, χ(r1, r2, r3)č1) = Itrigr(χ(−r1,−r2,−r3)č0, č1)

= qr1+nr3
1 qr2−nr3

2 q−r3
3 Itrigr(č0, č1).

(T4) If c0∩c1∩∂D = ∅ and Itrigr(č0, č1) =
∑

r1,r2,r3
ar1,r2,r3q

r1
1 qr22 qr33 , then

Itrigr(č1, č0) =
∑

r1,r2,r3
ar1,r2,r3q

−r1
1 q1−r2

2 q−r3
3 .

The property (T4) is as in the bigraded case a consequence of Lemma 4.8.

4.3. Normal form. Fix again the basic set of curves b1, . . . , bn as in Fig-
ure 11 and now consider curves d1, . . . dn as in Figure 13 which divide the
disc D into regions D1, . . . , Dn.

n−1

0

1

2

n

i

i+1

bi

di

d1

dn

dn−1

D1

Dn

Figure 13. The arcs bi and di and the sectors Di.
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It can be useful to depict precisely the effect on the sets of curves bk
and dk of the chosen homeomorphism of the disk that goes from the affine
configuration of Figure 5 to the aligned one of Figure 6 if the reader wants to
vizualize the lifts in P̌ using the description of the cover D̃G of Section 2.2.1.
We give the images of these curves (still denoted bk and dk) for a possible
choice of homeomorphism in Figure 14.

D

0 1 2 n−1 n

. . .

b1
bn−1

bn

d1

dn−2

dn−1

dn

Figure 14. The arcs bi and di in the aligned configuration.

We will say that an admissible curve c is in normal form if it has minimal
intersection with all the di. One can always achieve normal form by isotopy.
The study of curves in this section makes sense because of the following
uniqueness result:

Lemma 4.10. Let c0 and c1 be two isotopic curves, both of which are in

normal form. Then there is an isotopy relative to d1 ∪ d2 ∪ . . . ∪ dn which

carries c0 to c1.

Let c be a curve in normal form. Then each connected component of c∩Dk

belongs to one of the six following type depicted in Figure 15.
Conversely, an admissible curve c which intersects all the dk transversally

and such that each connected component of c ∩ Dk belongs to one of the
types listed in the Figure 15 is already in normal form.

To be more precise, one should actually work with the group of diffeomor-
phisms of Dk which fix ∂D∩Dk ∪{0} and preserve dk−1, dk and k. The list
of types then classifies each connected component of c∩Dk up to an isotopy
in this group. Lemma 4.10 then shows that the connected components of
each type, their relative position, and the way they join each other, is an
invariant of the isotopy class of c.

For the rest of this section, c is an admissible curve in normal form. We
will call crossing and denote cr(c) = c∩(d1∪d2∪ . . .∪dn) the intersections of
this curve with the barriers of the sectors and the intersections with dk will
be called k-crossings of c. The connected components of c ∩Dk, 1 ≤ k ≤ n
are called segments of c, and a segment is said essential if its endpoints are
both crossings (and not punctures). So, the essential segments are the ones
of type 1, 1’, 2, 2’, and the basic curves have no essential segments.

The curve c can be reconstructed up to isotopy by listing its crossings
and the types of essential segments bounded by consecutive crossings as one
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Figure 15. The six possible types.

travels along c from one end to another, and Lemma 4.10 shows that con-
versely this combinatorial data is an invariant of the isotopy class of c.

Let us now study the action of half-twists on normal forms. Remember
that we denoted tbk the half-twist along bk. Even when the curve c is in
normal form, the curve tbk(c) is not necessarly in normal form too. This
image tbk(c) has minimal intersection with the di for i 6= k but one might
need to simplify its intersections with dk to get tbk(c) into normal form. The
same argument as in [KS02] leads to the analogous statement:

Proposition 4.11.

(i) The normal form of tbk(c) coincides with c outside of Dk ∪ Dk+1.

The curve tbk(c) can be brought into normal form by an isotopy in-

side Dk ∪Dk+1.

(ii) Assume tbk(c) is in normal form. There is a natural bijection between

the i-crossings of c and the i-crossings of tbk(c) for i 6= k. There is a

natural bijection between connected components of intersections of c
and tbk(c) inside Dk ∪Dk+1.

We need thus to study c and tbk(c) in Dk ∪ Dk+1. Just as before we
will define objects for this situation. We call k-string of c a connected
component of c ∩ (Dk ∪ Dk+1) and denote by st(c, k) the set of k-strings
of c. We call k-string a curve in Dk ∪Dk+1 which is a k-string of c for some
admissible curve c in normal form. Two k-strings are isotopic if there is a
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deformation of one into the other via diffeomorphisms of D′ = Dk ∪ Dk+1

which fix dk−1 and dk+1 and preserve the punctures lying inside ofD′ setwise.
The isotopy classes under this equivalence relation can be divided into five
families of types denoted Iu, IIu, II

′
u, IIIu, III

′
u (u ∈ Z), which are depicted

on Figure 18, in analogy to [KS02, Figure 15], for the u = 0 case and such
that the type u + 1 is obtained from the u-type by applying tbk . The k-
strings are by definition in normal form and, as before, we can define for
them crossings and essential segments and denote the crossings of a k-string
g similarly by cr(g).

For the geometric intersection numbers, the same argument as in [KS02]
leads to the analogous result:

Proposition 4.12. If k ∈ {1, . . . , n} the geometric intersection number

I(bk, c) can be computed as follows: every k-string of c which is of type

Iu, IIu, II
′
u contributes 1, those of type IIIu, III

′
u contribute 1

2 , and the other

types contribute to 0.

For trigraded curves, one can choose trigradings b̌k, ďk of bk, dk such that

Itrigr(ďk, b̌k) = 1 + q−1
1 q2

Itrigr(b̌k+1, b̌k) = 1 for i = 1, . . . n− 1,

Itrigr(b̌1, b̌n) = q−1
3

that is such that the local intersection indices at the intersection points are:

µtrigr(ďk, b̌k; z) = (0, 0, 0)

µtrigr(b̌k+1, b̌k; z) = (0, 0, 0) for i = 1, . . . n− 1,

µtrigr(b̌1, b̌n; z) = (−n, n, 1).

These conditions determine the trigradings uniquely up to an overall
shift χ(r1, r2, r3).

Now, if č is a trigrading of an admissible curve c in normal form and if a is
a connected component of c∩Dk for some k and ǎ is the preimage in č of a
under the covering projection, then ǎ is entirely determined by a and the
local index µtrigr(ďk−1, ǎ; z) or µ

trigr(ďk, ǎ; z) at any point z ∈ (dk−1∪dk)∩a
(if there is more than one such point, the local indices determine each other).

In Figures 16 and 17 we give the classification of the pairs (a, ǎ) for the
various possible types with the local indices. Note that Figure 17 shows the
only two types 1 and 1′ for which the values of the local indices differ in
the case when k = 1 from the generic case k 6= 1. The indices mentioned
have to be read the following way: if the connected component (a, ǎ) is of
type, for example 1(r1, r2, r3) for k = 2, . . . , n, with crossings z0 ∈ dk ∩ a
and z1 ∈ dk−1 ∩ a and the local index at z0 is µtrigr(ďk, ǎ; z0) = (r1, r2, r3),
then µtrigr(ďk−1, ǎ; z1) = (r1 − 1, r2 + 1, r3).

Remember that we defined, at the beginning of Section 4.2, for any dif-
feomorphism f ∈ Diff(D,∆, {0}) its prefered lift f̌ as the only lift that acts
trivially on the preimage of any point of the boundary of the disk. Remem-
ber also that we considered in Section 1.2 the half-twist tbi along the curve bi
and the twist t∂ corresponding to the generator ρ of the braid group, so that
in the following ťbi and ť∂ will be the prefered lift of these diffeomorphisms.
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Figure 16. The local indices for k = 2, . . . , n.
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1 1

a

a

d1 d1dn dn
D1 D1

Type 1(r1, r2, r3) Type 1′(r1, r2, r3)

(r1,r2,r3)

(r1,r2,r3)(r1+n−1,r2−n+1,r3−1)

(r1−n−1,r2+n,r3+1)

Figure 17. The change of local indices for k = 1.

Proposition 4.13. The diffeomorphisms ťbi, i = 1 . . . n and ť∂ induce an

extended affine type A braid group action on the isotopy classes of admissible

trigraded curves: if č is an admissible trigraded curve, we have the following

isotopy relations of curves:

ťbi ťbj (č) = ťbj ťbi(č) for distant i, j = 1, . . . , n,

ťbi ťbi+1 ťbi(č) = ťbi+1 ťbi ťbi+1(č) for i = 1, . . . , n,

ť∂ ťbi ť
−1
∂ = ťbi+1 for i = 1, . . . , n.

A crossing of c is also called a crossing of č and we denote also cr(č) the set
of crossing of č, cr(č) = cr(c). But to crossings of č, we can also associate its
local index in Z

3. As [KS02], we add an extra index k to a crossing z which is
equal to the index k such that z ∈ dk∩c and to emphazise that it is a function
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of the intersection point we will denote it k(z) such that we get a map which
associate to each crossing z the four intergers (k(z), µ1(z), µ2(z), µ3(z)).

We call essential segments of č the essential segments of c together with
the trigrading, the trigradings are given by assigning local indices to the ends
of the segment. We do now the same study about the changes of trigradings
for k-strings. We call k-string of č a connected component of č∩(Dk∪Dk+1)
together with the trigrading induced by the one of č. The set of k-strings
of č are denoted st(č, k). A trigraded k-string is a k-string of č for some
trigraded curve č.

In Figures 18, 19 and 20, we give the isotopy classes of bigraded k-strings.
As before, are appart on Figures19 and 20 the only types for which the values
of the local indices differ in the case when k = 1, n from the generic case
k 6= 1, n.

The trigraded intersection number of b̌k with a trigraded curve can be
computed thanks to the following lemma:

Lemma 4.14. Let (c, č) be a trigraded curve. Then Itrigr(b̌k, c) can be com-

puted by adding up contributions from each trigraded k-string of č. For k =
2, . . . , n− 1 the contributions are:

I0(0, 0, 0) 1 + q1q
−1
2

II0(0, 0, 0) 1 + q1q
−1
2

II ′0(0, 0, 0) q1 + q2
III0(0, 0, 0) 1
III ′0(0, 0, 0) q2

IV (0, 0, 0) 0
IV ′(0, 0, 0) 0
V (0, 0, 0) 0
V ′(0, 0, 0) 0
V I(0, 0, 0) 1 + q2

For k = 1 the only contributions that differ are:

I0(0, 0, 0) (1 + q1q
−1
2 )q−1

3

II0(0, 0, 0) (1 + q1q
−1
2 )q−1

3

III0(0, 0, 0) q−1
3

For k = n the only contributions that differ are:

II ′0(0, 0, 0) (q1 + q2)q3
III0(0, 0, 0) q2q3
and for u 6= 0 the contribution of type Xu(r1, r2, r3) is q

r1+nr3
1 qr1−nr3

2 q−r3
3 (q1q

−1
2 )u

times the contribution of X0(0, 0, 0), with

X ∈ {I, II, II ′, III, III ′, IV, IV ′, V, V ′, V I}.

5. Admissible curves and complexes of projective modules

In this section, we make the link between the categorical action and the
geometry and topology of the trigraded intersection numbers. We use this
link to prove the faithfulness of the categorical action defined in Section 3.
In addition let us make a warranty here. In fact in Section 3 we introduced
a Z/2Z-grading (the reduction of the path length grading) on the category
Cn in order to recover exactly the homological representation defined in
Section 2.2.2 at the level of the Grothendieck group. In all what follows, we
do not need this grading and hence will work over the homotopy category
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Figure 18. The isotopy classes of k-strings with local in-
dices for k = 2, . . . , n− 1.

of finitely generated bigraded projective modules that we denote C′
n. Note

that the functors Fσ introduced in Section 3 induce naturally endofunctors
of C′

n, and we will therefore use the same notation.
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Figure 19. The changes in the isotopy classes of k-strings
with local indices when k = 1.
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Figure 20. The changes in the isotopy classes of k-strings
with local indices when k = n.

5.1. Complexes associated to admissible curves and categorical ac-

tion. Given an admissible curve č in normal form, we associate an object
L(č) in the category C′

n of bounded complexes of projective bigraded modules
over the quiver algebra Rn. We define L(č) first as a trigraded Rn-module
as follows:

L(č) =
⊕

z∈cr(č)

P (z),
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where P (z) = Pk(z)[−µ1(z) − nµ3(z)]{µ2(z) − nµ3(z)} 〈−µ3(z)〉 with [−]
being a shift in the cohomological grading. We endow the previous trigraded
module with a differential given by:

• If z0 and z1 are two boundary crossings of an essential segment then
it follows that they differ in their µ1 grading by 1. Suppose for
instance that µ1(z1) = µ1(z0) + 1. There are two possibilities:

– If z0 and z1 are both k crossings then ∂ : P (z0) → P (z1) is the
right multiplication by the element (k|k + 1|k).

– If z0 (resp. z1) is a k0-crossing (resp. a k1-crossing) and we have
|k0−k1| = 1, then ∂ : P (z0) → P (z1) is the right multiplication
by the element (k0|k1).

• If z0 and z1 are not connected by an essential segment then there is
no contribution of the differential between P (z0) and P (z1).

It can be directly checked that the previous map ∂ satisfies ∂2 = 0 (it
follows from the relations in the quiver algebra Rn) and in addition ∂ is of
degree (1, 0, 0). Hence we have the following lemma.

Lemma 5.1. For all admissible curves č in normal form, (L(č), ∂) is a

trigraded differential module.

Remark 5.2. An alternative way, using so-called folded diagrams, of pre-
senting this complex of projective modules is given in [KS02].

There is a free Z
3-action on trigraded curves and also on the category Cn

(by shifts). The next lemma relates these two actions and can be directly
checked from the construction of the differential module L(č).

Lemma 5.3. For any triple (r1, r2, r3) of integers and any admissible tri-

graded curve č we have :

L(χ(r1, r2, r3)č) ∼= L(č)[−r1 − nr3]{r2 − nr3} 〈−r3〉 .

Remark 5.4.

• Notice that the minus sign in the first shift is here to match the
standard convention for shifts on cohomology theories.

• The previous lemma holds when one replaces admissible trigraded
curves by k-strings.

The aim of the next theorem is to relate the action by endofunctor of the
extended affine type A braid group on L(č) and the complex associated to
the image of the curve č under the mapping class group action. This is done
in order to be able to proceed to the Hom-space dimension computations of
the next subsection. In addition, let us mention that the proof goes roughly
as follows: the image of a complex L(č) under a composition of functors F i

is in general more complicated than the element associated to the image of č
by the element of the mapping class group corresponding to the sequence of
functors, and the general procedure is to reduce the first one to the second
one (by a sequence of deformation retracts and isomorphisms).

Theorem 5.5. For any admissible trigraded curve č, we have the following

isomorphisms in C′
n:

F i(L(č)) ∼= L(ťbi(č)) for all 1 ≤ i ≤ n.
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and

Fρ(L(č)) ∼= L(ť∂(č)).

Proof. For the first case, the proof is exactly similar to the one given by
Khovanov and Seidel [KS02], if n > 3. In the case n = 3, one needs to
check an additional case in our version of Lemma 4.5 in [KS02], which is the
one where two different k-strings have endpoints connected by an essential
segment of type 1 or 1′. One also needs to take carefully care of the cases
i = 1 and i = n, where the third grading comes into play. The second
isomorphism is completely immediate and follows from the definition of Fρ

and its action on the projectives Pk. �

Corollary 5.6. For any admissible trigraded curve č and any element σ ∈
B̂
Ân−1

we have :

Fσ(L(č)) ∼= L(σ̌(č)).

5.2. Graded dimensions of Hom-spaces and faithfulness of the cat-

egorical action. The aim of this subsection is to prove that the category
C′
n encodes the intersection numbers. It will be proved by showing that the

Poincaré polynomial of the space of morphisms between two objects L(č)
and L(č′) is equal to the trigraded intersection number between č and č′.

Lemma 5.7. For any k = 1, . . . , n and for any trigraded k-string ǧ, the

abelian group

HomC′

n
(Pk, L(ǧ)[s1]{−s2} 〈−s3〉)

is free for all (s1, s2, s3) ∈ Z
3. The Poincaré polynomial

∑

(s1,s2,s3)∈Z3

rkHomC′

n
(Pk, L(ǧ)[s1]{−s2} 〈−s3〉)q

s1
1 qs22 qs33

is equal to the trigraded intersection number Itrigr(b̌k, ǧ).

Proof. The proof follows the same line as the one given by Khovanov-Seidel
and is in three steps. First, Lemma 5.3 and property (T3) of the trigraded
intersection numbers imply that one can restrict to the case of k-strings ǧ
whose left or right endpoint is of degree (0, 0, 0). Secondly, Theorem 5.5 and
property (T2) of trigraded intersection numbers imply that one can restrict,
for the cases I, II and III, to the ǧ-strings depicted in Figure 18. Thirdly,
a direct computation of the Poincaré polynomial in the six different cases
of Figure 18, Figure 19 and Figure 20 and a comparison with the trigraded
intersection numbers computed in Lemma 4.12 end the proof. �

Lemma 5.8. For any trigraded admissible curve in normal form č and any

k = 1, . . . , n, we have the following isomorphism:

HomC′

n
(Pk, L(č)[s1]{−s2} 〈−s3〉) ∼=

⊕

ǧ∈st(č,k)

HomC′

n
(Pk, L(ǧ)[s1]{−s2} 〈−s3〉),

for all (s1, s2, s3) ∈ Z
3.

Proof. The result follows from two facts: the first is that the space of mor-
phisms between Pi and Pj [s1]{−s2} 〈−s3〉 is trivial if |i−j| > 1 . The second
that any morphism on the right can be extended to a morphism on the left.
The latter property follows from the definition of the complex L(č) and the
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fact that paths containing a subpath of the form (i−1|i|i+1) or (i+1|i|i−1)
are zero in the algebra Rn. �

Similarly it follows immediately from the local properties of the trigraded
intersection numbers that

Itrigr(b̌k, č) =
∑

ǧ∈st(č,k)

Itrigr(b̌k, ǧ),

see Lemma 4.14. In addition, since the categorical action respects by defini-
tion the space of morphisms and similarly the extended affine braid group
action respects the trigraded intersection numbers (property (T2)), we have
the following proposition:

Proposition 5.9. For any τ and σ in B̂
Ân−1

, and any k, l = 1, . . . , n we

have that the Poincaré polynomial of

HomC′

n
(Fτ (Pk),Fσ(Pl))

is equal to the trigraded intersection number Itrigr(τ̌(b̌k), σ̌(b̌l)).

We now state the main theorem of this section.

Theorem 5.10. If Fσ acts on the category Cn as the identity functor, then

σ is the unit of B̂
Ân−1

.

Proof. If Fσ acts on the category Cn as the identity functor, so does it
on C′

n, then it follows from the previous proposition that σ̌ preserves the
trigraded intersection numbers of admissible curves. It implies, together
with property (T1) of Lemma 4.9, that, for all k, l = 1, . . . , n, we have
I(bk, σ(bl)) = I(bk, bl). Then, by Lemma 4.5, one knows that σ is hence of
the form ρnp for some integer p. Now one can immediately check that Fρnp

is then the shift functor < −p >, which acts as the identity functor if and
only if p = 0 and this finishes the proof. �
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