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Outline

I Testing hypotheses in p dimensions
I Hypotheses about µ for the MVN

I Hotelling’s T 2

I Confidence regions
I T 2

I Bonferroni’s inequalities

I Large sample approximations
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Reminder: testing hypotheses

I Hypothesis: null and alternative

I Test statistic

I Quantiles

I Significance level α

I p-value

I Power of test

I t-test, z-test, . . .
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Testing hypotheses in p dimensions

I Several problems occur when we wish to test hypotheses for p
dimensional random variables.

I Dependencies between variables makes testing complicated
I Usually we want to test a hypothesis for the p variables’ joint

distribution as well as hypotheses for each of the p marginal
distributions

I The number of parameters in the hypotheses can be large
I A huge number of possible statistics exist
I Choice between many univariate tests and one multivariate test

I Example: the multivariate normal distribution has 1
2p(p + 3)

parameters.
I For p = 5, the MVN has 20 parameters
I For p = 10, the MVN has 65 parameters
I For p = 100, the MVN has 5150 parameters
I It is difficult to reliably estimate or test hypotheses about all of

these!
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Testing H0 : µ = µ0 – an example
Consider X = (X1,X2) belonging to a bivariate normal distribution
N2(µ,Σ). We wish to test H0 : µ = µ0 = (182, 182).
For simplicity, we assume that X1 and X2 are independent and that
both have a known variance σ2 = 100.

Given 25 observations x1, . . . , x25, with x̄1 = 185.72 and
x̄2 = 183.84 we could test the hypotheses

H
(1)
0 : µ1 = 182

H
(2)
0 : µ2 = 182

with two z-tests with significance level a.
The test statistics would be

z1 =
X̄1 − 182

10/
√

25
∼ N(0, 1) under H0

z2 =
X̄2 − 182

10/
√

25
∼ N(0, 1) under H0
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Testing H0 : µ = µ0 – an example
H0 is rejected if either H

(1)
0 or H

(2)
0 is rejected.

Then, since X1 and X2 are independent,

α(simultaneous) = PH0(H0 is rejected) =

PH0(H
(1)
0 is rejected) + PH0(H

(2)
0 is rejected)−

PH0(H
(1)
0 is rejected) · PH0(H

(2)
0 is rejected) =

P(|z1| > λa/2) + P(|z2| > λa/2)− P(|z1| > λa/2) · P(|z2| > λa/2) =

2a− a2.

Thus a = 1−
√

1− α would yield a simultaneous test with
significance level α.
We note that if X1 and X2 were not independent, calculating the
simultaneous significance level could be difficult.

Let α = 0.05. Then a = 1−
√

1− α ≈ 0.0253 and λa/2 ≈ 2.24.
With x̄1 = 185.72 and x̄2 = 183.84 we have that |z1| = 1.86 < 2.24
and |z2| = 0.92 < 2.24. Thus the null hypothesis is not rejected.
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Testing H0 : µ = µ0 – an example

On the other hand, if H0 is true, then

z3 =
1√
2

(z1 + z2) ∼ N(0, 1)

and we could use this to perform a single z-test of the hypothesis.
We have that z3 = 1.966. With α = 0.05, we get λα/2 = 1.960, so
|z3| > λα/2, which means that we would reject the null hypothesis!

Furthermore, if H0 is true, we also have that

z4 = z2
1 + z2

2 ∼ χ2
2.

We could use z4 to test the hypothesis; we get that
z4 = 4.306 < χ2

2(0.05), so the null hypothesis would not be
rejected.

Which test should we trust? Are there other, better, tests?
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Testing H0 : µ = µ0 – univariate case
Consider a univariate sample x1, . . . , xn from N(µ, σ2) where µ and
σ2 are unknown. Assume that we wish to test the hypothesis
H0 : µ = µ0 against H1 : µ 6= µ0.

In this setting, we would use the t-test. The use of the t-test is
motivated by the likelihood ratio concept.

The test statistic is

t =
X̄ − µ0
s/
√

n
∼ tn−1 under H0.

H0 is rejected at significance level α if |t| > tn−1(α/2).

This is equivalent to studying

t2 =
(X̄ − µ0)2

s2/n
= n(X̄ − µ0)(s2)−1(X̄ − µ0) ∼ F1,n−1.
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Testing H0 : µ = µ0 – T 2

It would therefore seem natural to study a multivariate
generalization of

t2 =
(X̄ − µ0)2

s2/n
= n(X̄ − µ0)(s2)−1(X̄ − µ0),

namely,
T 2 = n(X̄− µ0)′S−1(X̄− µ0).

This statistic is called Hotelling’s T 2 after Harold Hotelling, who
showed that, under H0,

n − p

(n − 1)p
· T 2 ∼ Fp,n−p.
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Testing H0 : µ = µ0 – T 2

The T 2 test therefore rejects H0 : µ = µ0 at level α if

T 2 >
(n − 1)p

n − p
Fp,n−p(α).

Similarly, the p-value of the test is obtained as

p = P(T 2 > x)

where x is the observed value of the statistic.
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Testing H0 : µ = µ0 – T 2

Some further remarks regarding Hotelling’s T 2:

I T 2 is invariant under transformations of the kind CX + d
where X is the data matrix, C is a non-singular matrix and d
is a vector.

I Hotelling’s T 2 is the likelihood ratio test (see J&W Sec 5.3)
and has some optimality properties.

I Under the alternative H1 : µ = µ1,

n − p

(n − 1)p
· T 2 ∼ F

(
p, n − p, (µ1 − µ0)′Σ−1(µ1 − µ0)

)
,

where F (n1, n2,A) is a noncentral F -distribution with degrees
of freedom n1 and n2 and noncentrality parameter A. The
power of the T 2-test against H1 can thus be easily obtained.
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Confidence regions

A (univariate) confidence interval for the parameter θ is an interval
that covers the true parameter value with probability 1− α (before
sampling).

A confidence region for the p-dimensional parameter θ is a region
in p-dimensional space that covers the true parameter value with
probability 1− α (before sampling).
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Confidence regions: µ in the univariate case

We return to the univariate setting where we have a sample
x1, . . . , xn from N(µ, σ2) with µ and σ2 unknown.
The null hypothesis H0 : µ = µ0 is not rejected at level α if∣∣ x̄ − µ0

s/
√

n

∣∣ ≤ tn−1(α/2)

or, equivalently, if

x̄ − tn−1(α/2) · s√
n
≤ µ0 ≤ x̄ + tn−1(α/2) · s√

n
.

Thus the confidence interval(
x̄ − tn−1(α/2) · s√

n
, x̄ + tn−1(α/2) · s√

n

)
contains all values of µ0 that would not be rejected by the t-test at
level α.
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Confidence regions: Confidence ellipses

Analogously, the region

n(X̄− µ)′S−1(X̄− µ) ≤ p(n − 1)

n − p
Fp,n−p(α)

contains the values of µ0 that would not be rejected by Hotelling’s
T 2 at level α.

We have that

P
(

n(X̄− µ)′S−1(X̄− µ) ≤ p(n − 1)

n − p
Fp,n−p(α)

)
= 1− α.

The region above is thus a confidence region for µ. It’s an ellipsoid
centered at x̄. The axes of the ellipsoid are given by the
eigenvectors of S.

See figure on blackboard!
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Confidence regions: Simultaneous intervals

Often, we do not only wish to obtain a confidence region in
p-space, but also confidence intervals for each µi .

More generally, we are interested in simultaneous confidence
intervals for various linear combinations a′µ of the means.

We would like these intervals to have a simultaneous confidence
level α, that is, we would like that

P(all p intervals cover the true parameter value) = 1− α.

The ordinary one-variable-at-a-time confidence intervals seem hard
to use here. For p independent variables

P(all p intervals cover the true parameter value) = (1− α)p

but for dependent variables this probability is difficult or impossible
to calculate!
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Confidence regions: Simultaneous intervals

Result 5.3. Let X1, . . . ,Xn be a random sample from N(µ,Σ),
where Σ is positive definite. Then

(
a′X̄−

√
p(n − 1)

(n − p)
Fp,n−p(α)

a′Sa

n
, a′X̄+

√
p(n − 1)

(n − p)
Fp,n−p(α)

a′Sa

n

)
contains a′µ with probability 1− α simultaneously for all a.

The part under the square root comes from the distribution of the
T 2 statistic.

Taking a′ = (1, 0, . . . , 0), a′ = (0, 1, 0, . . . , 0), . . .,
a′ = (0, 0, . . . , 0, 1) gives us simultaneous intervals for µ1, . . . , µn.
Taking a′ = (1,−1, 0 . . . , 0) gives us an interval for µ1 − µ2, and
so on.

Proof of Res 5.3: see blackboard!
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Confidence regions: One-at-a-time intervals

From the previous slide, the simultaneous confidence interval for µi
is (

x̄i ±

√
p(n − 1)

(n − p)
Fp,n−p(α)

√
sii
n

)
How does this compare to the ordinary one-at-a-time confidence
interval (

x̄i ± tn−1(α/2)

√
sii
n

)
?

To compare the intervals, we need only to compare√
p(n−1)
(n−p) Fp,n−p(α) and tn−1(α/2).
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Confidence regions: One-at-a-time intervals

Let a(p) =
√

p(n−1)
(n−p) Fp,n−p(0.05).

n tn−1(0.025) a(2) a(5) a(10)

10 2.262 3.167 6.742 –
20 2.093 2.739 4.287 7.522

100 1.984 2.498 3.470 4.617
∞ 1.960 2.448 3.327 4.277

Larger p give wider intervals for fixed n. Larger n give smaller
intervals for fixed p.

So what do the simultaneous intervals look like? See figure on
blackboard!
The intervals cover to wide an area!
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Confidence regions: Bonferroni intervals

Bonferroni’s inequalities is a set of inequalities for probabilities of
unions of events.
Let C1, . . . ,Cp be confidence intervals, with P(Ci covers the true
parameter value) = 1− αi .
The Bonferroni inequality for confidence intervals is:

P(all Ci cover the true parameter values) ≥ 1− (α1 + . . .+ αp)

Proof: see blackboard.

Typically, αi = α/p is choosen. Then P(all Ci cover the true
parameter value) ≥ 1− α and the Bonferroni simultaneous
confidence interval for µi is(

x̄i ± tn−1
( α

2p

)√sii
n

)
.
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Confidence regions: Bonferroni intervals

Let’s study the ratio

length of Bonferroni interval

length of T 2 interval
=

tn−1
(
α
2p

)
√

p(n−1)
(n−p) Fp,n−p(α)

n p = 2 p = 4 p = 10

15 0.88 0.69 0.29
25 0.90 0.75 0.48
50 0.91 0.78 0.58
∞ 0.91 0.81 0.66

In general, the T 2 intervals are wider.

See figure on blackboard!
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Bonferroni inequality for tests

Similarly, a Bonferroni inequality can be stated for tests.
We wish to perform m test with a simultaneous significance level
α. Let P1, . . . ,Pm be the p-values for the m tests.
Then

P
( m⋃

i=1

(Pi ≤ α/m)
)
≤ α.

That is, the probability of rejecting at least one hypothesis when
all hypotheses are true is no greater than α. Thus the
simultaneous significance level is at most α.

The Bonferroni inequlity for tests is useful when we wish to test
hypotheses about different variables simultaneously (for instance
when testing for marginal normality).

(An extension of this idea is studied in homework 2.)
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Large sample approximations

For large n, the methods we’ve discussed for normal data can often
be used even if the data is non-normal.

For multivariate distributions with finite Σ, the multivariate central
limit theorem can be used together with Cramérs lemma (also
known as Slutsky’s lemma) to show that

T 2 d−→ χ2
p

so that

P
(

T 2 ≤ χ2
p(α)

)
= P

(
n(X̄− µ)′S−1(X̄− µ) ≤ χ2

p(α)
)
≈ 1− α

when n is sufficiently large.
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Large sample approximations

Thus, the large sample T 2 test rejects H0 : µ = µ0 if

T 2 = n(X̄− µ0)′S−1(X̄− µ0) > χ2
p(α).

It also follows that, simultaneously for all a,

(
a′X̄±

√
χ2
p(α)

√
a′Sa

n

)
contains a′µ with probability approximately 1− α.
Finally, the Bonferroni simultaneous confidence intervals for the µi
are obtained using the univariate central limit theorem:(

x̄i ± λ
( α

2p

)√sii
n

)
.

where λ( α2p

)
are the quantiles from the standard normal

distribution.
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Summary

I Testing hypotheses in p dimensions
I Hypotheses about µ for the MVN

I Hotelling’s T 2

I Analogue to t-test

I Confidence regions
I T 2

I Bonferroni’s inequalities

I Large sample approximations
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