Uppsala Universitet

Matematiska Institutionen
Thomas Erlandsson

DIFFERENTIAL GEOMETRY

PROBLEM 1-5

1. Show that the curvature of a plane curve is in general given by the formula

$$
\kappa(t)=\frac{\operatorname{det}(\dot{c}(t), \ddot{c}(t))}{|\dot{c}(t)|^{3}}
$$

2. Show that the curvature and torsion of a space curve are in general given by the formulae

$$
\begin{gathered}
\kappa(t)=\frac{|\dot{c}(t) \times \ddot{c}(t)|}{|\dot{c}(t)|^{3}} \\
\tau(t)=\frac{\operatorname{det}(\dot{c}(t), \ddot{c}(t), c(t))}{|\dot{c}(t) \times \ddot{c}(t)|^{2}}
\end{gathered}
$$

where $x \times y$ is the vector product in R^{3}.
3. Let $c(t)$ be a curve in R^{n} parametrized by arc length with the property that $|c(t)|^{2}$ has a local maximum at t_{0}. Let $p_{0}=c\left(t_{0}\right)$ and $\rho^{2}=\left|p_{0}\right|^{2}$. Show that

$$
\kappa\left(t_{0}\right) \geq \frac{1}{\rho}
$$

where $\kappa\left(t_{0}\right)=\mid \ddot{c}\left(t_{0} \mid\right.$ (which is equal to the first curvature of $c(t)$ at t_{0} if it is defined).
4. Let A, B, C, D, E, G be constants such that

$$
A D+B E+C G \neq 0
$$

Consider the curves $c(t)=(x(t), y(t), z(t)) \in R^{3}$ whose tangent vectors at each point $P=$ (x, y, z) in space are in the plane L_{P} through P whose normal is

$$
(B z-C y+D, C x-A z+E, A y-B x+G)
$$

It is clear that such curves satisfy

$$
(B z(t)-C y(t)+D) \dot{x}(t)+(C x(t)-A z(t)+E) \dot{y}(t)+(A y(t)-B x(t)+G) \dot{z}(t)=0
$$

Let $c(t)$ be a curve which satisfies such a condition and assume that $\dot{c}(t), \ddot{c}(t)$ are linearly independent at P. Let τ be the torsion of the curve at $P=(x, y, z)$.
a) Show that L_{P} is the osculating plane of the curve at P.
b) Show that τ at P satisfies the formula

$$
\tau=\frac{-(A D+B E+C G)}{(B z-C y+D)^{2}+(C x-A z+E)^{2}+(A y-B x+G)^{2}} .
$$

5. Let $c(t)$ be a curve in R^{3} parametrized by arc length and let $t_{0}=0 \in I$. Let the Frenetframe at $c(0)$ be $e_{i}(0)=e_{i}$ and let $\kappa(0)=\kappa_{0}, \tau(0)=\tau_{0}$. We then have the following well known series expansion for t close to 0

$$
c(t)-c(0)=t e_{1}+\frac{1}{2} \kappa_{0} t^{2} e_{2}+\frac{1}{6} \kappa_{0} \tau_{0} t^{3} e_{3}+o\left(t^{3}\right) .
$$

The projections of the curve in a small neighbourhood of $c(0)$ in the planes of the Frenet-frame at that point are therefore approximated by the following curves:
a) the projection onto the $\left(e_{1}, e_{3}\right)$-plane, the rectifying plane, is described by the cubical parabola

$$
x=t, \quad y=0, \quad z=\frac{1}{6} \kappa_{0} \tau_{0} t^{3} ;
$$

b) the projection onto the $\left(e_{2}, e_{3}\right)$-plane, the normal plane, is described by the semi-cubical parabola with a cusp at origo

$$
x=0, \quad y=\frac{1}{2} \kappa_{0} t^{2}, \quad z=\frac{1}{6} \kappa_{0} \tau_{0} t^{3} ;
$$

c) the projection onto the $\left(e_{1}, e_{2}\right)$-plane, the osculating plane, is decribed by the parabola

$$
x=t, \quad y=\frac{1}{2} \kappa_{0} t^{2}, \quad z=0 .
$$

i) Draw these projektions and their orientations in the case $\tau_{0}>0$ and $\tau_{0}<0$.
ii) We shall now study what the curve looks like along the negative e_{1}-axis if we raise or lower our eyes somewhat above or under the osculating plane. This means that we shall find the projection of the curve in a $\left(f_{2}, f_{3}\right)$-plane where the $O N$-system $\left(f_{1}, f_{2}, f_{3}\right)$ is created from the system $\left(e_{1}, e_{2}, e_{3}\right)$ by letting the e_{1}, e_{3}-plane rotate a small angle $\alpha(-\varepsilon<\alpha<\varepsilon)$ with the e_{2}-axis as axis of rotation. Derive the analytical expression of the projection and draw pictures of how it looks for different values of α in the cases $\tau_{0}>0$ and $\tau_{0}<0$.

