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Abstract. This is a short exposition on how the three-dimensional geometry

over a non-Archimedean field of formal power series may be naturally related

to the classical differential geometry of curves, specifically the Frenet frame.
We claim no originality in results, only originality in presentation.

1. Introduction

The nature of infinity is this! That every thing, has its
Own Vortex; and when once a traveller thro Eternity,
Has passed that Vortex, he perceives it roll backwards behind
His path, into a globe itself infolding: like a sun:
Or like a moon, or like a universe of starry majesty.

–William Blake

When the foundations of classical geometry were seriously investigated during
the 19th century, it became clear that not only are there perfectly viable geometries
in which the parallel postulate is not true, but there are also non-Archimedean
geometries. A non-Archimedean geometry is characterized by the property that
given three collinear points A,B and C segments, there may fail to exist a natural
number n such that the line segment n ·AB exceeds the segment AC. If this is the
case, AB is said to be infinitesimal compared to AC, or reciprocally, AC is infinite
compared to AB.

Perhaps the first to attempt the construction of a model for a non-Archimedean
geometry was the Italian geometer G. Veronese [1] around 1890. However, famous
fellow Italian mathematician G. Peano strongly criticized Veronese’s notion of a
non-Archimedean geometry, due to the lack of rigour of Veronese’s description and
also for the fact that he did not justify his use of infinitesimal and infinite segments.
Nevertheless, the resulting argument was extremely useful to mathematics since it
helped to clarify the notion of the continuum, both in geometry and among the real
numbers. A decade or so after Veronese’s paper on the subject, Hilbert removed
any fears that a non-Archimedean system would not be consistent, by giving a
detailed and explicit model for such a geometry [2].

A non-Archimedean geometry may seem forced, a pathological counterexample
to its own non-existence, mainly interesting as a proof of the necessity of adding
an axiom that rules out its possibility. We beg to disagree, for two reasons. First
of all, a non-Archimedean geometry is full of beautiful surprises challenging the
imagination. Secondly, it might not be so freakish after all, but a quite useful
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tool in physical description and modeling. Notions of the infinitesimal and infinite
has historically been used extensively by mathematicians in intuitive arguments
regarding limits, continuity and differentiability. For example, Archimedes and his
contemporaries treated smooth curves as constituted of infinitely many infinitesi-
mal straight segments. Leibniz and Newton used infinitesimals as the very basic
constructs in the calculus they developed. Leibniz, for example created the notation∫

dx, referring to an infinite sum of infinitesimal elements dx, or numbers “smaller
than any assignable quantity.” These notions were criticized, already by Newton’s
and Leibniz’ contemporaries, for being vaguely defined or even contradictory. Even
so, mathematicians kept referring to these “numbers smaller than any assignable
quantity.” For example, in Riemann’s work we can read statements such as

...and is consequently an infinitely small quantity of the fourth or-
der, so that one obtains a finite quantity if one divides it by the
square of the infinitely small triangle whose vertices have the values
(0, 0, 0, ...), (x1, x2, x3, ...), (dx1, dx2, dx3, ...).

These infinitesimals, and their reciprocals the infinite elements, have no existence
within the field of real numbers. In non-Archimedean number fields such elements
do have a well-defined existence. Non-Archimedean geometry provides a framework
in which we may rigorously do geometry with infinitesimals.

In this short text we review some geometric results obtained when the real num-
bers are embedded in a non-Archimedean field. For the results to work, we need
to be able to extend smooth real functions to functions defined on, and with values
in, the non-Archimedean extension field. We also want to be able to define a norm.
There are several such non-Archimedean extensions of the real numbers, and most
of our results would hold for all of them, but we have chosen to base the presen-
tation on a field introduced by D. Laugwitz [3]. A less restrictive choice would be
the hyperreal numbers invented by A. Robinson [8].

2. Preliminary results

2.1. Laugwitz’ field. We will consider the ordered field L of (generalized) power
series in an indeterminate t with real coefficients and real increasing exponents.
That is, an element of L is a formal expression

a =
∞∑

k=1

aktνk , ak, νk ∈ R, ν0 < ν1ν2 < ...

Two series of above form are equal in L if they are equal as series (i.e. as formal
expressions). Addition and multiplication are carried out as for ordinary absolutely
convergent power series. We order L by definining a ∈ L to be positive (a > 0) if
and only if the nonvanishing coefficient am with lowest subscript m is positive. A
detailed verification that L indeed is an ordered field may be found in [4, 3].

The field L is non-Archimedean: since e.g. nt < t−1 for all n ∈ N. We also
note that the real numbers may be embedded into L by R → L, r 7→ rt0. In
correspondence with this identification we say that a ∈ L is infinitesimal if |a| < r
for all r ∈ R, infinite if |a| > r for all r ∈ R, or finitely bounded if |a| < r for
some r ∈ R. We shall employ the notation L0 for all finitely bounded elements of
L, and write Lµ for the subset of all infinitesimal numbers, and L∞ for the infinite
numbers.



NON-ARCHIMEDEAN GEOMETRY AND THE FRENET FRAME 3

The finite elements L0 constitute a subring L. The infinitesimal elements Lµ

constitute a proper maximal ideal within L0, as can be seen by the following argu-
ment. Suppose that Lµ ⊂ J , with a proper inclusion and J an ideal in L0. Then
a ∈ J \L0 is not infinitesimal, so that a−1 is finitely bounded, whence aa−1 = 1 ∈ J .
But then J is be definition equal to Lµ, and it follows that the set of infinitesimals
is a maximal ideal in L0. Consequently L0/Lµ is a field, and looking at the form
of the power series it may be readily concluded that L0/Lµ

∼= R. Inspired by the
similarity with Robinson’s analysis of hyperreal numbers [8], we write st : L0 → R

for the quotient projection, and refer to st(a) as the standard part of a ∈ L0. We
remark that with the usual ordering of the real numbers, st(a) > 0 if and only if
a > 0, so that the quotient projection is order preserving. The cosets a + Lµ (with
a ∈ L) will in what follows be called monads. For a ∈ L we write µ(a) = a+Lµ for
the monad of a. In particular, note that µ(st(a)) = st−1(a), and that µ(0) = Lµ.

The intuitive image we propose is that L0 is the real numbers, plus an infinites-
imal neighborhood (a monad) about each real number. In this way each real point
gets equipped with a kind of internal geometry, similar to the notion of a tangent
space. Since the real numbers may be embedded r 7→ rtν for any fixed real number
ν (we may think of the choice of ν as the “level of the real world”), we see that the
situation repeats itself like a Russian doll, indefinitely.

The definitions above are easily extended to Cartesian products. If a = (a1, ..., an)
is a vector in Ln

0 , the monad µ(a) of a is the set of points b ∈ L such that |a− b| is
infinitesimal. The projection st : Ln

0 → R
n is also immediately extended, mapping

(a1, ..., an) to (st(a1), ..., st(an)). A vector a ∈ Ln
0 will be infinitesimal if each

coordinate is infinitesimal, finitely bounded if each coordinate is finitely bounded,
and infinite if at least one coordinate is infinite.

Proposition 1. Let u and v be two finitely bounded and linearly independent vec-
tors in L. Then there are infinitesimal vectors u′ and v′ such that u = st(u) + u′

and v = st(v) + v′. Moreover, if st(u) and st(v) are linearly independent over R,
then u and v are linearly independent over L.

Proof. Our proof is adapted from [5]. The decomposition of the two vectors u
and v is evident. Suppose st(u) and st(v) are linearly independent, and assume
u and v are not linearly independent, so that there are numbers a, b ∈ L0 such
that au + bv = 0. One of the coefficients a/b or b/a is not infinitesimal. Let us
suppose that a/b /∈ Lµ. If a/b /∈ L0, then b/a ∈ L0. In this case au + bv = 0 is
equivalent to u + bv/a = 0. This implies that st(v) = 0, and this is impossible.
Hence a/b /∈ L0 \ Lµ. Thus, if there exists a linear relation between u and v, there
exists a linear relation with coefficients in textbfL0 \ Lµ, i.e. we can suppose that
au + bv = 0 with a, b ∈ L0 \ Lµ. This implies

st(au + bv) = st(a)st(u) + st(b)st(v) = 0,

which in turn implies that st(a) = st(b) = 0. This is impossible, which proves the
proposition. �

Our next result concerns the axiomatic properties of the analytic goemetry over
Laugwitz’ field and subsets thereof. Allthough interesting, it will be left as a claim
(without proof).

Claim 1. With the obvious interpretation of the geometric notions of points, lines
and surfaces, L3 satisfies all of Hilbert’s axioms of betweeness and congruence,
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the circle-circle intersection property and the parallel axiom. Let points, lines and
surfaces in L3

0 and L3
µ be the intersections of points, lines and surfaces in L3 with the

respective subset. Then both L3
0 and L3

µ are non-Archimedean geometries satisfying
all of Hilbert’s axioms of betweeness and congruence together with the circle-circle
intersection property, but niether satisfy the parallel axiom. Furthermore, L3

0 but
not L3

µ has the property that there is a line segment AB such that for every other
segment CD there is an integer n such that CD ≤ n ·AB.

The reason we leave above claim without proof is that a proof would require
a long digression on Hilbert’s axioms, plus the claim is not essential to our later
developements. The reader is referred to [2, 6] for details on the axiomatic geometry.
We content ourselves with remarking that the parallel axiom is invalid since two
in L3 non-parallel lines may both pass through L3

0 (L3
µ) but intersect outside of

L3
0 (L3

µ). The circle-circle intersection property is equivalent to the existence of√
a ∈ L for each positive a ∈ L.
We proceed to show how a differentiable function f : D → R, with D ⊂ R, can

be extended to a function Lf : LD → L0, with LD ⊂ L0 and st(Lf(x)) = f(st(x)).
Let f be a real-valued infinitely differentiable function of a real variable, defined on
an open interval D = (a, b) ⊂ R. On passing from R to L, define LD to be the set
of points x satisfying a < x < b. (The ordering in the latter case is the ordering in
L). We find that LD consists of points x = st(x) +

∑∞
k=1 aktνk , 0 < ν1 < ν2 < ...

of three kinds:

a < st(x) < b;

st(x) = a,
∞∑

k=1

aktνk > 0;

st(x) = b,
∞∑

k=1

aktνk < 0.

Using the fact that f is assumed smooth, we follow Laugwitz [3] and in analogy
with the usual rules for Taylor series expansion define

Lf(x) =
∞∑

n=0

1
n!

f (n)(st(x))
( ∞∑

k=1

aktνk

)n

= f(st(x)) +
∞∑

n=1

1
n!

f (n)(st(x))
(
x− st(x)

)n

.

This is well-defined, as the expression for Lf(x) may be arranged into a series
expression in powers of t. This hinges on ν0 > 0, but this is ensured since x−st(x)
by definition is infinitesimal. The promised property st(Lf(x)) = f(st(x)) is also
evident. We shall refer to Lf as the Laugwitz extension of f .

2.2. Monad decomposition. The first result is a theorem on how monads may be
decomposed, in a way similar to how vector spaces are coordinatized. The theorem
was discovered by M. Goze, and is discussed by him in the context of deformations
of Lie algebras in [5]. We restate both the theorem and its proof, in terms pertinent
to the subject-matter discussed in this text.



NON-ARCHIMEDEAN GEOMETRY AND THE FRENET FRAME 5

Theorem 1. For every a ∈ L3
µ there exists three in R3 linearly independent vectors

v1, v2, v3, and infinitesimals ε1, ε2, ε3 ∈ Lµ such that

a = ε1v1 + ε1ε2v2 + ε1ε2ε3v3.

Moreover, the decomposition is unique up to equivalence in the following sense. If

ε′1v
′
1 + ε′1ε

′
2v
′
2 + ε′1ε

′
2ε
′
3v
′
3

is another such decomposition, then there are nonzero real numbers ci
j such that

vi =
i∑

j=1

ci
jv′j , ε′1...εj =

i∑
j=1

ci
jε1...εj

for j = 1, 2, 3, i.e. the flag generated by the ordered family v1, v2, v3 is equal to the
flag generated by the ordered family v′1, v

′
2, v

′
3.

Proof. Let a = (a1, a2, a3). With no essential loss of generality, assume that a1 is
the component with greatest absolute value. Let ε1 = a1. We then have

a = ε1

(
1,

a2

ε1
,
a3

ε1

)
,

with all components of the vector on the right hand side finitely bounded. We may
then write

a = ε1(v1 + w1)
with v1 real and w1 infinitesimal, and the two vectors linearly independent (since
the first component of w1 is in any case zero). We iterate the procedure and obtain
w1 = ε2(v2 +w2), with v2 real and w2 and ε2 infinitesimals. The linear indepence of
v1 and w1 implies the linear independence of v1 and v2. By construction v1, w1, w2

are linearly independent, and so v1, v2, w2 are linearly independent. Let ε3 = |w2|.
We then iterate once more and obtain

a = ε1v1 + ε1ε2v2 + ε1ε2ε3v3,

which is the promised decomposition.
For uniqueness, assume a = ε′1v

′
1 + ε′1ε

′
2v
′
2 + ε′1ε

′
2ε
′
3v
′
3 is another such decomposi-

tion. By hypothesis, either ε1/ε′1 ∈ L0 or ε′1/ε1 ∈ Lµ. Accordingly, we may assume
ε1/ε′1 ∈ L0. There then exist a ∈ R and δ ∈ Lµ such that ε1/ε′1 = a + δ, or
equivalently:

ε1 = aε′1 + δε′1.

Inserting this into the decompositions we get

(aε′1 + δε′1)v1 + (aε′1 + δε′1)ε2v2 + (aε′1 + δε′1)ε2ε3v3

= ε′1v
′
1 + ε′1ε

′
2v
′
2 + ε′1ε

′
2ε
′
3v
′
3.

Dividing ε′1 out, above equation is of the form

av1 + u = v′1 + v,

with u and v infinitesimal vectors. By Proposition 1, we have that if v1 and v′1
are linearly independent, then av1 + u and v′1 + v are linearly independent, unless
a = 0. Thus we are forced to put v′1 = av1. Inserting this into the decomposition
of a and repeating the process we get the uniqueness property. �

The theorem entails a corollary [7] that we will be crucial to our later develope-
ments.
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Corollary 1. Any vector a ∈ L3
0 can be written on the form a = st(a) + a′, with

a′ ∈ µ(a) ∼= L3
µ decomposed as

a′ = ε1v1 + ε1ε2v2 + ε1ε2ε3v3,

with v1, v2, v3 ∈ R3. Furthermore, the vectors v1, v2, v3 may be chosen as an or-
thonormal basis of positive orientation, and in this case the decomposition of a′ is
unique up to an overall sign.

Proof. An expansion of the stated form exists by Theorem 1. Using the equivalence
property, a decomposition using vectors v1, v2, v3 is related to a decomposition using
vectors v′1, v

′
2, v

′
3 by some set of real scalars ci

j such that

vi =
i∑

j=1

ci
jv′j , j = 1, 2, 3.

Choose c1
1 = ±1/|v′1|. Then, choose c2

1 and c2
2 such that v2 = c2

1v′1 + c2
2v′2 and

v1 form an orthonormal basis with positive orientation. Finally, choose c3
1, c3

2, c3
3

such that v3 = v1 × v2. �

3. Main result

The theorem and its proof are adapted from a similar result obtained in [7] in
the context of nonstandard analysis.

Theorem 2. Let γ : D → R
3 be a regular curve. Take a point x on the Laugwitz

extension Lγ : LD → L3
0 of γ, with x 6= st(x) and a decomposition

x = st(x) + ε1v1 + ε1ε2v2 + ε1ε2ε3v3

in terms of an orthonormal basis v1, v2, v3 with positive orientation. Then, with an
appropriate choice of sign, v1, v2, v3 is the Frenet frame of γ at the point st(x).
Moreover, the curvature and torsion of γ are at st(x) subject to the relations:

κ = 2st(ε2/ε1), τ = 3st(ε3/ε1).

Proof. For notational convenience, and without any true loss of generality, we may
assume that γ(t) passes through the origin at time t = 0, and that the point x is
infinitesimal, i.e. x ∈ L3

µ. Suppose x = Lγ(δ), with δ ∈ Lµ. We then have

x = γ′(0)δ +
γ′′(0)

2
δ2 +

γ(3)(0)
6

δ3 + ...

Since δn is infinitesimal compared to δ, for n > 1, we divide by δ and get

x = δ
(
γ′(0) +

γ′′(0)
2

δ +
γ(3)(0)

6
δ2 + ...

)
,

in analogue with the construction in the proof of Theorem 1. It is immediate that
the vector v1 in the decomposition of x will be parallel to γ′(0). Scaling v1 to
unit length, as in Corollary 1, and choosing the sign appropriately, we get v1 =
γ′(0)/|γ′(0)|. Taking v1, v2, v3 orthonormal with positive orientation (Corollary 1)
then implies that v1, v2, v3 coincides with the Frenet frame.

Without loss of generality, assume γ is parametrized by arc length. Let e1, e2, e3

denote the Frenet frame of γ at the origin. The Frenet formulas [9] state that

γ′(0) = e1, γ′′(0) = κe2, γ(3)(0) = −κ2e1 + κ̇e2 + κτe3.
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Inserting this into Lγ(δ) yields(
δ − κ2δ3

6
+ ...

)
e1 +

(κδ2

2
+

κ̇δ3

6
+ ...

)
e2 +

(κτδ3

6
+ ...

)
e3.

We identify this with the monad decomposition of x = Lγ(δ) and get
ε2
ε1

=
κ/2 + κ̇δ/6 + ...

(1− κ2δ2/6 + ...)2
;

ε3
ε1

=
κτ/6 + ...

(1− κ2δ2/6 + ...)(κ/2 + κδ/6 + ...)
.

Knowing that each qoutient has to be finitely bounded, we may without to careful
an analysis conclude that st(ε2/ε1) = κ/2, and st(ε3/ε1) = τ/3. This proves the
theorem. �

3.1. Concluding remarks. Curvature and torsion of a curve are undefined in
singular points of a curve. However, the values st(ε2/ε1) and st(ε3/ε1) are defined
also in singular points on the curve, and hence, these numbers provide a generalized
notion of curvature and torsion.
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