$\textstyle \parbox{0.45\textwidth}{\begin{flushleft}\vspace{-\baselineskip}
{\L...
...tet}\\ \textbf{Matematiska Institutionen}\\
Thomas Erlandsson
\end{flushleft}}$




DIFFERENTIAL GEOMETRY MN1 FALL 2001


PROBLEMS


9.
Let $\,f:(a,b)\times (c,d)\to R^3\,$ be a surface in $
R^3\,$ with constant Gauss curvature $\,K<0,$ defined in asymptotic coordinates, and parametrized by arc length so that

\begin{displaymath}\,g_{11}(u)=g_{22}(u)=1.\end{displaymath}

Let $\,\omega(u_0^1,u_0^2)\,$ be the unique number $\,0<\omega(u_0^1,u_0^2)<\pi\,$ such that $\,\omega(u_0^1,u_0^2)\,$ is the angle between $\,f_{u^1}(u^1,u_0^2)\vert _{u^1=u_0^1}\,$ and $\,f_{u^2}(u_0^1,u^2)\vert _{u^2=u_0^2},$ i.e.

\begin{displaymath}\,g_{12}(u)=\cos
\omega(u).\end{displaymath}


a) Show that $\,\omega\,$ satisfies the differential equation

\begin{displaymath}\frac{\partial^2\omega}{\partial u^1 \partial u^2}=(-K)\sin\omega\end{displaymath}

Hint: Use Gauss' equation which in the coordinates of the problem is

\begin{displaymath}K = \frac{1}{2\sqrt{1-(g_{12})^2}}\left[
\frac{\partial}{\par...
...^2}}\left ( \frac{g_{12,1}}{\sqrt{1-(g_{12})^2}}\right)\right] \end{displaymath}

b) Show that every polygon $\,Q\,$ with four sides and which is bounded by parameter curves has the area

\begin{displaymath}\frac{1}{-K}\left(\sum_{i=1}^4\alpha_{i}-2\pi\right)\le\frac{2\pi}{-K},\end{displaymath}

where $\,\alpha_{i}\,$ are the inner angles in $\,Q.$


Hint: The area element is $\sqrt{g_{11}g_{22}-(g_{12})^2}=\sin\omega\, du^1 du^2.$


10.
(For VG only)

The Poincaré Upper Half Plane Model of $\,H^2$

The surface $\,H^2\,$ is in the Poincaré upper half plane model the set

\begin{displaymath}\,U=\{(u,v) \in R^2\vert\,v >0\}\,\end{displaymath}

with the Riemann metric

\begin{displaymath}\,ds^2= \frac{du^2+dv^2}{v^2}.\end{displaymath}

Using Gauss' equation we find immediately that this surface has constant Gauss curvature
$\,K=-1.$ The line element $\,ds^2\,$ in $\,H^2\,$ is equal to the euclidean line element $\,du^2+dv^2\,$ multiplied by a strictly positive function. Therefore an angle measured with respect to the Riemann metric coincides with the euclidean angle.

The geodesics in the upper half plane model of $\,H^2\,$ are the euclidean circles and straight lines which meet the boundary $\,v=0\,$ orthogonally. This can be shown in the following way:

In $\,H^2\,$ we get $\,g_{11}=1/v^2,\quad g_{12}=0,\quad
g_{22}=1/v^2$ and it follows that

\begin{displaymath}\,\Gamma^{1}_{11}=\Gamma^{1}_{22}=
\Gamma^{2}_{12}= 0,\quad\Gamma^{2}_{11}= -\Gamma^{2}_{22}=
-\Gamma^{1}_{21}=1/v.\end{displaymath}

The differential equations of the geodesics can therefore be written

\begin{displaymath}\ddot u-\frac{2\dot u \dot v }{v}=0,\quad \ddot v+\frac{{\dot u}^2 -{\dot v
}^2}{v}=0.\end{displaymath}

If $\,\dot u =0\,$ then $\,u=$ constant. In this case it is clear that the geodesic is a straight euclidean line orthogonal to $\,v=0.$

If $\,\dot u \ne 0\,$ we get from the first equation that $\ln(\dot u/v^2)\,=$ constant so $\,\dot u = cv^2\ne 0\,$ for some constant $\,c.$ In the same way we get from the second equation that $\,{\dot u}^2+{\dot v}^2=bv^2 >0\,$ for some constant $\,b.$ By combining these equations we get $\,(dv/du)^2={\dot v}^2/{\dot u}^2 =b/c^2v^2-1.$ Therefore $\,(u-a)^2+v^2=b/c^2\,$ for some constant $\,a.$ This is a circle with centre on $\,v=0$ and so meets $\,v=0\,$ orthogonally.

The isometries of $H^2$ are well-known maps in the upper half plane model. Let $\,SL(2, R)\,$ be the special linear group in dimension 2, i.e. the group of all real $\,(2\times 2)$-matrices with determinant $\,=1.$ $\,SL(2, R)\,$ acts on $\,H^2\,$ in the following way. Let $\,z=u+iv.$ The points $\,(u,v)\,$ in the upper half plane correspond to $\,z=u+iv,\,\,\,v>0.$ If

\begin{displaymath}g = \left(\begin{array}{rrrr} a&b\\ c&d\end{array}\right)\in SL(2, R),\end{displaymath}

let

\begin{displaymath}gz=\frac{az+b}{cz+d}.\end{displaymath}

Proposition

The group $\,SL(2, R)\,$ acts as a group of isometries on $\,H^2.$
Proof: Let $\,u+iv=z\,$ and

\begin{displaymath}\,\frac{az+b}{cz+d}=\tilde z.\end{displaymath}

If we write $\,dz\,d\bar z\,$ for $\,du^2+dv^2\,$ the line element of $\,H^2\,$ can be written

\begin{displaymath}ds^2(z)=\frac{-4dz\,d\bar z}{(z-\bar z)^2}, \qquad \bar z=u-iv.\end{displaymath}

As $\,d\tilde z=d((az+b)(cz+d))=dz/((cz+d)^2\,$ it follows that $\,ds^2(z)=ds^2(\tilde z),$ which means that $\,z\mapsto\tilde z\,$ is an isometry.



a)
Calculate the arc length of the geodesic $\,c(t)=(r\cos t, r\sin t),\,\,0 < t <
\pi\,$ starting from the top of the half circle , $\,t=\pi/2.$ $\qquad$ (Result: $\vert\ln \tan \frac{t}{2}\vert$)

Calculate also the arc length of the geodesic $\,u=u_0\,$ from $\,v=a\,$ till $\,v=b.$
(Result: $ (\vert\ln \frac{a}{b}\vert$)

b)
Calculate the geodesic curvature $\,k_{g}\,$ of the curve $\,v=1.$ $\quad$ (Result: $\,k_{g}=1$)

The Poincaré Disc Model

The surface $\,H^2\,$ in the Poincaré disc model is the set

\begin{displaymath}U=\{(u,v) \in R^2\vert u^2+ v^2 < 4\},\end{displaymath}

with the Riemann metric

\begin{displaymath}\,ds^2=\left(1-\frac{u^2 + v^2}{4}\right)^{-2} (du^2+dv^2).\end{displaymath}

Using Gauss' equation we find that the surface has constant Gauss curvature $\,K=-1.$ The geodesics in the disc model correspond to the circles orthogonal to the boundary of the disc and the diameters. This is most easily seen by showing that the map

\begin{displaymath}w=\frac{z+2i}{iz+2}\end{displaymath}

is an isometry of the disc model onto the half plane model.

d)
Calculate the arc length $\,r\,$ of the geodesic $\,c(t)=(t\cos \vartheta, t\sin \vartheta),\,\,0 \le t <
2\,$ beginning at origo.

$\quad$ (Result: $r=\ln\frac{2+t}{2-t}=2 \frac{1}{2}\ln\frac{1+t/2}{1-t/2}=
2\tanh^{-1}(t/2)$)

e)
Show that in geodesic polar coordinates

\begin{displaymath}ds^2 = dr^2+\sinh ^{2}(r)\, d\theta^2.\end{displaymath}

Hint: From the problem above follows that $\,t = 2\tanh (r/2).$
Use $\,u=t\cos\theta, v=t\sin\theta\,$ and the given metric.



Back to Differential Geometry MN1 Fall 2001