Lecture 7: Analysis of Factors and Canonical Correlations

Måns Thulin

Department of Mathematics, Uppsala University thulin@math.uu.se

Multivariate Methods • 6/5 2011

Outline

- Factor analysis
 - Basic idea: factor the covariance matrix
 - Methods for factoring
- Canonical correlation analysis
 - Basic idea: correlations between sets
 - Finding the canonical correlations

Assume that we have a data set with many variables and that it is reasonable to believe that all these, to some extent, depend on a few underlying but unobservable factors.

The purpose of *factor analysis* is to find dependencies on such factors and to use this to reduce the dimensionality of the data set. In particular, the covariance matrix is described by the factors.

Factor analysis: an early example

C. Spearman (1904), *General Intelligence, Objectively Determined and Measured*, The American Journal of Psychology.

Children's performance in mathematics (X_1) , French (X_2) and English (X_3) was measured. Correlation matrix:

$$\mathbf{R} = \left[egin{array}{cccc} 1 & 0.67 & 0.64 \ & 1 & 0.67 \ & & 1 \end{array}
ight]$$

Assume the following model:

$$X_1 = \lambda_1 f + \epsilon_1, \quad X_2 = \lambda_2 f + \epsilon_2, \quad X_3 = \lambda_3 f + \epsilon_3$$

where f is an underlying "common factor" ("general ability"), λ_1 , λ_2 , λ_3 are "factor loadings" and ϵ_1 , ϵ_2 , ϵ_3 are random disturbance terms.

Factor analysis: an early example

Model:

$$X_i = \lambda_i f + \epsilon_i, \quad i = 1, 2, 3$$

with the unobservable factor

f = "General ability"

The variation of ϵ_i consists of two parts:

- a part that represents the extent to which an individual's matchematics ability, say, differs from her general ability
- a "measurement error" due to the experimental setup, since examination is only an approximate measure of her ability in the subject

The relative sizes of $\lambda_i f$ and ϵ_i tell us to which extent variation between individuals can be described by the factor.

Factor analysis: linear model

In factor analysis, a linear model is assumed:

$$\mathbf{X} = \boldsymbol{\mu} + \mathbf{L}\mathbf{F} + \boldsymbol{\epsilon}$$

- $X (p \times 1) =$ observable random vector
- $L(p \times m) = matrix of factor loadings$
- $F(m \times 1) = common \ factors;$ unobserved values of factors which describe major features of members of the population
- ϵ (p \times 1) = errors/specific factors; measurement error and variation not accounted for by the common factors
- μ_i = mean of variable *i*
- $\epsilon_i = i$ th specific factor
- $F_j = j$ th common factor
- ℓ_{ij} = loading of the *i*th variable on the *j*th factor

The above model differs from ordinary linear models in that the independent variables LF are unobservable and random.

We assume that the unobservable random vectors ${\bf F}$ and ϵ satisfy the following conditions:

F and ϵ are independent.

•
$$\mathsf{E}(\epsilon) = \mathbf{0}$$
 and $\mathsf{Cov}(\epsilon) = \Psi$, where Ψ is a diagonal matrix.

•
$$E(F) = 0$$
 and $Cov(F) = I$.

Thus, the factors are assumed to be uncorrelated. This is called the *orthogonal factor model*.

Factor analysis: factoring Σ

Given the model $\mathbf{X} = \boldsymbol{\mu} + \mathbf{LF} + \boldsymbol{\epsilon}$, what is $\boldsymbol{\Sigma}$?

See blackboard!

We find that $Cov(X) = LL' + \Psi$ where

$$V(X_i) = \ell_{i1}^2 + \dots + \ell_{im}^2 + \psi_i \quad \text{and} \\ Cov(X_i, X_k) = \ell_{i1}\ell_{k1} + \dots + \ell_{im}\ell_{km}.$$

Furthermore, $Cov(\mathbf{X}, \mathbf{F}) = \mathbf{L}$, so that $Cov(X_i, F_j) = \ell_{ij}$.

If m = the number of factors is much smaller than p = the number of measured attributes, the covariance of **X** can be described by the pm elements of **LL'** and the p nonzero elements of Ψ , rather than the $(p^2 + p)/2$ elements of Σ .

Factor analysis: factoring Σ

The marginal variance σ_{ii} can also be partitioned into two parts:

The *i***th communality:** The proportion of the variance at the *i*th measurement X_i contributed by the factors F_1, F_2, \ldots, F_m .

The uniqueness or **specific variance:** The remaining proportion of the variance of the *i*th measurement, associated with ϵ_i .

From $\mathsf{Cov}(\mathbf{X}) = \mathbf{L}\mathbf{L}' + \mathbf{\Psi}$ we have that

$$\sigma_{ii} = \underbrace{\ell_{i1}^2 + \ell_{i2}^2 + \dots + \ell_{im}^2}_{Communality, h_i^2} + \underbrace{\psi_i}_{Specific \ variance}$$

SO

$$\sigma_{ii} = h_i^2 + \psi_i, \quad i = 1, 2, \dots, p.$$

Orthogonal transformations

Consider an orthogonal matrix \mathbf{T} .

See blackboard!

We find that factor loadings L are determined only up to an orthogonal matrix T. With $L^*=LT$ and $F^*=T^\prime F,$ the pairs

$$(L^*, F^*)$$
 and (L, F)

give equally valid decompositions.

The communalities given by the diagonal elements of $LL' = (L^*)(L^*)'$ are also unaffected by the choice of T.

Factor analysis: estimation

- The factor model is determined uniquely up to an orthogonal transformation of the factors. How then can L and Ψ be estimated? Is some L* = LT better than others?
- Idea: Find some L and Ψ and then consider various L^{*}.
- Methods for estimation:
 - Principal component method
 - Principal factor method
 - Maximum likelihood method

Factor analysis: principal component method

Let $(\lambda_i, \mathbf{e_i})$ be the eigenvalue-eigenvector pairs of $\boldsymbol{\Sigma}$, with $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p > 0$.

From the spectral theorem (and the principal components lecture) we know that

$$\begin{split} \boldsymbol{\Sigma} &= \lambda_1 \mathbf{e_1} \mathbf{e_1'} + \lambda_2 \mathbf{e_2} \mathbf{e_2'} + \ldots + \lambda_p \mathbf{e_p} \mathbf{e_p'}. \end{split}$$

Let $\mathbf{L} &= (\sqrt{\lambda_1} \mathbf{e_1}, \sqrt{\lambda_2} \mathbf{e_2}, \ldots, \sqrt{\lambda_p} \mathbf{e_p}). Then
$$\boldsymbol{\Sigma} &= \lambda_1 \mathbf{e_1} \mathbf{e_1'} + \ldots + \lambda_p \mathbf{e_p} \mathbf{e_p'} = \mathbf{L} \mathbf{L'} = \mathbf{L} \mathbf{L'} + \mathbf{0}. \end{split}$$$

Thus **L** is given by $\sqrt{\lambda_i}$ times the coefficients of the principal components, and $\Psi = \mathbf{0}$.

Factor analysis: principal component method

Now, if $\lambda_{m+1}, \lambda_{m+2}, \ldots, \lambda_p$ are small, then the first *m* principal components explain most of Σ .

Thus, with $\mathbf{L}_{\mathbf{m}} = (\sqrt{\lambda_1} \mathbf{e}_1, \dots, \sqrt{\lambda_m} \mathbf{e}_{\mathbf{m}})$,

$$\mathbf{\Sigma} pprox \mathbf{L}_{\mathbf{m}} \mathbf{L}_{\mathbf{m}}'$$
.

With specific factors, this becomes

$$\mathbf{\Sigma} pprox \mathbf{L_m} \mathbf{L_m}' + \mathbf{\Psi}$$

where $\Psi_i = \sigma_{ii} - \sum_{i=1}^m I_{ij}^2$.

As estimators for the factor loadings and specific variances, we take

$$\widetilde{\mathbf{L}} = \widetilde{\mathbf{L}}_m = \left(\sqrt{\widehat{\lambda}_1} \widehat{\mathbf{e}}_1, \dots, \sqrt{\widehat{\lambda}_m} \widehat{\mathbf{e}}_m\right)$$

where $(\hat{\lambda}_i, \hat{\mathbf{e}}_i)$ are the eigenvalue-eigenvector pairs of the sample covariance matrix **S**, and

$$\widetilde{\mathbf{\Psi}} = s_{ii} - \sum_{i=1}^m \widetilde{l}_{ij}^2.$$

Factor analysis: principal component method

In many cases, the correlation matrix \mathbf{R} (which is also the covariance matrix of the standardized data) is used instead of \mathbf{S} , to avoid problems related to measurements being in different scales.

Example: consumer-preference data - p. 491 in J&W.

See R code!

Is this a good example? Can factor analysis be applied to ordinal data?

Example: stock price data – p. 493 in J&W.

See R code!

Factor analysis: other estimation methods

Principal factor method:

- Modification of principal component approach.
- Uses initial estimates of the specific variances.
- Maximum likelihood method:
 - Assuming normal data, the maximum likelihood estimators of L and Ψ are derived.
 - In general the estimators must be calculated by numerical maximization of a function of matrices.

Factor analysis: factor rotation

Given an orthogonal matrix **T**, a different but equally valid possible estimator of the factor loadings is $\widetilde{L}^* = \widetilde{L}T$.

We would like to find a $\widetilde{\textbf{L}}^*$ that gives a nice and simple interpretation of the corresponding factors.

Ideally: a pattern of loadings such that each variable loads highly on a single factor and has small to moderate loadings on the remaining factors.

The varimax criterion:

Define $\tilde{\ell}_{ij}^* = \hat{\ell}_{ij}^* / \hat{h}_i$. This scaling gives variables with smaller communalities more influence.

Select the orthogonal transformation ${\boldsymbol{\mathsf{T}}}$ that makes

$$V = rac{1}{
ho} \sum_{i=1}^m \left[\sum_{i=1}^{
ho} \widetilde{\ell}_{ij}^{*4} - rac{1}{
ho} \left(\sum_{i=1}^{
ho} \widetilde{\ell}_{ij}^{*2}
ight)^2
ight]$$

as large as possible.

Factor analysis: factor rotation

Example: consumer-preference data – p. 508 in J&W.

See R code!

Example: stock price data – p. 510 in J&W.

See R code!

Factor analysis: limitations of orthogonal factor model

- The factor model is determined uniquely up to an orthogonal transformation of the factors.
- Linearity: the linear covariance approximation $\boldsymbol{\mathsf{LL}}' + \boldsymbol{\Psi}$ may not be appropriate.
- The factor model is most useful when m is small, but in many cases mp + p parameters are not adequate and Σ is not close to LL' + Ψ.

Factor analysis: further topics

Some further topics of interest are:

- Tests for the number of common factors.
- Factor scores.
- Oblique factor model
 - ▶ In which *Cov*(**F**) is not diagonal; the factors are correlated.

Canonical correlation analysis – CCA – is a means of assessing the relationship *between two sets* of variables.

The idea is to study the correlation between a linear combination of the variables in one set and a linear combination of the variables in another set.

Canonical correlations: the exams problem

In a classical CCA problem exams in five topics are considered. Exams are closed-book (C) or open-book (O):

> Mechanics (C), Vectors (C), Algebra (O), Analysis (O), Statistics (O).

Question: how highly correlated is a student's performance in closed-book exams with her performance in open-book exams?

Canonical correlations: basic idea

Given a data set $\boldsymbol{X},$ partition the collection of variables into two sets:

$$\mathbf{X}^{(1)}$$
 $(p \times 1)$ and $\mathbf{X}^{(2)}$ $(q \times 1)$.

(Assume $p \leq q$.)

For these random vectors:

$$\begin{aligned} & E(\mathbf{X}^{(1)}) = \mu^{(1)}, \quad \text{Cov}(\mathbf{X}^{(1)}) = \mathbf{\Sigma}_{11} \\ & E(\mathbf{X}^{(2)}) = \mu^{(2)}, \quad \text{Cov}(\mathbf{X}^{(2)}) = \mathbf{\Sigma}_{22} \end{aligned}$$

and

$$\mathsf{Cov}(\boldsymbol{\mathsf{X}}^{(1)},\boldsymbol{\mathsf{X}}^{(2)}) = \boldsymbol{\Sigma}_{12} = \boldsymbol{\Sigma}_{21}'.$$

Canonical correlations: basic idea

Introduce the linear combinations

$$U = \mathbf{a}' \mathbf{X}^{(1)}, \qquad V = \mathbf{b}' \mathbf{X}^{(2)}.$$

For these, $Var(U) = \mathbf{a}' \boldsymbol{\Sigma}_{11} \mathbf{a}$, $Var(V) = \mathbf{b}' \boldsymbol{\Sigma}_{22} \mathbf{b}$ and $Cov(U, V) = \mathbf{a}' \boldsymbol{\Sigma}_{12} \mathbf{b}$.

Goal: Seek a and b such that

$$\mathsf{Corr}(U,V) = rac{\mathbf{a}' \mathbf{\Sigma}_{12} \mathbf{b}}{\sqrt{\mathbf{a}' \mathbf{\Sigma}_{11} \mathbf{a}} \sqrt{\mathbf{b}' \mathbf{\Sigma}_{22} \mathbf{b}}}$$

is as large as possible.

Canonical correlations: some definitions

The **first pair of canonical variables** is the pair of linear combinations U_1 and V_1 having unit variances, which maximize the correlation

$$\mathsf{Corr}(U,V) = rac{\mathbf{a}' \mathbf{\Sigma}_{12} \mathbf{b}}{\sqrt{\mathbf{a}' \mathbf{\Sigma}_{11} \mathbf{a}} \sqrt{\mathbf{b}' \mathbf{\Sigma}_{22} \mathbf{b}}}$$

The second pair of canonical variables is the pair of linear combinations U_2 and V_2 having unit variances, which maximize the correlation among all choices that are uncorrelated with the first pair of canonical variables.

The *k*th pair of canonical variables is the pair of linear combinations U_k and V_k having unit variances, which maximize the correlation among all choices that are uncorrelated with the previous k - 1 canonical variable pairs.

The correlation between the kth pair of canonical variables is called the kth canonical correlation.

Canonical correlations: solution

Result 10.1. The *k*th pair of canonical variables is given by

$$U_k = \mathbf{e}'_k \mathbf{\Sigma}_{11}^{-1/2} \mathbf{X}^{(1)}$$
 and $V_k = \mathbf{f}'_k \mathbf{\Sigma}_{22}^{-1/2} \mathbf{X}^{(2)}$.

We have that

$$Var(U_k) = Var(V_k) = 1$$

and

$$Cov(U_k, V_k) = \rho_k^*$$

where $\rho_1^{*2} \geq \rho_2^{*2} \geq \ldots \geq \rho_p^{*2}$ and $(\rho_k^{*2}, \mathbf{e_k})$ and $(\rho_k^{*2}, \mathbf{f_k})$ are the eigenvalue-eigenvectors pairs of

$$\Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1/2} \Sigma_{21} \Sigma_{11}^{-1/2}$$
 and
 $\Sigma_{22}^{-1/2} \Sigma_{21} \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1/2}$, respectively.

Alternatively, the canonical variables coefficient vectors \mathbf{a} and \mathbf{b} and the corresponding correlations can be found by solving the eigenvalue equations

$$\begin{split} \boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21} \, \mathbf{a} &= \rho^{*2}\mathbf{a} \\ \boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12} \, \mathbf{b} &= \rho^{*2}\mathbf{b} \end{split}$$

This is often more practical to use when computing the coefficients and the correlations.

Example: Consider the two sons born first in *n* families. For these, consider the following measurements:

 X_1 : head length of first son; X_2 : head breadth of first son; X_3 : head length of second son; X_4 : head breadth of second son.

Observations:

$$\bar{\boldsymbol{x}} = \begin{bmatrix} 185.72\\151.12\\183.84\\149.24 \end{bmatrix}, \quad \boldsymbol{S} = \begin{bmatrix} 91.481 & 50.753 & 66.875 & 44.267\\52.186 & 49.259 & 33.651\\96.775 & 54.278\\43.222 \end{bmatrix}$$

See R code!

Correlation matrices:

$$\begin{split} \textbf{R}_{11} &= \left[\begin{array}{cc} 1 & 0.7346 \\ 0.7346 & 1 \end{array} \right], \quad \textbf{R}_{22} = \left[\begin{array}{cc} 1 & 0.8392 \\ 0.8392 & 1 \end{array} \right] \\ \textbf{R}_{12} &= \textbf{R}_{21}' = \left[\begin{array}{cc} 0.7107 & 0.7040 \\ 0.6931 & 0.7085 \end{array} \right] \end{split}$$

The eigenvalues of $\mathbf{R}_{11}^{-1}\mathbf{R}_{12}\mathbf{R}_{22}^{-1}\mathbf{R}_{21}$ are 0.6218 and 0.0029. Thus the canonical correlations are: $\sqrt{0.6218} = 0.7886$ and $\sqrt{0.0029} = 0.0539$ (or are they? Remember to check signs!).

From the eigenvectors we obtain the canonical correlation vectors :

$$\mathbf{a}_1 = \left[\begin{array}{c} 0.727\\ 0.687 \end{array} \right], \quad \mathbf{a}_2 = \left[\begin{array}{c} 0.704\\ -0.710 \end{array} \right]$$

and

$$\mathbf{b}_1 = \left[\begin{array}{c} 0.684\\ 0.730 \end{array} \right], \quad \mathbf{b}_2 = \left[\begin{array}{c} 0.709\\ -0.705 \end{array} \right]$$

Note: The canonical correlation $\hat{\rho}_1^* = -0.7886$ exceeds any of the individual correlations between a variable of the first set and a variable of the second set.

The first canonical correlation variables are

$$\begin{cases} U = 0.727x_1^{(1)} + 0.687x_2^{(1)} \\ V = 0.684x_1^{(2)} + 0.730x_2^{(2)} \end{cases}$$

with

$$Corr(U, V) = -0.7886.$$

Interpretation: The sum of length and breadth of head size of each brother. These variables are highly negatively correlated between brothers.

The second canonical correlation variables are

$$\left\{ \begin{array}{l} U = 0.704 x_1^{(1)} - 0.710 x_2^{(1)} \\ V = 0.709 x_1^{(2)} - 0.705 x_2^{(2)} \end{array} \right.$$

with

$$Corr(U, V) = 0.0539.$$

Interpretation: Seem to measure the difference between length and breadth. Head shape of first and second brothers appear to have little correlation.

Canonical correlations: poor summary of variability

Example: Consider the following covariance matrix (p = q = 2):

$$\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} = \begin{bmatrix} 100 & 0 & 0 & 0 \\ 0 & 1 & .95 & 0 \\ 0 & .95 & 1 & 0 \\ 0 & 0 & 0 & 100 \end{bmatrix}$$

It can be shown that the first pair of canonical variates is

$$U_1 = X_2^{(1)}, \quad V_1 = X_1^{(2)}$$

with correlation

$$\rho_1^* = \operatorname{Corr}(U_1, V_1) = 0.95.$$

However, $U_1 = X_2^{(1)}$ provides a very poor summary of the variability in the first set.

Most of the variability in the first set is in $X_1^{(1)}$, which is uncorrelated with U_1 . (The same situation is true for $V_1 = X_1^{(2)}$ in the second set.)

Canonical correlations: further topics

Some further topics of interest are:

- Tests for $\Sigma_{12} = \mathbf{0}$.
- Sample descriptive measures.
- Connection to MANOVA.

Summary

Factor analysis

- Basic idea: factor the covariance matrix
- Methods for factoring
 - Principal components
 - Maximum likelihood
- Canonical correlation analysis
 - Basic idea: correlations between sets
 - Finding the canonical correlations
 - Eigenvalues and eigenvectors