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DIFFERENTIAL GEOMETRY

PROBLEM 12

The Poincaré Upper Half Plane Model of H2

The surface H2 is in the Poincaré upper half plane model the set

U = {(u, v) ∈ R2| v > 0}

with the Riemann metric

ds2 =
du2 + dv2

v2
.

Using Gauss’ equation we find immediately that this surface has constant Gauss curvature
K = −1. The line element ds2 in H2 is equal to the euclidean line element du2+dv2 multiplied
by a strictly positive function. Therefore an angle measured with respect to the Riemann metric
coincides with the euclidean angle.
The geodesics in the upper half plane model of H2 are the euclidean circles and straight lines
which meet the boundary v = 0 orthogonally. This can be shown in the following way:
In H2 we get g11 = 1/v2, g12 = 0, g22 = 1/v2 and it follows that

Γ1
11 = Γ1

22 = Γ2
12 = 0, Γ2

11 = −Γ2
22 = −Γ1

21 = 1/v.

The differential equations of the geodesics can therefore be written

ü− 2u̇v̇

v
= 0, v̈ +

u̇2 − v̇2

v
= 0.

If u̇ = 0 then u = constant. In this case it is clear that the geodesic is a straight euclidean line
orthogonal to v = 0.
If u̇ 6= 0 we get from the first equation that ln(u̇/v2) = constant so u̇ = cv2 6= 0 for some
constant c. In the same way we get from the second equation that u̇2 + v̇2 = bv2 > 0 for some
constant b. By combining these equations we get (dv/du)2 = v̇2/u̇2 = b/c2v2 − 1. Therefore
(u − a)2 + v2 = b/c2 for some constant a. This is a circle with centre on v = 0 and so meets
v = 0 orthogonally.



The isometries of H2 are well-known maps in the upper half plane model. Let SL(2, R) be the
special linear group in dimension 2, i.e. the group of all real (2× 2)-matrices with determinant
= 1. SL(2, R) acts on H2 in the following way. Let z = u + iv. The points (u, v) in the upper
half plane correspond to z = u + iv, v > 0. If

g =

(
a b
c d

)
∈ SL(2, R),

let
gz =

az + b

cz + d
.

Proposition
The group SL(2, R) acts as a group of isometries on H2.

Proof: Let u + iv = z och
az + b

cz + d
= z̃.

If we write dz dz̄ for du2 + dv2 the line element of H2 can be written

ds2(z) =
−4dz dz̄

(z − z̄)2
, z̄ = u− iv.

As dz̃ = d((az + b)(cz + d)) = dz/((cz + d)2 it follows that ds2(z) = ds2(z̃), which means
that z 7→ z̃ is an isometry.

a) Calculate the arc length of the geodesic c(t) = (r cos t, r sin t), 0 < t < π starting from

the top of the half circle , t = π/2. (Result: | ln tan
t

2
|)

Calculate also the arc length of the geodesic u = u0 from v = a till v = b.

(Result: (| ln a

b
|)

b) Calculate the geodesic curvature kg of the curve v = 1. (Result: kg = 1)

c) A vector is parallel translated the hyperbolic distance d along the curve v = 1.

Calculate the angle the vector has turned during this translation.



The Poincaré Disc Model

The surface H2 in the Poincaré disc model is the set

U = {(u, v) ∈ R2|u2 + v2 < 4},

with the Riemann metric

ds2 =

(
1− u2 + v2

4

)−2

(du2 + dv2).

Using Gauss’ equation we find that the surface has constant Gauss curvature K = −1. The
geodesics in the disc model correspond to the circles orthogonal to the boundary of the disc and
the diameters. This is most easily seen by showing that the map

w =
z + 2i

iz + 2

is an isometry of the disc model onto the half plane model.

d) Calculate the arc length r of the geodesic c(t) = (t cos ϑ, t sinϑ), 0 ≤ t < 2 beginning at
origo.

(Result: r = ln
2 + t

2− t
= 2

1
2

ln
1 + t/2
1− t/2

= 2 tanh−1(t/2))

e) Show that in geodesic polar coordinates

ds2 = dr2 + sinh2(r) dθ2.

Hint: From the problem above follows that t = 2 tanh(r/2).
Use u = t cos θ, v = t sin θ and the given metric.


