GEOMETRY D FALL 2004

COURSE LITERATURE

Robin Hartshorne, Geometry: Euclid and Beyond, Springer, Undergraduate Texts in Mathematics (2000)

The book is available at Studentbokhandeln.


LECTURES

Mon Sept 13 Thomas Erlandsson, Introduction

Wed Sept 15 Lars Lindberg, Axioms of Incidence and Fields (Hartshorne Sec 6 and 14)

Mon Sept 20 Rodolfo Rios Z., Axioms of Betweenness and Ordered Fields (Hartshorne Sec 7 and 15)

Thu Sept 23 Jonathan Mörndal, Congruence of Segments and Angles (Hartshorne Sec 8, 9 and 16)

Mon Sept 27 Djalal Mirmohades, The Hilbert plane (Hartshorne Sec 10)

Thu Sept 30 Djalal Mirmohades, Circles in the Hilbert plane (Hartshorne Sec 11)

Thu Oct 14 Daniel Luna, Non-Archimedean Geometry Part I (Hartshorne Sec 18)

Mon Oct 25 Daniel Luna, Non-Archimedean Geometry Part II (Hartshorne Sec 18)

Thu Oct 28 Erik Andersson, The Area Problem (Hartshorne sec 22-24)

Mon Nov 1 Jonathan Mörndal, Quadratura Circuli (Hartshorne sec 25)

Wed Nov 3 Rodolfo Rios Z., Euclid's Theory of Volume and Hilbert's Third Problem (Hartshorne sec 26-27)

Mon Nov 8 David Larsson, The Regular 17-Sided Polygon (Hartshorne sec 29)

Mon Nov 15 Anders Södergren, On Mascheroni's Theorem

Thu Nov 18 David Larsson, The Regular 17-Sided Polygon, Part II (Hartshorne sec 29, 32)

Mon Nov 22 Erik Andersson, Rigid Motions and SAS (Hartshorne sec 17)

Mon Nov 29 Lars Lindberg, Licentiatseminarium

Tue Dec 7 Anders Södergren, On 3-dimensional Hyperbolic Spaces

Mon Febr 7 Oskar Westerstrand, On the Poincaré Model, Part 1 (Hartshorne sec 39)

Mon Febr 14 Oskar Westerstrand, On the Poincaré Model, Part 2 (Hartshorne sec 39)

Mon Febr 21, 10-12 am, Room 3513 Lars Lindberg, Hilbert's Arithmetic of Ends (Hartshorne sec 41)


CONTENTS

Ch. 1 Euclid's Geometry
1. A First Look at Euclid's Elements
2. Ruler and Compass Constructions
3. Euclid's Axiomatic Method
4. Construction of the Regular Pentagon
5. Some Newer results
Ch. 2 Hilbert's Axioms
6. Axioms of Incidence
7. Axioms of Betweenness
8. Axioms of Congruence for Line Segments
9. Axioms of Congruence for Angles
10. Hilbert planes
11. Intersection of Lines and Circles
12. Euclidean planes
Ch. 3 Geometry over Fields
13.The Real Cartesian Plane
14.Abstract Fields and Incidence
15.Ordered Fields and Betweenness
16.Congruence of Segments and Angles
17.Rigid Motions and SAS
18.Non-Archimedean Geometry
Ch. 4 Segment Arithmetic
19.Addition and Multiplication of Line Segments
20.Similar Triangles
21.Introduction of Coordinates
Ch. 5 Area
22.Area in Euclid's Geometry
23.Measure of Area Functions
24.Dissection
25.Quadratura Circuli
26.Euclid's Theory of Volume
27.Hilbert's Third Problem
Ch. 6 Construction Problems and Field Extensions
28.Three Famous Problems
29.The Regular 17-sided Polygon
30.Construction with Compass and Marked Ruler
31.Qubic and Quartic Equations
32.Appendix: Finite Field Extensions
Ch. 7Non-Euclidean Geometry
33.History of the Parallel Postulate
34.Neutral Geometry
35.Archimedean Neutral Geometry
36.Non-Euclidean Area
37.Circular Inversion
38.Digression: Circles Determined by Three Conditions
39.The Poincaré Model
40.Hyperbolic Geometry
41.Hilbert's Arithmetic of Ends
42.Hyperbolic Trigonometry
43.Characterization of Hilbert Planes
Ch. 8 Polyhedra
44.The Five Regular Solids
45.Euler's and Cauchy's Theorems
46.Semiregular and Face-Regular Polyhedra
47.Symmetry Groups of Polyhedra


Tillbaka till hemsidanTillbaka till kurser


Senast ändrad: