Uppsala Universitet

Matematiska Institutionen
Thomas Erlandsson

DIFFERENTIAL GEOMETRY

PROBLEM 6

6. $f: U \rightarrow R^{3}$ is a regular surface with the external unit normal n, Gauss curvature $K=$ $\kappa_{1} \kappa_{2} \neq 0$ and mean curvature $H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)$. We define for every $r \in R$ a map $\bar{f}: U \rightarrow R^{3}$ by

$$
\bar{f}=f+r n .
$$

\bar{f} is called a parallel surface of f.
a) Show that

$$
\bar{f}_{u^{1}} \times \bar{f}_{u^{2}}=\left(1+2 r H+r^{2} K\right)\left(f_{u^{1}} \times f_{u^{2}}\right) .
$$

Remark. $\quad n_{u^{i}}=\sum a_{i}^{k} f_{u^{k}}$ where $\left(a_{i}^{k}\right)$ is the matrix of Weingarten's map.
b) For what values of r is \bar{f} regular?

The result in a) shows that $\bar{n}= \pm n$ at all points where \bar{f} is regular. We can therefore identify the tangent plane $T_{u} \bar{f}$ to the parallel surface \bar{f} with the tangent plane $T_{u} f$ to the surface f at the point u.
c) Determine the matrix for $d \bar{f}$ with respect to the basis $f_{u^{1}}, f_{u^{2}}$ i $T_{u} \bar{f}$.
d) Determine the matrix of Weingarten's map $\bar{L}=+d \bar{n} \circ(d \bar{f})^{-1}: T_{u} \bar{f} \rightarrow T_{u} \bar{f}$ with respect to the basis $f_{u^{1}}, f_{u^{2}}$ ($\bar{n}=n$ is the external normal). Show that the Gauss curvature \bar{K} and the mean curvature \bar{H} on \bar{f} is given by

$$
\bar{K}=\frac{K}{1+2 r H+r^{2} K}, \quad \bar{H}=\frac{H+r K}{1+2 r H+r^{2} K} .
$$

e) Let M be a surface with constant positive Gauss curvature K and without umbilics.
(Examples of such surfaces can be found in Figures 3.12(b) och (c) in Klingenberg).
Let $r_{1}=\frac{1}{\sqrt{K}}$ och $r_{2}=-\frac{1}{\sqrt{K}}$ define the parallel surfaces M_{1} and M_{2} respectively. Show that M_{1} and M_{2} are regular surfaces with constant mean curvature $\frac{\sqrt{K}}{2}$ resp. $-\frac{\sqrt{K}}{2}$.
f) Let M be a surface with constant mean curvature $H \neq 0$ and Gauss curvature $K \neq 0$.
(K is not necessarily constant). Then $r=-\frac{1}{2 H}$ gives a regular parallel surface with constant Gauss curvature $4 H^{2}$.

