DIFFERENTIAL GEOMETRY

PROBLEM 12

The Poincaré Upper Half Plane Model of H^2

The surface H^2 is in the Poincaré upper half plane model the set

$$U = \{(u, v) \in R^2 | v > 0\}$$

with the Riemann metric

$$ds^2 = \frac{du^2 + dv^2}{v^2}.$$

Using Gauss' equation we find immediately that this surface has constant Gauss curvature K = -1. The line element ds^2 in H^2 is equal to the euclidean line element $du^2 + dv^2$ multiplied by a strictly positive function. Therefore an angle measured with respect to the Riemann metric coincides with the euclidean angle.

The geodesics in the upper half plane model of H^2 are the euclidean circles and straight lines which meet the boundary v = 0 orthogonally. This can be shown in the following way: In H^2 we get $g_{11} = 1/v^2$, $g_{12} = 0$, $g_{22} = 1/v^2$ and it follows that

$$\Gamma_{11}^1 = \Gamma_{22}^1 = \Gamma_{12}^2 = 0, \quad \Gamma_{11}^2 = -\Gamma_{22}^2 = -\Gamma_{21}^1 = 1/v.$$

The differential equations of the geodesics can therefore be written

$$\ddot{u} - \frac{2\dot{u}\dot{v}}{v} = 0, \quad \ddot{v} + \frac{\dot{u}^2 - \dot{v}^2}{v} = 0.$$

If $\dot{u} = 0$ then u = constant. In this case it is clear that the geodesic is a straight euclidean line orthogonal to v = 0.

If $\dot{u} \neq 0$ we get from the first equation that $\ln(\dot{u}/v^2) = \text{constant so } \dot{u} = cv^2 \neq 0$ for some constant c. In the same way we get from the second equation that $\dot{u}^2 + \dot{v}^2 = bv^2 > 0$ for some constant b. By combining these equations we get $(dv/du)^2 = \dot{v}^2/\dot{u}^2 = b/c^2v^2 - 1$. Therefore $(u-a)^2 + v^2 = b/c^2$ for some constant a. This is a circle with centre on v = 0 and so meets v = 0 orthogonally.

The isometries of H^2 are well-known maps in the upper half plane model. Let SL(2, R) be the special linear group in dimension 2, i.e. the group of all real (2×2) -matrices with determinant = 1. SL(2, R) acts on H^2 in the following way. Let z = u + iv. The points (u, v) in the upper half plane correspond to z = u + iv, v > 0. If

$$g = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in SL(2, R),$$

let

Proposition

 $gz = \frac{az+b}{cz+d}.$

The group SL(2, R) acts as a group of isometries on H^2 .

Proof: Let u + iv = z och

$$\frac{az+b}{cz+d} = \tilde{z}$$

If we write $dz d\bar{z}$ for $du^2 + dv^2$ the line element of H^2 can be written

$$ds^{2}(z) = \frac{-4dz \, d\overline{z}}{(z - \overline{z})^{2}}, \qquad \overline{z} = u - iv.$$

As $d\tilde{z} = d((az+b)(cz+d)) = dz/((cz+d)^2)$ it follows that $ds^2(z) = ds^2(\tilde{z})$, which means that $z \mapsto \tilde{z}$ is an isometry.

- a) Calculate the arc length of the geodesic c(t) = (r cos t, r sin t), 0 < t < π starting from the top of the half circle, t = π/2. (Result: |ln tan t/2|)
 Calculate also the arc length of the geodesic u = u₀ from v = a till v = b. (Result: (|ln a/b|))
- b) Calculate the geodesic curvature k_g of the curve v = 1. (**Result:** $k_g = 1$)
- c) A vector is parallel translated the hyperbolic distance d along the curve v = 1. Calculate the angle the vector has turned during this translation.

The Poincaré Disc Model

The surface H^2 in the Poincaré disc model is the set

$$U = \{(u, v) \in R^2 | u^2 + v^2 < 4\},\$$

with the Riemann metric

$$ds^{2} = \left(1 - \frac{u^{2} + v^{2}}{4}\right)^{-2} (du^{2} + dv^{2}).$$

Using Gauss' equation we find that the surface has constant Gauss curvature K = -1. The geodesics in the disc model correspond to the circles orthogonal to the boundary of the disc and the diameters. This is most easily seen by showing that the map

$$w = \frac{z+2i}{iz+2}$$

is an isometry of the disc model onto the half plane model.

d) Calculate the arc length r of the geodesic $c(t) = (t \cos \vartheta, t \sin \vartheta), \ 0 \le t < 2$ beginning at origo.

(**Result:**
$$r = \ln \frac{2+t}{2-t} = 2\frac{1}{2}\ln \frac{1+t/2}{1-t/2} = 2\tanh^{-1}(t/2)$$
)

e) Show that in geodesic polar coordinates

$$ds^2 = dr^2 + \sinh^2(r) \, d\theta^2.$$

Hint: From the problem above follows that $t = 2 \tanh(r/2)$. Use $u = t \cos \theta$, $v = t \sin \theta$ and the given metric.