DIFFERENTIAL GEOMETRY

EXAMPLES 1-4

1. Let $f: U \to R^3$ be

$$(u, v) \rightarrow (\cos u \cos v, \cos u \sin v, \sin u), \quad (u, v) \in] -\frac{\pi}{2}, \frac{\pi}{2}[\times R.$$

The image f(U) of U is then the two-punctured sphere $S^2 \setminus \{0, 0, \pm 1\}$. Then a) E = 1, F = 0, $G = \cos^2 u$ b) $n(u, v) = \frac{f_u \times f_v}{|f_u \times f_v|} = -f(u, v)$ c) $II = -dn \cdot df = df \cdot df = I$ d) $\kappa_1 = \kappa_2 = 1$, H = K = 1. 2. Let $f: U \to R^3$ be the torus $(u, v) \to ((a + b \cos u) \cos v, (a + b \cos u) \sin v, b \sin u), \quad 0 < b < a, \quad (u, v) \in R \times R.$

Then

a) f is regular at each point b) $E = b^2$, F = 0, $G = (a + b \cos u)^2$ c)L = b, M = 0, $N = (a + b \cos u) \cos u$ d) $a_1^1 = \frac{1}{b}$, $a_1^2 = a_2^1 = 0$, $a_2^2 = \frac{\cos u}{a + b \cos u}$, $\kappa_1 = a_2^2 < \kappa_2 = a_1^1 = \frac{1}{b}$ e) $K = \frac{\cos u}{b(a + b \cos u)}$, $H = \frac{a + 2b \cos u}{2b(a + b \cos u)}$. **Remark** $a_i^k = \sum_i h_{ij} g^{jk}$. 3. A surface $f: U \to R^3$ defined by f(u, v) = (u, v, F(u, v)) can be described as z = F(x, y). Then

$$(g_{ij}) = \begin{pmatrix} 1 + F_u^2 & F_u F_v \\ F_u F_v & 1 + F_v^2 \end{pmatrix}, \quad (h_{ij}) = \frac{1}{(1 + F_u^2 + F_v^2)^{\frac{1}{2}}} \begin{pmatrix} F_{uu} & F_{uv} \\ F_{uv} & F_{vv} \end{pmatrix}$$

b)

a)

$$2H = \frac{(1+F_u^2)F_{vv} + (1+F_v^2)F_{uu} - 2F_uF_vF_{uv}}{(1+F_u^2 + F_v^2)^{\frac{3}{2}}}.$$

4. $f(u, v) = (u, v, u(u^2 - 3v^2))$ is a so called "monkey saddle". It is a saddle used by a monkey riding a bicycle. There are two depressions for its legs, and an extra one for its tail. Show that the surface has a planar, umbilic point at origo, i.e. that K = 0 at origo and that the normal curvatures there are equal in all directions.