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Motivation

This term paper is based on a set of three questions regarding the properties of
the three-sphere and its decomposition into two congruent torii. These questions
were presented in »Problem sheet B« in the course »Geometrisk topologi D« given

at the department of mathematics of Uppsala during the fall of 2002. The main
focus is placed on explicit calculations leading to topological results. The paper

may hence be regarded as an example of how explicit results can provide insight
in more abstract topological properties of fundamental topological spaces.

Abstract

The unit three-sphere can be decomposed into two congruent solid torii. The
intersection of these torii, when transformed by stereographic projection, is a

torus whose meridian and longitude lines may be interchanged by a rigid motion
in the three-sphere considered as a space of its own. Finally, it is proved that this
torus of intersection in the three sphere may be identified with a hyperboloid of

one sheet in the projective three space.



Problem sheet B, exercise 1

Prove that the unit 3-sphere of Euclidean 4-space R4, which has the equation 

  

† 

x1
2 + x2

2 + x3
2 + x4

2 = 1 (1)

can be decomposed into two solid tori (topological product of the closed disk and the 
circle):

  

† 

x1
2 + x2

2 £ x3
2 + x4

2   and   

† 

x1
2 + x2

2 ≥ x3
2 + x4

2 (2+3)

These solid tori are congruent,  i.e., they can be transformed to one another by a rigid 
Euclidean motion about the midpoint of the sphere. The common boundary surface, 
whose points satisfy equation (3) and also

  

† 

x1
2 + x2

2 = x3
2 + x4

2 (4)

can be transformed, by stereographic projection, to a torus of revolution. The 
stereographic projection defined by projecting from the north pole (0, 0, 0, 1) to the 
equatorial hyperplane x4 = 0. The hyperplane is taken to have Cartesian coordinates 
x1, x2, x3 and the torus of revolution has the x3-axis as its axis of rotation. One sees in this 
way that the 3-sphere (which is obtained by adding the image of the north pole to the 
equatorial hyperplane) may be decomposed into the union of the two solid tori. The 
”core” of the first solid is the unit circle in the (x1, x2)-plane, and the core the second 
solid torus is the x3-axis plus the point at infinity.
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Solution

Equation (2) and (3) yields:

  

† 

x1
2 + x2

2 = x3
2 + x4

2 =
1
2

  

† 

x1
2 =

1
2

- x1
2 ; x2

2 =
1
2

- x1
2 ; x3

2 =
1
2

- x1
2 ; x4

2 =
1
2

- x1
2  

  

† 

x1 =±
1
2

- x1
2 ; x2 =±

1
2

- x1
2 ; x3 =±

1
2

- x1
2 ; x4 =±

1
2

- x1
2 (5)

Consider the stereographic projection of the unit three-sphere, projecting from the 
point (x1,x2,x3,x4)=(0,0,0,1) down to the equatorial hyperplane x4=0. Let the space 
obtained by transforming all of the Euclidean four-space by this stereographic 
projection, have the Cartesian coordinates  (x1, x2, x3) defined by:

  

† 

x1 =
1

1- x4

x1 ; x2 =±
1

1-x4

x2 ; x3 =±
1

1-x4

x3 (6)

(For a general formula see Seifert, Threllfall page XXXX, english edition)

Consider the x1,x2 - plane (x3 = 0):

    

† 

x1 =
1

1- x4

k
1 2 3 

x1 = k ⋅x1 (7)

    

† 

x2 =±
1

1-x4

k
1 2 3 

x2 =±k ⋅ x2

(5 )
{ =± k ⋅

1
2

- x1
2 (8)

    

† 

x2
2 = ± k ⋅

1
2

- x1
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

= k2 ⋅(
1
2

- x1
2 )=

k2

2
- k ⋅ x1( )

(7)
1 2 3 

2
=

k
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

-x1
2

  

† 

x1
2 +x2

2 =
k
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

(9)

Equation (9) forms circles in the x1x2 -plane that depend on k, which in turn depend 
on x4. By simple inspection of (9), the maximum resp. minimum circle formed by (9) is 
simply the minimum resp. maximum of x4.

Find the boundary points of x4:

    

† 

x3 = 0 fi ±
1

1- x4

x3

(5 )
{ = 0

  

† 

±
1

1- x4

1
2

- x4
2 = 0

  

† 

x4 =±
1
2



Case 1: 
  

† 

x4 =
1
2

fi

  

† 

x1 =
1

1- x4

x1 =
1

1-
1
2

x1 =
2

2 -1
x1

  

† 

x1
2 =

2
2 -1

x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

(10)

    

† 

x2 =±
1

1- x4

x2

(5 )
{ =±

1
1- x4

1
2

- x1
2 =

1

1-
1
2

1
2

- x1
2 =±

2
2 -1

1
2

- x1
2

    

† 

x2
2 = ±

2
2 -1

1
2

- x1
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

=
2

2 -1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2
1
2

- x1
2Ê 

Ë 
Á 

ˆ 

¯ 
˜ =

1
2

2
2 -1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

-
2

2 -1
x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

(10 )
1 2 4 3 4 

  

† 

x1
2 +x2

2 =
1
2

2
2 -1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

  

† 

(radius)2 =
1
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2 2
2 -1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

  

† 

radius =
1
2

2
2 -1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ =

2
2- 2

=
1

2 -1

Case 2:  
  

† 

x4 =-
1
2

fi

  

† 

x1 =
1

1- x4

x1 =
1

1+
1
2

x1 =
2

2 +1
x1

  

† 

x1
2 =

2
2 +1

x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

(11)

    

† 

x2 =±
1

1- x4

x2

(5 )
{ =±

1
1- x4

1
2

- x1
2 =

1

1+
1
2

1
2

- x1
2 =±

2
2 +1

1
2

- x1
2

    

† 

x2
2 = ±

2
2+1

1
2

- x1
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

=
2

2+1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2
1
2

- x1
2Ê 

Ë 
Á 

ˆ 

¯ 
˜ =

1
2

2
2 +1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

-
2

2 +1
x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

(11)
1 2 4 3 4 

  

† 

x1
2 +x2

2 =
1
2

2
2 +1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

  

† 

(radius)2 =
1
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2 2
2 +1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

  

† 

radius =
1
2

2
2 +1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ =

2
2+ 2

=
1

2 +1
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1
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Now, consider the x1,x3 - plane in a similar fashion (x2 = 0):

    

† 

x2 = 0 fi ±
1

1- x4

x2

(5 )
{ = 0

±
1

1- x4

1
2

- x1
2 = 0

  

† 

x1 =±
1
2

Case 1:  
  

† 

x1 =
1
2

fi

  

† 

x1 =
1

1- x4

⋅
1
2

  

† 

2 ⋅x1 =
1

1-x4

(12)

  

† 

2 ⋅x1 ⋅(1- x4 )= 1

  

† 

1- x4 =
1

2⋅ x1

  

† 

x4 = 1-
1

2⋅ x1

  

† 

x4
2 = 1-

1
2 ⋅x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

= 1+
1

2⋅ x1
2 -

2
2⋅ x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

  

† 

2x4
2 = 2 1+

1
2⋅x1

2 -
2

2 ⋅x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ = 2+

1
x1

2 -
4

2 ⋅x1

= 2+
1
x1

2 -
2 2
x1

(13)

    

† 

x3 =±
1

1-x4

(12 )
1 2 3 

1
2

- x4
2

(5 )
1 2 4 3 4 

=± 2 ⋅x1 ⋅
1
2

- x4
2



    

† 

x3
2 = ± 2 ⋅x1 ⋅

1
2

- x4
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

= 2⋅x1
2 ⋅

1
2

- x4
2Ê 

Ë 
Á 

ˆ 

¯ 
˜ =x1

2 - 2x4
2

(13 )
{ ⋅x1

2 = x1
2 - 2+

1
x1

2 -
2 2
x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ⋅x1

2

  

† 

x3
2 = x1

2 - 2x1
2 +

x1
2

x1
2 -

2 2⋅ x1
2

x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

  

† 

x3
2 +x1

2 -2 2 ⋅x1 = 1

  

† 

x3
2 + x1 - 2( )

2
= 1 (14)

Case 2:  
  

† 

x1 = -
1
2

fi

  

† 

x1 =
1

1- x4

⋅-
1
2

  

† 

- 2⋅ x1 =
1

1- x4

(15)

  

† 

- 2⋅ x1 ⋅(1-x4 ) =1

  

† 

1- x4 =
1

- 2 ⋅x1

  

† 

x4 = 1+
1

2 ⋅ x1

  

† 

x4
2 = 1+

1
2 ⋅x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

= 1+
1

2⋅x1
2 +

2
2 ⋅x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

  

† 

2x4
2 = 2 1+

1
2⋅x1

2 +
2

2 ⋅x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ = 2+

1
x1

2 +
4

2⋅ x1

= 2+
1
x1

2 +
2 2
x1

(16)

    

† 

x3 =±
1

1-x4

(15 )
1 2 3 

1
2

- x4
2

(5 )
1 2 4 3 4 

=± 2 ⋅x1 ⋅
1
2

- x4
2

    

† 

x3
2 = ± 2 ⋅x1 ⋅

1
2

- x4
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

= 2⋅x1
2 ⋅

1
2

- x4
2Ê 

Ë 
Á 

ˆ 

¯ 
˜ =x1

2 - 2x4
2

(16 )
{ ⋅x1

2 = x1
2 - 2+

1
x1

2 +
2 2
x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ⋅x1

2

  

† 

x3
2 = x1

2 - 2x1
2 +

x1
2

x1
2 +

2 2 ⋅x1
2

x1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ =x1

2 - 2x1
2 -1-2 2 ⋅x1

  

† 

x3
2 +x1

2 + 2 2 ⋅x1 =-1

  

† 

x3
2 + x1 + 2( )

2
= 1 (17)



Equation (14) and (17) form circles with radius one and centers at opposite sides of the x3

See figure below.
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Problem sheet B, exercise 2

Consider the unit three-sphere S3 embedded in Euclidean four-space R3, described by 
the equation
 

  

† 

x1
2 + x2

2 + x3
2 + x4

2 = 1 (1)

and let it be decomposed into two congruent solid tori with common boundary

  

† 

x1
2 + x2

2 = x3
2 + x4

2 =
1
2

(2)

Consider the stereographic projection p projecting from the point (x1,x2,x3,x4)=(0,0,0,1) 
to the hyperplane x4=0. Let the space obtained by transforming all of the Euclidean four-
space by this stereographic projection, i.e. p(R4), have the Cartesian coordinates  
(x1, x2, x3) defined by:

 
  

† 

x i =
xi

1- x4

(i=1, 2, 3) (3)

Conversely:

  

† 

xi =
2xi

x1
2 +x2

2 +x3
2 +x4

2 (i=1, 2, 3) (4)

  

† 

x4 =
x1

2 +x2
2 +x3

2 -1
x1

2 +x2
2 +x3

2 +1
(5)

The boundary surface defined by (2) forms a torus of revolution around the x3-axis after 
stereographic projection. Show that this torus of revolution can be mapped 
topologically onto itself by a rigid motion in spherical three-space such that the 
meridian circles and the longitude circles are interchanged. 

Solution:

By equation (2):

 
  

† 

x2 =±
1
2

- x1
2 and x3 =±

1
2

- x4
2 (6)

This in combination with (3) yields

  

† 

x1 =
x1

1- x4   

† 

x2 =±

1
2

- x1
2

1-x4

   
  

† 

x3 =±

1
2

- x4
2

1-x4

(7)



The surface defined by (2) is a torus of revolution around the x3-axis,  it has the following 
equation:

  

† 

c1 - x1
2 +x2

2( )-x3
2 = c2 (8)

where c1 and c2 are constants.

A longitude line of the torus is defined to be a circle consisting of the set of points in the 
torus with x3 = constant. A meridian is a circle consisting of the set of points where either  
x1 or  x2 is constant (but not both since it is homeomorphic to S1). An example of a 
meridian and a longitude line are shown in figure 1.

A rigid motion in S3 is an isomorphic mapping from S3 to S1 x S1 can be embedded in R4 
in an obvious way and a rotation of the space R4 is an isomorphic mapping of  S3, and 
hence a rigid motion of that space. If a rotation of R4 is found that changes the meridians 
and the longitude lines of the torus, the problem is solved.

Longitude line

Merdian

         Figure 1, x3-axis indicated in center

Consider the properties of a longitude line of the torus of revolution in S3 as a set of 
points in  R4. If x3=constant, then 

  

† 

constan t = x3 =±

1
2

- x4
2

1- x4

¤ x4 = constan t fi x3 = constant (9)

by (6) and (7). Hence a meridian of the torus, expressed as coordinates in R4 is the set of 
points satisfying (2) where x3 and x4 are constant.

Now, consider the properties of a longitude line of the same torus embedded in R4.  
The longitude lines are distinguished by the property ;

  

† 

constan t =
x1

x2



Expressed as coordinates in R4 this is equivalent to

  

† 

constan t =
x1

x2

=

x1

(1- x4 )
x2

(1- x4 )

=
x1

x2

(8)

Reconsider the demands on a meridian circle: x4=constant and x3=constant. This implies 
that 

  

† 

constan t =
x3

x4

(10)

This means that interchanging x1 and x2 with x3 and x4 changes the meridians with the 
longitude lines. Above, it was noted that a rotation in R4 is an isomorphism from S3 to 
S3, and a rigid motion in S3. There are two obvious rotations in R4 that performs the 
desired interchange of coordinates, described by multiplication with the following 
matrices: 

  

† 

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

Ê 

Ë 

Á 
Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 
˜ 

and       

  

† 

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

Ê 

Ë 

Á 
Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 
˜ 

(11+12)

The rigid motions induced by multiplication in R4 of matrix (11) or (12) can certainly be 
transformed, using equations (4) and (5), into isomorphisms from S3 to S3, i.e. rigid 
motions in S3. This proves that there exist topological mappings from the torus of 
revolution onto itself such that the meridian circles and the longitude circles are 
interchanged. This solves the problem.



Problem sheet B, exercise 3

The projective three-space P3 may be constructed by identifying opposite points of the 
three-sphere S3. The three-sphere can be decomposed into two congruent solid torii 
whose surface of intersection forms a torus. Show that this torus of intersection is 
transformed into a hyperboloid of one sheet when S3 is transformed into P3 as indicated 
above. 

Solution:

Identify S3 with the set

  

† 

(x1,x2,x3,x 4 ) x1
2 + x2

2 + x3
2 + x4

2 = 1{ } Œ R4 (1)

Let this copy of S3 be decomposed into the two solid torii 

  

† 

x1
2 + x2

2 £ x3
2 + x4

2 and     

† 

x1
2 + x2

2 ≥ x3
2 + x4

2    (2+3)

The torus of intersection is the set 

  

† 

(x 1,x2,x3,x4 ): x1
2 + x2

2 = x3
2 + x4

2 =
1
2

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

Œ R 4 (4)

The identification of opposite points of S3 will be performed as follows; consider the 
three-sphere as a subset of R4 as above and identify the coordinates

  

† 

x1,x 2,x3,x4[ ] = lx1,lx2,lx 3,lx4[ ] l ≠ 0 (5)

That is, constructing P3 from R4 but still keeping the restrictions on the set of R4 that 
constitutes the space S3 and the torus of intersection (i.e. equations (1) and (4)). Note 
that the projective space P3 is described by homogeneous coordinates as in equation (5), 
together with an improper plane corresponding to one of the coordinates in R4 being 
zero. 

Without loss of generality, choose x4=0 to define the improper plane. This improper 
plane corresponds in some aspects to the point at infinity. The special case 
(x1, x2, x3, x4)=(0, 0, 0, 0) Œ R4 is not of any interest since it is not an element of S3, 
embedded in R4 as shown by equation (1).

The torus of intersection defined by equation (4) is transformed with the three-sphere 
into the set of points [x1: x2: x3: x4]Œ P3  satisfying the following (x4≠0): 

  

† 

x1
2 + x2

2 = x3
2 + x4

2{ }=
x1

2

x4
2 +

x2
2

x4
2 =

x3
2

x4
2 +

x4
2

x4
2

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

(x 4 ≠ 0) (6)

which is equivalent to 

  

† 

x1
2

x4
2 +

x2
2

x4
2 =

x3
2

x4
2 +1

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
x1

2

x4
2 +

x2
2

x4
2 -

x3
2

x4
2 +1

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

(x4 ≠ 0) (7)



Let  
  

† 

x =
x1

x4

, 
  

† 

y =
x2

x4

, 
  

† 

z =
x3

x4

.

Then equation (7) becomes  

  

† 

x2 + y2 - z2 = 1 (8)

which is the equation of a hyperboloid of one sheet. 

In the case when x4 is zero, the elements of S3satisfying equation (4) belong to the 
improper plane of P3 that closes the Euclidean space R4 to give the projective plane P3. 
This plane may well be regarded as a point at infinity were the hyperboloid of one sheet 
degenerates. For a more thorough investigation of this geometrical properties, consult 
the book of Seifert and Threllfall. 
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