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Factor analysis

Assume that we have a data set with many variables and that it is
reasonable to believe that all these, to some extent, depend on a
few underlying but unobservable factors.

The purpose of factor analysis is to find dependencies on such
factors and to use this to reduce the dimensionality of the data set.
In particular, the covariance matrix is described by the factors.
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Factor analysis: an early example

C. Spearman (1904), General Intelligence, Objectively Determined and

Measured, The American Journal of Psychology.

Children’s performance in mathematics (X1), French (X2) and
English (X3) was measured. Correlation matrix:

R =

 1 0.67 0.64
1 0.67

1


Assume the following model:

X1 = λ1f + ε1, X2 = λ2f + ε2, X3 = λ3f + ε3

where f is an underlying ”common factor” (”general ability”),

λ1, λ2, λ3 are “factor loadings” and

ε1, ε2, ε3 are random disturbance terms.

4/33



Factor analysis: an early example

Model:
Xi = λi f + εi , i = 1, 2, 3

with the unobservable factor

f = “General ability”

The variation of εi consists of two parts:

I a part that represents the extent to which an individual’s
matehematics ability, say, differs from her general ability

I a ”measurement error” due to the experimental setup, since
examination is only an approximate measure of her ability in
the subject

The relative sizes of λi f and εi tell us to which extent variation
between individuals can be described by the factor.
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Factor analysis: linear model
In factor analysis, a linear model is assumed:

X = µ + LF + ε

X (p × 1) = observable random vector
L (p ×m) = matrix of factor loadings
F (m × 1) = common factors; unobserved values of factors which

describe major features of members of the population
ε (p × 1) = errors/specific factors; measurement error and variation

not accounted for by the common factors

µi = mean of variable i
εi = ith specific factor
Fj = jth common factor
`ij = loading of the ith variable on the jth factor

The above model differs from ordinary linear models in that the
independent variables LF are unobservable and random.
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Factor analysis: linear model

We assume that the unobservable random vectors F and ε satisfy
the following conditions:

I F and ε are independent.

I E(ε) = 0 and Cov(ε) = Ψ, where Ψ is a diagonal matrix.

I E(F) = 0 and Cov(F) = I.

Thus, the factors are assumed to be uncorrelated. This is called
the orthogonal factor model.
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Factor analysis: factoring Σ

Given the model X = µ + LF + ε, what is Σ?

See blackboard!

We find that Cov(X) = LL′ + Ψ where

V(Xi ) = `2i1 + · · ·+ `2im + ψi and

Cov(Xi ,Xk ) = `i1`k1 + · · ·+ `im`km.

Furthermore, Cov(X,F) = L, so that Cov(Xi ,Fj ) = `ij .

If m = the number of factors is much smaller than p =the number
of measured attributes, the covariance of X can be described by
the pm elements of LL′ and the p nonzero elements of Ψ, rather
than the (p2 + p)/2 elements of Σ.
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Factor analysis: factoring Σ

The marginal variance σii can also be partitioned into two parts:

The ith communality: The proportion of the variance at the ith
measurement Xi contributed by the factors F1,F2, . . . ,Fm.

The uniqueness or specific variance: The remaining proportion
of the variance of the ith measurement, associated with εi .

From Cov(X) = LL′ + Ψ we have that

σii = `2i1 + `2i2 + · · ·+ `2im︸ ︷︷ ︸
Communality ,h2

i

+ ψi︸︷︷︸
Specific variance

so
σii = h2

i + ψi , i = 1, 2, . . . , p.
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Orthogonal transformations

Consider an orthogonal matrix T.

See blackboard!

We find that factor loadings L are determined only up to an
orthogonal matrix T. With L∗ = LT and F∗ = T′F, the pairs

(L∗,F∗) and (L,F)

give equally valid decompositions.

The communalities given by the diagonal elements of
LL′ = (L∗)(L∗)′ are also unaffected by the choice of T.
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Factor analysis: estimation

I The factor model is determined uniquely up to an orthogonal
transformation of the factors. How then can L and Ψ be
estimated? Is some L∗ = LT better than others?

I Idea: Find some L and Ψ and then consider various L∗.

I Methods for estimation:
I Principal component method
I Principal factor method
I Maximum likelihood method
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Factor analysis: principal component method

Let (λi , ei) be the eigenvalue-eigenvector pairs of Σ, with
λ1 ≥ λ2 ≥ . . . ≥ λp > 0.

From the spectral theorem (and the principal components lecture)
we know that

Σ = λ1e1e′1 + λ2e2e′2 + . . .+ λpepe′p.

Let L = (
√
λ1e1,

√
λ2e2, . . . ,

√
λpep). Then

Σ = λ1e1e′1 + . . .+ λpepe′p = LL′ = LL′ + 0.

Thus L is given by
√
λi times the coefficients of the principal

components, and Ψ = 0.
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Factor analysis: principal component method
Now, if λm+1, λm+2, . . . , λp are small, then the first m principal
components explain most of Σ.
Thus, with Lm = (

√
λ1e1, . . . ,

√
λmem),

Σ ≈ LmLm
′.

With specific factors, this becomes

Σ ≈ LmLm
′ + Ψ

where Ψi = σii −
∑m

i=1 l2ij .

As estimators for the factor loadings and specific variances, we take

L̃ = L̃m =
(√

λ̂1ê1, . . . ,

√
λ̂mêm

)
where (λ̂i , êi) are the eigenvalue-eigenvector pairs of the sample
covariance matrix S, and

Ψ̃ = sii −
m∑

i=1

l̃2ij .
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Factor analysis: principal component method

In many cases, the correlation matrix R (which is also the
covariance matrix of the standardized data) is used instead of S, to
avoid problems related to measurements being in different scales.

Example: consumer-preference data – p. 491 in J&W.

See R code!

I Is this a good example? Can factor analysis be applied to
ordinal data?

Example: stock price data – p. 493 in J&W.

See R code!
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Factor analysis: other estimation methods

I Principal factor method:
I Modification of principal component approach.
I Uses initial estimates of the specific variances.

I Maximum likelihood method:
I Assuming normal data, the maximum likelihood estimators of

L and Ψ are derived.
I In general the estimators must be calculated by numerical

maximization of a function of matrices.
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Factor analysis: factor rotation
Given an orthogonal matrix T, a different but equally valid possible
estimator of the factor loadings is L̃

∗
= L̃T.

We would like to find a L̃
∗

that gives a nice and simple
interpretation of the corresponding factors.
Ideally: a pattern of loadings such that each variable loads highly
on a single factor and has small to moderate loadings on the
remaining factors.

The varimax criterion:

Define ˜̀∗ij = ˆ̀∗
ij/ĥi . This scaling gives variables with smaller

communalities more influence.

Select the orthogonal transformation T that makes

V =
1

p

m∑
i=1

 p∑
i=1

˜̀∗4
ij −

1

p

(
p∑

i=1

˜̀∗2
ij

)2


as large as possible.
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Factor analysis: factor rotation

Example: consumer-preference data – p. 508 in J&W.

See R code!

Example: stock price data – p. 510 in J&W.

See R code!
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Factor analysis: limitations of orthogonal factor model

I The factor model is determined uniquely up to an orthogonal
transformation of the factors.

I Linearity: the linear covariance approximation LL′ + Ψ may
not be appropriate.

I The factor model is most useful when m is small, but in many
cases mp + p parameters are not adequate and Σ is not close
to LL′ + Ψ.
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Factor analysis: further topics

Some further topics of interest are:

I Tests for the number of common factors.

I Factor scores.

I Oblique factor model
I In which Cov(F) is not diagonal; the factors are correlated.
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Canonical correlations

Canonical correlation analysis – CCA – is a means of assessing the
relationship between two sets of variables.

The idea is to study the correlation between a linear combination
of the variables in one set and a linear combination of the variables
in another set.
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Canonical correlations: the exams problem

In a classical CCA problem exams in five topics are considered.

Exams are closed-book (C) or open-book (O):

Mechanics (C), Vectors (C),
Algebra (O), Analysis (O), Statistics (O).

Question: how highly correlated is a student’s performance in
closed-book exams with her performance in open-book exams?
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Canonical correlations: basic idea

Given a data set X, partition the collection of variables into two
sets:

X(1) (p × 1) and X(2) (q × 1).

(Assume p ≤ q.)

For these random vectors:

E (X(1)) = µ(1), Cov(X(1)) = Σ11

E (X(2)) = µ(2), Cov(X(2)) = Σ22

and
Cov(X(1),X(2)) = Σ12 = Σ′21.
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Canonical correlations: basic idea

Introduce the linear combinations

U = a′X(1), V = b′X(2).

For these, Var(U) = a′Σ11a, Var(V ) = b′Σ22b and
Cov(U,V ) = a′Σ12b.

Goal: Seek a and b such that

Corr(U,V ) =
a′Σ12b√

a′Σ11a
√

b′Σ22b

is as large as possible.
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Canonical correlations: some definitions
The first pair of canonical variables is the pair of linear
combinations U1 and V1 having unit variances, which maximize the
correlation

Corr(U,V ) =
a′Σ12b√

a′Σ11a
√

b′Σ22b

The second pair of canonical variables is the pair of linear
combinations U2 and V2 having unit variances, which maximize the
correlation among all choices that are uncorrelated with the first
pair of canonical variables.

The kth pair of canonical variables is the pair of linear
combinations Uk and Vk having unit variances, which maximize
the correlation among all choices that are uncorrelated with the
previous k − 1 canonical variable pairs.

The correlation between the kth pair of canonical variables is
called the kth canonical correlation.
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Canonical correlations: solution

Result 10.1. The kth pair of canonical variables is given by

Uk = e′kΣ
−1/2
11 X(1) and Vk = f ′kΣ

−1/2
22 X(2).

We have that
Var(Uk ) = Var(Vk ) = 1

and
Cov(Uk ,Vk ) = ρ∗k ,

where ρ∗21 ≥ ρ∗22 ≥ . . . ≥ ρ∗2p and (ρ∗2k , ek) and (ρ∗2k , fk) are the
eigenvalue-eigenvectors pairs of

Σ
−1/2
11 Σ12Σ

−1/2
22 Σ21Σ

−1/2
11 and

Σ
−1/2
22 Σ21Σ

−1/2
11 Σ12Σ

−1/2
22 , respectively.
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Canonical correlations: solution

Alternatively, the canonical variables coefficient vectors a and b
and the corresponding correlations can be found by solving the
eigenvalue equations

Σ−111 Σ12Σ−122 Σ21 a = ρ∗2a

Σ−122 Σ21Σ−111 Σ12 b = ρ∗2b

This is often more practical to use when computing the coefficients
and the correlations.
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Canonical correlations: head-lengths of sons
Example: Consider the two sons born first in n families. For these,
consider the following measurements:
X1: head length of first son; X2: head breadth of first son; X3:
head length of second son; X4: head breadth of second son.

Observations:

x̄ =


185.72
151.12
183.84
149.24

 , S =


91.481 50.753 66.875 44.267

52.186 49.259 33.651
96.775 54.278

43.222


See R code!

Correlation matrices:

R11 =

[
1 0.7346

0.7346 1

]
, R22 =

[
1 0.8392

0.8392 1

]
R12 = R′21 =

[
0.7107 0.7040
0.6931 0.7085

]
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Canonical correlations: head-lengths of sons

The eigenvalues of R−111 R12R−122 R21 are 0.6218 and 0.0029.

Thus the canonical correlations are:
√

0.6218 = 0.7886 and√
0.0029 = 0.0539 (or are they? Remember to check signs!).

From the eigenvectors we obtain the canonical correlation vectors :

a1 =

[
0.727
0.687

]
, a2 =

[
0.704
−0.710

]
and

b1 =

[
0.684
0.730

]
, b2 =

[
0.709
−0.705

]

Note: The canonical correlation ρ̂∗1 = −0.7886 exceeds any of the
individual correlations between a variable of the first set and a
variable of the second set.
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Canonical correlations: head-lengths of sons

The first canonical correlation variables are{
U = 0.727x

(1)
1 + 0.687x

(1)
2

V = 0.684x
(2)
1 + 0.730x

(2)
2

with
Corr(U,V ) = −0.7886.

Interpretation: The sum of length and breadth of head size of
each brother. These variables are highly negatively correlated
between brothers.
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Canonical correlations: head-lengths of sons

The second canonical correlation variables are{
U = 0.704x

(1)
1 − 0.710x

(1)
2

V = 0.709x
(2)
1 − 0.705x

(2)
2

with
Corr(U,V ) = 0.0539.

Interpretation: Seem to measure the difference between length
and breadth. Head shape of first and second brothers appear to
have little correlation.
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Canonical correlations: poor summary of variability
Example: Consider the following covariance matrix (p = q = 2):

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
=


100 0 0 0

0 1 .95 0
0 .95 1 0
0 0 0 100


It can be shown that the first pair of canonical variates is

U1 = X
(1)
2 , V1 = X

(2)
1

with correlation

ρ∗1 = Corr(U1, V1) = 0.95.

However, U1 = X
(1)
2 provides a very poor summary of the

variability in the first set.

Most of the variability in the first set is in X
(1)
1 , which is

uncorrelated with U1. (The same situation is true for V1 = X
(2)
1 in

the second set.)
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Canonical correlations: further topics

Some further topics of interest are:

I Tests for Σ12 = 0.

I Sample descriptive measures.

I Connection to MANOVA.
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Summary

I Factor analysis
I Basic idea: factor the covariance matrix
I Methods for factoring

I Principal components
I Maximum likelihood

I Canonical correlation analysis
I Basic idea: correlations between sets
I Finding the canonical correlations

I Eigenvalues and eigenvectors
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