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Statistical Science 
2001, Vol. 16, No. 3, 199-231 

Statistical Modeling: The Two Cultures 
Leo Breiman 

Abstract. There are two cultures in the use of statistical modeling to 
reach conclusions from data. One assumes that the data are generated 
by a given stochastic data model. The other uses algorithmic models and 
treats the data mechanism as unknown. The statistical community has 
been committed to the almost exclusive use of data models. This commit- 
ment has led to irrelevant theory, questionable conclusions, and has kept 
statisticians from working on a large range of interesting current prob- 
lems. Algorithmic modeling, both in theory and practice, has developed 
rapidly in fields outside statistics. It can be used both on large complex 
data sets and as a more accurate and informative alternative to data 
modeling on smaller data sets. If our goal as a field is to use data to 
solve problems, then we need to move away from exclusive dependence 
on data models and adopt a more diverse set of tools. 

1. INTRODUCTION 

Statistics starts with data. Think of the data as 
being generated by a black box in which a vector of 
input variables x (independent variables) go in one 
side, and on the other side the response variables y 
come out. Inside the black box, nature functions to 
associate the predictor variables with the response 
variables, so the picture is like this: 

y * nature x 

There are two goals in analyzing the data: 

Prediction. To be able to predict what the responses 
are going to be to future input variables; 
Information. To extract some information about 
how nature is associating the response variables 
to the input variables. 

There are two different approaches toward these 
goals: 

The Data Modeling Culture 

The analysis in this culture starts with assuming 
a stochastic data model for the inside of the black 
box. For example, a common data model is that data 
are generated by independent draws from 

response variables = f(predictor variables, 
random noise, parameters) 

Leo Breiman is Professor, Department of Statistics, 
University of California, Berkeley, California 94720- 
4735 (e-mail: leo@stat.berkeley.edu). 

The values of the parameters are estimated from 
the data and the model then used for information 
and/or prediction. Thus the black box is filled in like 
this: 

Y-4 linear regression L X 
logistic regression X 

Cox model 

Model validation. Yes-no using goodness-of-fit 
tests and residual examination. 
Estimated culture population. 98% of all statisti- 
cians. 

The Algorithmic Modeling Culture 

The analysis in this culture considers the inside of 
the box complex and unknown. Their approach is to 
find a function f(x)-an algorithm that operates on 
x to predict the responses y. Their black box looks 
like this: 

y unknown .4 x 

decision trees 
neural nets 

Model validation. Measured by predictive accuracy. 
Estimated culture population. 2% of statisticians, 
many in other fields. 

In this paper I will argue that the focus in the 
statistical community on data models has: 

* Led to irrelevant theory and questionable sci- 
entific conclusions; 
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* Kept statisticians from using more suitable 
algorithmic models; 

* Prevented statisticians from working on excit- 
ing new problems; 

I will also review some of the interesting new 
developments in algorithmic modeling in machine 
learning and look at applications to three data sets. 

2. ROAD MAP 

It may be revealing to understand how I became a 
member of the small second culture. After a seven- 
year stint as an academic probabilist, I resigned and 
went into full-time free-lance consulting. After thir- 
teen years of consulting I joined the Berkeley Statis- 
tics Department in 1980 and have been there since. 
My experiences as a consultant formed my views 
about algorithmic modeling. Section 3 describes two 
of the projects I worked on. These are given to show 
how my views grew from such problems. 

When I returned to the university and began 
reading statistical journals, the research was dis- 
tant from what I had done as a consultant. All 
articles begin and end with data models. My obser- 
vations about published theoretical research in 
statistics are in Section 4. 

Data modeling has given the statistics field many 
successes in analyzing data and getting informa- 
tion about the mechanisms producing the data. But 
there is also misuse leading to questionable con- 
clusions about the underlying mechanism. This is 
reviewed in Section 5. Following that is a discussion 
(Section 6) of how the commitment to data modeling 
has prevented statisticians from entering new sci- 
entific and commercial fields where the data being 
gathered is not suitable for analysis by data models. 

In the past fifteen years, the growth in algorith- 
mic modeling applications and methodology has 
been rapid. It has occurred largely outside statis- 
tics in a new community-often called machine 
learning-that is mostly young computer scientists 
(Section 7). The advances, particularly over the last 
five years, have been startling. Three of the most 
important changes in perception to be learned from 
these advances are described in Sections 8, 9, and 
10, and are associated with the following names: 

Rashomon: the multiplicity of good models; 
Occam: the conflict between simplicity and 
accuracy; 
Bellman: dimensionality-curse or blessing? 

Section 11 is titled "Information from a Black 
Box" and is important in showing that an algo- 
rithmic model can produce more and more reliable 
information about the structure of the relationship 

between inputs and outputs than data models. This 
is illustrated using two medical data sets and a 
genetic data set. A glossary at the end of the paper 
explains terms that not all statisticians may be 
familiar with. 

3. PROJECTS IN CONSULTING 

As a consultant I designed and helped supervise 
surveys for the Environmental Protection Agency 
(EPA) and the state and federal court systems. Con- 
trolled experiments were designed for the EPA, and 
I analyzed traffic data for the U.S. Department of 
Transportation and the California Transportation 
Department. Most of all, I worked on a diverse set 
of prediction projects. Here are some examples: 

Predicting next-day ozone levels. 
Using mass spectra to identify halogen-containing 
compounds. 
Predicting the class of a ship from high altitude 
radar returns. 
Using sonar returns to predict the class of a sub- 
marine. 
Identity of hand-sent Morse Code. 
Toxicity of chemicals. 
On-line prediction of the cause of a freeway traffic 
breakdown. 
Speech recognition 
The sources of delay in criminal trials in state court 
systems. 

To understand the nature of these problems and 
the approaches taken to solve them, I give a fuller 
description of the first two on the list. 

3.1 The Ozone Project 

In the mid- to late 1960s ozone levels became a 
serious health problem in the Los Angeles Basin. 
Three different alert levels were established. At the 
highest, all government workers were directed not 
to drive to work, children were kept off playgrounds 
and outdoor exercise was discouraged. 

The major source of ozone at that time was auto- 
mobile tailpipe emissions. These rose into the low 
atmosphere and were trapped there by an inversion 
layer. A complex chemical reaction, aided by sun- 
light, cooked away and produced ozone two to three 
hours after the morning commute hours. The alert 
warnings were issued in the morning, but would be 
more effective if they could be issued 12 hours in 
advance. In the mid-1970s, the EPA funded a large 
effort to see if ozone levels could be accurately pre- 
dicted 12 hours in advance. 

Commuting patterns in the Los Angeles Basin 
are regular, with the total variation in any given 
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daylight hour varying only a few percent from 
one weekday to another. With the total amount of 
emissions about constant, the resulting ozone lev- 
els depend on the meteorology of the preceding 
days. A large data base was assembled consist- 
ing of lower and upper air measurements at U.S. 
weather stations as far away as Oregon and Ari- 
zona, together with hourly readings of surface 
temperature, humidity, and wind speed at the 
dozens of air pollution stations in the Basin and 
nearby areas. 

Altogether, there were daily and hourly readings 
of over 450 meteorological variables for a period of 
seven years, with corresponding hourly values of 
ozone and other pollutants in the Basin. Let x be 
the predictor vector of meteorological variables on 
the nth day. There are more than 450 variables in 
x since information several days back is included. 
Let y be the ozone level on the (n + 1)st day. Then 
the problem was to construct a function f (x) such 
that for any future day and future predictor vari- 
ables x for that day, f (x) is an accurate predictor of 
the next day's ozone level y. 

To estimate predictive accuracy, the first five 
years of data were used as the training set. The 
last two years were set aside as a test set. The 
algorithmic modeling methods available in the pre- 
1980s decades seem primitive now. In this project 
large linear regressions were run, followed by vari- 
able selection. Quadratic terms in, and interactions 
among, the retained variables were added and vari- 
able selection used again to prune the equations. In 
the end, the project was a failure-the false alarm 
rate of the final predictor was too high. I have 
regrets that this project can't be revisited with the 
tools available today. 

3.2 The Chlorine Project 

The EPA samples thousands of compounds a year 
and tries to determine their potential toxicity. In 
the mid-1970s, the standard procedure was to mea- 
sure the mass spectra of the compound and to try 
to determine its chemical structure from its mass 
spectra. 

Measuring the mass spectra is fast and cheap. But 
the determination of chemical structure from the 
mass spectra requires a painstaking examination 
by a trained chemist. The cost and availability of 
enough chemists to analyze all of the mass spectra 
produced daunted the EPA. Many toxic compounds 
contain halogens. So the EPA funded a project to 
determine if the presence of chlorine in a compound 
could be reliably predicted from its mass spectra. 

Mass spectra are produced by bombarding the 
compound with ions in the presence of a magnetic 

field. The molecules of the compound split and the 
lighter fragments are bent more by the magnetic 
field than the heavier. Then the fragments hit an 
absorbing strip, with the position of the fragment on 
the strip determined by the molecular weight of the 
fragment. The intensity of the exposure at that posi- 
tion measures the frequency of the fragment. The 
resultant mass spectra has numbers reflecting fre- 
quencies of fragments from molecular weight 1 up to 
the molecular weight of the original compound. The 
peaks correspond to frequent fragments and there 
are many zeroes. The available data base consisted 
of the known chemical structure and mass spectra 
of 30,000 compounds. 

The mass spectrum predictor vector x is of vari- 
able dimensionality. Molecular weight in the data 
base varied from 30 to over 10,000. The variable to 
be predicted is 

y = 1: contains chlorine, 

y = 2: does not contain chlorine. 

The problem is to construct a function f(x) that 
is an accurate predictor of y where x is the mass 
spectrum of the compound. 

To measure predictive accuracy the data set was 
randomly divided into a 25,000 member training 
set and a 5,000 member test set. Linear discrim- 
inant analysis was tried, then quadratic discrimi- 
nant analysis. These were difficult to adapt to the 
variable dimensionality. By this time I was thinking 
about decision trees. The hallmarks of chlorine in 
mass spectra were researched. This domain knowl- 
edge was incorporated into the decision tree algo- 
rithm by the design of the set of 1,500 yes-no ques- 
tions that could be applied to a mass spectra of any 
dimensionality. The result was a decision tree that 
gave 95% accuracy on both chlorines and nonchlo- 
rines (see Breiman, Friedman, Olshen and Stone, 
1984). 

3.3 Perceptions on Statistical Analysis 

As I left consulting to go back to the university, 
these were the perceptions I had about working with 
data to find answers to problems: 

(a) Focus on finding a good solution-that's what 
consultants get paid for. 

(b) Live with the data before you plunge into 
modeling. 

(c) Search for a model that gives a good solution, 
either algorithmic or data. 

(d) Predictive accuracy on test sets is the crite- 
rion for how good the model is. 

(e) Computers are an indispensable partner. 
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4. RETURN TO THE UNIVERSITY 

I had one tip about what research in the uni- 
versity was like. A friend of mine, a prominent 
statistician from the Berkeley Statistics Depart- 
ment, visited me in Los Angeles in the late 1970s. 
After I described the decision tree method to him, 
his first question was, "What's the model for the 
data?" 

4.1 Statistical Research 

Upon my return, I started reading the Annals of 
Statistics, the flagship journal of theoretical statis- 
tics, and was bemused. Every article started with 

Assume that the data are generated by the follow- 
ing model: ... 

followed by mathematics exploring inference, hypo- 
thesis testing and asymptotics. There is a wide 
spectrum of opinion regarding the usefulness of the 
theory published in the Annals of Statistics to the 
field of statistics as a science that deals with data. I 
am at the very low end of the spectrum. Still, there 
have been some gems that have combined nice 
theory and significant applications. An example is 
wavelet theory. Even in applications, data models 
are universal. For instance, in the Journal of the 
American Statistical Association (JASA), virtually 
every article contains a statement of the form: 

Assume that the data are generated by the follow- 
ing model: ... 

I am deeply troubled by the current and past use 
of data models in applications, where quantitative 
conclusions are drawn and perhaps policy decisions 
made. 

5. THE USE OF DATA MODELS 

Statisticians in applied research consider data 
modeling as the template for statistical analysis: 
Faced with an applied problem, think of a data 
model. This enterprise has at its heart the belief 
that a statistician, by imagination and by looking 
at the data, can invent a reasonably good para- 
metric class of models for a complex mechanism 
devised by nature. Then parameters are estimated 
and conclusions are drawn. But when a model is fit 
to data to draw quantitative conclusions: 

* The conclusions are about the model's mecha- 
nism, and not about nature's mechanism. 

It follows that: 

* If the model is a poor emulation of nature, the 
conclusions may be wrong. 

These truisms have often been ignored in the enthu- 
siasm for fitting data models. A few decades ago, 
the commitment to data models was such that even 
simple precautions such as residual analysis or 
goodness-of-fit tests were not used. The belief in the 
infallibility of data models was almost religious. It 
is a strange phenomenon-once a model is made, 
then it becomes truth and the conclusions from it 
are infallible. 

5.1 An Example 

I illustrate with a famous (also infamous) exam- 
ple: assume the data is generated by independent 
draws from the model 

M 

(R) Y = bo + bmXm + 8, 
1 

where the coefficients {bm} are to be estimated, 8 
is N(O, a-2) and a-2 is to be estimated. Given that 
the data is generated this way, elegant tests of 
hypotheses, confidence intervals, distributions of 
the residual sum-of-squares and asymptotics can be 
derived. This made the model attractive in terms 
of the mathematics involved. This theory was used 
both by academic statisticians and others to derive 
significance levels for coefficients on the basis of 
model (R), with little consideration as to whether 
the data on hand could have been generated by a 
linear model. Hundreds, perhaps thousands of arti- 
cles were published claiming proof of something or 
other because the coefficient was significant at the 
5% level. 

Goodness-of-fit was demonstrated mostly by giv- 
ing the value of the multiple correlation coefficient 
R2 which was often closer to zero than one and 
which could be over inflated by the use of too many 
parameters. Besides computing R2, nothing else 
was done to see if the observational data could have 
been generated by model (R). For instance, a study 
was done several decades ago by a well-known 
member of a university statistics department to 
assess whether there was gender discrimination in 
the salaries of the faculty. All personnel files were 
examined and a data base set up which consisted of 
salary as the response variable and 25 other vari- 
ables which characterized academic performance; 
that is, papers published, quality of journals pub- 
lished in, teaching record, evaluations, etc. Gender 
appears as a binary predictor variable. 

A linear regression was carried out on the data 
and the gender coefficient was significant at the 
5% level. That this was strong evidence of sex dis- 
crimination was accepted as gospel. The design 
of the study raises issues that enter before the 
consideration of a model-Can the data gathered 
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answer the question posed? Is inference justified 
when your sample is the entire population? Should 
a data model be used? The deficiencies in analysis 
occurred because the focus was on the model and 
not on the problem. 

The linear regression model led to many erro- 
neous conclusions that appeared in journal articles 
waving the 5% significance level without knowing 
whether the model fit the data. Nowadays, I think 
most statisticians will agree that this is a suspect 
way to arrive at conclusions. At the time, there were 
few objections from the statistical profession about 
the fairy-tale aspect of the procedure, But, hidden in 
an elementary textbook, Mosteller and Tukey (1977) 
discuss many of the fallacies possible in regression 
and write "The whole area of guided regression is 
fraught with intellectual, statistical, computational, 
and subject matter difficulties." 

Even currently, there are only rare published cri- 
tiques of the uncritical use of data models. One of 
the few is David Freedman, who examines the use 
of regression models (1994); the use of path models 
(1987) and data modeling (1991, 1995). The analysis 
in these papers is incisive. 

5.2 Problems in Current Data Modeling 

Current applied practice is to check the data 
model fit using goodness-of-fit tests and residual 
analysis. At one point, some years ago, I set up a 
simulated regression problem in seven dimensions 
with a controlled amount of nonlinearity. Standard 
tests of goodness-of-fit did not reject linearity until 
the nonlinearity was extreme. Recent theory sup- 
ports this conclusion. Work by Bickel, Ritov and 
Stoker (2001) shows that goodness-of-fit tests have 
very little power unless the direction of the alter- 
native is precisely specified. The implication is that 
omnibus goodness-of-fit tests, which test in many 
directions simultaneously, have little power, and 
will not reject until the lack of fit is extreme. 

Furthermore, if the model is tinkered with on the 
basis of the data, that is, if variables are deleted 
or nonlinear combinations of the variables added, 
then goodness-of-fit tests are not applicable. Resid- 
ual analysis is similarly unreliable. In a discussion 
after a presentation of residual analysis in a sem- 
inar at Berkeley in 1993, William Cleveland, one 
of the fathers of residual analysis, admitted that it 
could not uncover lack of fit in more than four to five 
dimensions. The papers I have read on using resid- 
ual analysis to check lack of fit are confined to data 
sets with two or three variables. 

With higher dimensions, the interactions between 
the variables can produce passable residual plots for 

a variety of models. A residual plot is a goodness-of- 
fit test, and lacks power in more than a few dimen- 
sions. An acceptable residual plot does not imply 
that the model is a good fit to the data. 

There are a variety of ways of analyzing residuals. 
For instance, Landwher, Preibon and Shoemaker 
(1984, with discussion) gives a detailed analysis of 
fitting a logistic model to a three-variable data set 
using various residual plots. But each of the four 
discussants present other methods for the analysis. 
One is left with an unsettled sense about the arbi- 
trariness of residual analysis. 

Misleading conclusions may follow from data 
models that pass goodness-of-fit tests and residual 
checks. But published applications to data often 
show little care in checking model fit using these 
methods or any other. For instance, many of the 
current application articles in JASA that fit data 
models have very little discussion of how well their 
model fits the data. The question of how well the 
model fits the data is of secondary importance com- 
pared to the construction of an ingenious stochastic 
model. 

5.3 The Multiplicity of Data Models 

One goal of statistics is to extract information 
from the data about the underlying mechanism pro- 
ducing the data. The greatest plus of data modeling 
is that it produces a simple and understandable pic- 
ture of the relationship between the input variables 
and responses. For instance, logistic regression in 
classification is frequently used because it produces 
a linear combination of the variables with weights 
that give an indication of the variable importance. 
The end result is a simple picture of how the pre- 
diction variables affect the response variable plus 
confidence intervals for the weights. Suppose two 
statisticians, each one with a different approach 
to data modeling, fit a model to the same data 
set. Assume also that each one applies standard 
goodness-of-fit tests, looks at residuals, etc., and 
is convinced that their model fits the data. Yet 
the two models give different pictures of nature's 
mechanism and lead to different conclusions. 

McCullah and Nelder (1989) write "Data will 
often point with almost equal emphasis on sev- 
eral possible models, and it is important that the 
statistician recognize and accept this." Well said, 
but different models, all of them equally good, may 
give different pictures of the relation between the 
predictor and response variables. The question of 
which one most accurately reflects the data is dif- 
ficult to resolve. One reason for this multiplicity 
is that goodness-of-fit tests and other methods for 
checking fit give a yes-no answer. With the lack of 
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power of these tests with data having more than a 
small number of dimensions, there will be a large 
number of models whose fit is acceptable. There is 
no way, among the yes-no methods for gauging fit, 
of determining which is the better model. A few 
statisticians know this. Mountain and Hsiao (1989) 
write, "It is difficult to formulate a comprehensive 
model capable of encompassing all rival models. 
Furthermore, with the use of finite samples, there 
are dubious implications with regard to the validity 
and power of various encompassing tests that rely 
on asymptotic theory." 

Data models in current use may have more dam- 
aging results than the publications in the social sci- 
ences based on a linear regression analysis. Just as 
the 5% level of significance became a de facto stan- 
dard for publication, the Cox model for the analysis 
of survival times and logistic regression for survive- 
nonsurvive data have become the de facto standard 
for publication in medical journals. That different 
survival models, equally well fitting, could give dif- 
ferent conclusions is not an issue. 

5.4 Predictive Accuracy 

The most obvious way to see how well the model 
box emulates nature's box is this: put a case x down 
nature's box getting an output y. Similarly, put the 
same case x down the model box getting an out- 
put y'. The closeness of y and y' is a measure of 
how good the emulation is. For a data model, this 
translates as: fit the parameters in your model by 
using the data, then, using the model, predict the 
data and see how good the prediction is. 

Prediction is rarely perfect. There are usu- 
ally many unmeasured variables whose effect is 
referred to as "noise." But the extent to which the 
model box emulates nature's box is a measure of 
how well our model can reproduce the natural 
phenomenon producing the data. 

McCullagh and Nelder (1989) in their book on 
generalized linear models also think the answer is 
obvious. They write, "At first sight it might seem 
as though a good model is one that fits the data 
very well; that is, one that makes ,u (the model pre- 
dicted value) very close to y (the response value)." 
Then they go on to note that the extent of the agree- 
ment is biased by the number of parameters used 
in the model and so is not a satisfactory measure. 
They are, of course, right. If the model has too many 
parameters, then it may overfit the data and give a 
biased estimate of accuracy. But there are ways to 
remove the bias. To get a more unbiased estimate 
of predictive accuracy, cross-validation can be used, 
as advocated in an important early work by Stone 
(1974). If the data set is larger, put aside a test set. 

Mosteller and Tukey (1977) were early advocates 
of cross-validation. They write, "Cross-validation is 
a natural route to the indication of the quality of any 
data-derived quantity.... We plan to cross-validate 
carefully wherever we can." 

Judging by the infrequency of estimates of pre- 
dictive accuracy in JASA, this measure of model 
fit that seems natural to me (and to Mosteller and 
Tukey) is not natural to others. More publication of 
predictive accuracy estimates would establish stan- 
dards for comparison of models, a practice that is 
common in machine learning. 

6. THE LIMITATIONS OF DATA MODELS 

With the insistence on data models, multivariate 
analysis tools in statistics are frozen at discriminant 
analysis and logistic regression in classification and 
multiple linear regression in regression. Nobody 
really believes that multivariate data is multivari- 
ate normal, but that data model occupies a large 
number of pages in every graduate textbook on 
multivariate statistical analysis. 

With data gathered from uncontrolled observa- 
tions on complex systems involving unknown physi- 
cal, chemical, or biological mechanisms, the a priori 
assumption that nature would generate the data 
through a parametric model selected by the statis- 
tician can result in questionable conclusions that 
cannot be substantiated by appeal to goodness-of-fit 
tests and residual analysis. Usually, simple para- 
metric models imposed on data generated by com- 
plex systems, for example, medical data, financial 
data, result in a loss of accuracy and information as 
compared to algorithmic models (see Section 11). 

There is an old saying "If all a man has is a 
hammer, then every problem looks like a nail." The 
trouble for statisticians is that recently some of the 
problems have stopped looking like nails. I conjec- 
ture that the result of hitting this wall is that more 
complicated data models are appearing in current 
published applications. Bayesian methods combined 
with Markov Chain Monte Carlo are cropping up all 
over. This may signify that as data becomes more 
complex, the data models become more cumbersome 
and are losing the advantage of presenting a simple 
and clear picture of nature's mechanism. 

Approaching problems by looking for a data model 
imposes an a priori straight jacket that restricts the 
ability of statisticians to deal with a wide range of 
statistical problems. The best available solution to 
a data problem might be a data model; then again 
it might be an algorithmic model. The data and the 
problem guide the solution. To solve a wider range 
of data problems, a larger set of tools is needed. 
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Perhaps the damaging consequence of the insis- 
tence on data models is that statisticians have ruled 
themselves out of some of the most interesting and 
challenging statistical problems that have arisen 
out of the rapidly increasing ability of computers 
to store and manipulate data. These problems are 
increasingly present in many fields, both scientific 
and commercial, and solutions are being found by 
nonstatisticians. 

7. ALGORITHMIC MODELING 

Under other names, algorithmic modeling has 
been used by industrial statisticians for decades. 
See, for instance, the delightful book "Fitting Equa- 
tions to Data" (Daniel and Wood, 1971). It has been 
used by psychometricians and social scientists. 
Reading a preprint of Gifi's book (1990) many years 
ago uncovered a kindred spirit. It has made small 
inroads into the analysis of medical data starting 
with Richard Olshen's work in the early 1980s. For 
further work, see Zhang and Singer (1999). Jerome 
Friedman and Grace Wahba have done pioneering 
work on the development of algorithmic methods. 
But the list of statisticians in the algorithmic mod- 
eling business is short, and applications to data are 
seldom seen in the journals. The development of 
algorithmic methods was taken up by a community 
outside statistics. 

7.1 A New Research Community 

In the mid-1980s two powerful new algorithms 
for fitting data became available: neural nets and 
decision trees. A new research community using 
these tools sprang up. Their goal was predictive 
accuracy. The community consisted of young com- 
puter scientists, physicists and engineers plus a few 
aging statisticians. They began using the new tools 
in working on complex prediction problems where it 
was obvious that data models were not applicable: 
speech recognition, image recognition, nonlinear 
time series prediction, handwriting recognition, 
prediction in financial markets. 

Their interests range over many fields that were 
once considered happy hunting grounds for statisti- 
cians and have turned out thousands of interesting 
research papers related to applications and method- 
ology. A large majority of the papers analyze real 
data. The criterion for any model is what is the pre- 
dictive accuracy. An idea of the range of research 
of this group can be got by looking at the Proceed- 
ings of the Neural Information Processing Systems 
Conference (their main yearly meeting) or at the 
Machine Learning Journal. 

7.2 Theory in Algorithmic Modeling 

Data models are rarely used in this community. 
The approach is that nature produces data in a 
black box whose insides are complex, mysterious, 
and, at least, partly unknowable. What is observed 
is a set of x's that go in and a subsequent set of y's 
that come out. The problem is to find an algorithm 
f(x) such that for future x in a test set, f(x) will 
be a good predictor of y. 

The theory in this field shifts focus from data mod- 
els to the properties of algorithms. It characterizes 
their "strength" as predictors, convergence if they 
are iterative, and what gives them good predictive 
accuracy. The one assumption made in the theory 
is that the data is drawn i.i.d. from an unknown 
multivariate distribution. 

There is isolated work in statistics where the 
focus is on the theory of the algorithms. Grace 
Wahba's research on smoothing spline algo- 
rithms and their applications to data (using cross- 
validation) is built on theory involving reproducing 
kernels in Hilbert Space (1990). The final chapter 
of the CART book (Breiman et al., 1984) contains 
a proof of the asymptotic convergence of the CART 
algorithm to the Bayes risk by letting the trees grow 
as the sample size increases. There are others, but 
the relative frequency is small. 

Theory resulted in a major advance in machine 
learning. Vladimir Vapnik constructed informative 
bounds on the generalization error (infinite test set 
error) of classification algorithms which depend on 
the "capacity" of the algorithm. These theoretical 
bounds led to support vector machines (see Vapnik, 
1995, 1998) which have proved to be more accu- 
rate predictors in classification and regression then 
neural nets, and are the subject of heated current 
research (see Section 10). 

My last paper "Some infinity theory for tree 
ensembles" (Breiman, 2000) uses a function space 
analysis to try and understand the workings of tree 
ensemble methods. One section has the heading, 
"My kingdom for some good theory." There is an 
effective method for forming ensembles known as 
"boosting," but there isn't any finite sample size 
theory that tells us why it works so well. 

7.3 Recent Lessons 

The advances in methodology and increases in 
predictive accuracy since the mid-1980s that have 
occurred in the research of machine learning has 
been phenomenal. There have been particularly 
exciting developments in the last five years. What 
has been learned? The three lessons that seem most 
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important to one: 

Rashomon: the multiplicity of good models; 
Occam: the conflict between simplicity and accu- 
racy; 
Bellman: dimensionality-curse or blessing. 

8. RASHOMON AND THE MULTIPLICITY 
OF GOOD MODELS 

Rashomon is a wonderful Japanese movie in 
which four people, from different vantage points, 
witness an incident in which one person dies and 
another is supposedly raped. When they come to 
testify in court, they all report the same facts, but 
their stories of what happened are very different. 

What I call the Rashomon Effect is that there 
is often a multitude of different descriptions [equa- 
tions f(x)] in a class of functions giving about the 
same minimum error rate. The most easily under- 
stood example is subset selection in linear regres- 
sion. Suppose there are 30 variables and we want to 
find the best five variable linear regressions. There 
are about 140,000 five-variable subsets in competi- 
tion. Usually we pick the one with the lowest resid- 
ual sum-of-squares (RSS), or, if there is a test set, 
the lowest test error. But there may be (and gen- 
erally are) many five-variable equations that have 
RSS within 1.0% of the lowest RSS (see Breiman, 
1996a). The same is true if test set error is being 
measured. 

So here are three possible pictures with RSS or 
test set error within 1.0% of each other: 

Picture 1 

y = 2.1 + 3.8x3 - 0.6x8 + 83.2x12 

- 2.1x17 + 3.2x27, 

Picture 2 

y = -8.9 + 4.6x5 + 0.01x6 + 12.0x15 

+ 17.5X21 + 0.2X22, 

Picture 3 

y = -76.7 + 9.3x2 + 22.0x7 - 13.2x8 

+ 3.4x11 + 7.2X28. 

Which one is better? The problem is that each one 
tells a different story about which variables are 
important. 

The Rashomon Effect also occurs with decision 
trees and neural nets. In my experiments with trees, 
if the training set is perturbed only slightly, say by 
removing a random 2-3% of the data, I can get 
a tree quite different from the original but with 
almost the same test set error. I once ran a small 

neural net 100 times on simple three-dimensional 
data reselecting the initial weights to be small and 
random on each run. I found 32 distinct minima, 
each of which gave a different picture, and having 
about equal test set error. 

This effect is closely connected to what I call 
instability (Breiman, 1996a) that occurs when there 
are many different models crowded together that 
have about the same training or test set error. Then 
a slight perturbation of the data or in the model 
construction will cause a skip from one model to 
another. The two models are close to each other in 
terms of error, but can be distant in terms of the 
form of the model. 

If, in logistic regression or the Cox model, the 
common practice of deleting the less important 
covariates is carried out, then the model becomes 
unstable-there are too many competing models. 
Say you are deleting from 15 variables to 4 vari- 
ables. Perturb the data slightly and you will very 
possibly get a different four-variable model and 
a different conclusion about which variables are 
important. To improve accuracy by weeding out less 
important covariates you run into the multiplicity 
problem. The picture of which covariates are impor- 
tant can vary significantly between two models 
having about the same deviance. 

Aggregating over a large set of competing mod- 
els can reduce the nonuniqueness while improving 
accuracy. Arena et al. (2000) bagged (see Glossary) 
logistic regression models on a data base of toxic and 
nontoxic chemicals where the number of covariates 
in each model was reduced from 15 to 4 by stan- 
dard best subset selection. On a test set, the bagged 
model was significantly more accurate than the sin- 
gle model with four covariates. It is also more stable. 
This is one possible fix. The multiplicity problem 
and its effect on conclusions drawn from models 
needs serious attention. 

9. OCCAM AND SIMPLICITY VS. ACCURACY 

Occam's Razor, long admired, is usually inter- 
preted to mean that simpler is better. Unfortunately, 
in prediction, accuracy and simplicity (interpretabil- 
ity) are in conflict. For instance, linear regression 
gives a fairly interpretable picture of the y, x rela- 
tion. But its accuracy is usually less than that 
of the less interpretable neural nets. An example 
closer to my work involves trees. 

On interpretability, trees rate an A+. A project 
I worked on in the late 1970s was the analysis of 
delay in criminal cases in state court systems. The 
Constitution gives the accused the right to a speedy 
trial. The Center for the State Courts was concerned 
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TABLE 1 
Data set descriptions 

Training Test 
Data set Sample size Sample size Variables Classes 

Cancer 699 9 2 
Ionosphere 351 34 2 
Diabetes 768 8 2 
Glass 214 9 6 
Soybean 683 35 19 

Letters 15,000 5000 16 26 
Satellite 4,435 2000 36 6 
Shuttle 43,500 14,500 9 7 
DNA 2,000 1,186 60 3 
Digit 7,291 2,007 256 10 

that in many states, the trials were anything but 
speedy. It funded a study of the causes of the delay. 
I visited many states and decided to do the anal- 
ysis in Colorado, which had an excellent computer- 
ized court data system. A wealth of information was 
extracted and processed. 

The dependent variable for each criminal case 
was the time from arraignment to the time of sen- 
tencing. All of the other information in the trial his- 
tory were the predictor variables. A large decision 
tree was grown, and I showed it on an overhead and 
explained it to the assembled Colorado judges. One 
of the splits was on District N which had a larger 
delay time than the other districts. I refrained from 
commenting on this. But as I walked out I heard one 
judge say to another, "I knew those guys in District 
N were dragging their feet." 

While trees rate an A+ on interpretability, they 
are good, but not great, predictors. Give them, say, 
a B on prediction. 

9.1 Growing Forests for Prediction 

Instead of a single tree predictor, grow a forest of 
trees on the same data-say 50 or 100. If we are 
classifying, put the new x down each tree in the for- 
est and get a vote for the predicted class. Let the for- 
est prediction be the class that gets the most votes. 
There has been a lot of work in the last five years on 
ways to grow the forest. All of the well-known meth- 
ods grow the forest by perturbing the training set, 
growing a tree on the perturbed training set, per- 
turbing the training set again, growing another tree, 
etc. Some familiar methods are bagging (Breiman, 
1996b), boosting (Freund and Schapire, 1996), arc- 
ing (Breiman, 1998), and additive logistic regression 
(Friedman, Hastie and Tibshirani, 1998). 

My preferred method to date is random forests. In 
this approach successive decision trees are grown by 
introducing a random element into their construc- 
tion. For example, suppose there are 20 predictor 

variables. At each node choose several of the 20 at 
random to use to split the node. Or use a random 
combination of a random selection of a few vari- 
ables. This idea appears in Ho (1998), in Amit and 
Geman (1997) and is developed in Breiman (1999). 

9.2 Forests Compared to Trees 

We compare the performance of single trees 
(CART) to random forests on a number of small 
and large data sets, mostly from the UCI repository 
(ftp.ics.uci.edulpub/MachineLearningDatabases). A 
summary of the data sets is given in Table 1. 

Table 2 compares the test set error of a single tree 
to that of the forest. For the five smaller data sets 
above the line, the test set error was estimated by 
leaving out a random 10% of the data, then run- 
ning CART and the forest on the other 90%. The 
left-out 10% was run down the tree and the forest 
and the error on this 10% computed for both. This 
was repeated 100 times and the errors averaged. 
The larger data sets below the line came with a 
separate test set. People who have been in the clas- 
sification field for a while find these increases in 
accuracy startling. Some errors are halved. Others 
are reduced by one-third. In regression, where the 

TABLE 2 
Test set misclassification error (%) 

Data set Forest Single tree 

Breast cancer 2.9 5.9 
Ionosphere 5.5 11.2 
Diabetes 24.2 25.3 
Glass 22.0 30.4 
Soybean 5.7 8.6 

Letters 3.4 12.4 
Satellite 8.6 14.8 
Shuttle X 103 7.0 62.0 
DNA 3.9 6.2 
Digit 6.2 17.1 
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forest prediction is the average over the individual 
tree predictions, the decreases in mean-squared test 
set error are similar. 

9.3 Random Forests are A + Predictors 

The Statlog Project (Mitchie, Spiegelhalter and 
Taylor, 1994) compared 18 different classifiers. 
Included were neural nets, CART, linear and 
quadratic discriminant analysis, nearest neighbor, 
etc. The first four data sets below the line in Table 1 
were the only ones used in the Statlog Project that 
came with separate test sets. In terms of rank of 
accuracy on these four data sets, the forest comes 
in 1, 1, 1, 1 for an average rank of 1.0. The next 
best classifier had an average rank of 7.3. 

The fifth data set below the line consists of 16 x 16 
pixel gray scale depictions of handwritten ZIP Code 
numerals. It has been extensively used by AT&T 
Bell Labs to test a variety of prediction methods. 
A neural net handcrafted to the data got a test set 
error of 5.1% vs. 6.2% for a standard run of random 
forest. 

9.4 The Occam Dilemma 

So forests are A+ predictors. But their mechanism 
for producing a prediction is difficult to understand. 
Trying to delve into the tangled web that generated 
a plurality vote from 100 trees is a Herculean task. 
So on interpretability, they rate an F. Which brings 
us to the Occam dilemma: 

* Accuracy generally requires more complex pre- 
diction methods. Simple and interpretable functions 
do not make the most accurate predictors. 

Using complex predictors may be unpleasant, but 
the soundest path is to go for predictive accuracy 
first, then try to understand why. In fact, Section 
10 points out that from a goal-oriented statistical 
viewpoint, there is no Occam's dilemma. (For more 
on Occam's Razor see Domingos, 1998, 1999.) 

10. BELLMAN AND THE CURSE OF 
DIMENSIONALITY 

The title of this section refers to Richard Bell- 
man's famous phrase, "the curse of dimensionality." 
For decades, the first step in prediction methodol- 
ogy was to avoid the curse. If there were too many 
prediction variables, the recipe was to find a few 
features (functions of the predictor variables) that 
"contain most of the information" and then use 
these features to replace the original variables. In 
procedures common in statistics such as regres- 
sion, logistic regression and survival models the 
advised practice is to use variable deletion to reduce 

the dimensionality. The published advice was that 
high dimensionality is dangerous. For instance, a 
well-regarded book on pattern recognition (Meisel, 
1972) states "the features... must be relatively 
few in number." But recent work has shown that 
dimensionality can be a blessing. 

10.1 Digging It Out in Small Pieces 

Reducing dimensionality reduces the amount of 
information available for prediction. The more pre- 
dictor variables, the more information. There is also 
information in various combinations of the predictor 
variables. Let's try going in the opposite direction: 

* Instead of reducing dimensionality, increase it 
by adding many functions of the predictor variables. 
There may now be thousands of features. Each 
potentially contains a small amount of information. 
The problem is how to extract and put together 
these little pieces of information. There are two 
outstanding examples of work in this direction, The 
Shape Recognition Forest (Y. Amit and D. Geman, 
1997) and Support Vector Machines (V. Vapnik, 
1995, 1998). 

10.2 The Shape Recognition Forest 

In 1992, the National Institute of Standards and 
Technology (NIST) set up a competition for machine 
algorithms to read handwritten numerals. They put 
together a large set of pixel pictures of handwritten 
numbers (223,000) written by over 2,000 individ- 
uals. The competition attracted wide interest, and 
diverse approaches were tried. 

The Amit-Geman approach defined many thou- 
sands of small geometric features in a hierarchi- 
cal assembly. Shallow trees are grown, such that at 
each node, 100 features are chosen at random from 
the appropriate level of the hierarchy; and the opti- 
mal split of the node based on the selected features 
is found. 

When a pixel picture of a number is dropped down 
a single tree, the terminal node it lands in gives 
probability estimates po, ..., p9 that it represents 
numbers 0, 1, ... ,9. Over 1,000 trees are grown, the 
probabilities averaged over this forest, and the pre- 
dicted number is assigned to the largest averaged 
probability. 

Using a 100,000 example training set and a 
50,000 test set, the Amit-Geman method gives a 
test set error of 0.7%-close to the limits of human 
error. 

10.3 Support Vector Machines 

Suppose there is two-class data having prediction 
vectors in M-dimensional Euclidean space. The pre- 
diction vectors for class #1 are {x(1)} and those for 
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class #2 are {x(2)}. If these two sets of vectors can 
be separated by a hyperplane then there is an opti- 
mal separating hyperplane. "Optimal" is defined as 
meaning that the distance of the hyperplane to any 
prediction vector is maximal (see below). 

The set of vectors in {x(1)} and in {x(2)} that 
achieve the minimum distance to the optimal 
separating hyperplane are called the support vec- 
tors. Their coordinates determine the equation of 
the hyperplane. Vapnik (1995) showed that if a 
separating hyperplane exists, then the optimal sep- 
arating hyperplane has low generalization error 
(see Glossary). 

O /4- optimal hyperplane 

support vector 

0 0 
0 

In two-class data, separability by a hyperplane 
does not often occur. However, let us increase the 
dimensionality by adding as additional predictor 
variables all quadratic monomials in the original 
predictor variables; that is, all terms of the form 
XmlXm2. A hyperplane in the original variables plus 
quadratic monomials in the original variables is a 
more complex creature. The possibility of separa- 
tion is greater. If no separation occurs, add cubic 
monomials as input features. If there are originally 
30 predictor variables, then there are about 40,000 
features if monomials up to the fourth degree are 
added. 

The higher the dimensionality of the set of fea- 
tures, the more likely it is that separation occurs. In 
the ZIP Code data set, separation occurs with fourth 
degree monomials added. The test set error is 4.1%. 
Using a large subset of the NIST data base as a 
training set, separation also occurred after adding 
up to fourth degree monomials and gave a test set 
error rate of 1.1%. 

Separation can always be had by raising the 
dimensionality high enough. But if the separating 
hyperplane becomes too complex, the generalization 
error becomes large. An elegant theorem (Vapnik, 
1995) gives this bound for the expected generaliza- 
tion error: 

Ex(GE) < Ex(number of support vectors)/(N - 1), 

where N is the sample size and the expectation is 
over all training sets of size N drawn from the same 
underlying distribution as the original training set. 

The number of support vectors increases with the 
dimensionality of the feature space. If this number 

becomes too large, the separating hyperplane will 
not give low generalization error. If separation can- 
not be realized with a relatively small number of 
support vectors, there is another version of support 
vector machines that defines optimality by adding 
a penalty term for the vectors on the wrong side of 
the hyperplane. 

Some ingenious algorithms make finding the opti- 
mal separating hyperplane computationally feasi- 
ble. These devices reduce the search to a solution 
of a quadratic programming problem with linear 
inequality constraints that are of the order of the 
number N of cases, independent of the dimension 
of the feature space. Methods tailored to this partic- 
ular problem produce speed-ups of an order of mag- 
nitude over standard methods for solving quadratic 
programming problems. 

Support vector machines can also be used to 
provide accurate predictions in other areas (e.g., 
regression). It is an exciting idea that gives excel- 
lent performance and is beginning to supplant the 
use of neural nets. A readable introduction is in 
Cristianini and Shawe-Taylor (2000). 

11. INFORMATION FROM A BLACK BOX 

The dilemma posed in the last section is that 
the models that best emulate nature in terms of 
predictive accuracy are also the most complex and 
inscrutable. But this dilemma can be resolved by 
realizing the wrong question is being asked. Nature 
forms the outputs y from the inputs x by means of 
a black box with complex and unknown interior. 

y H nature 4 x 

Current accurate prediction methods are also 
complex black boxes. 

neural nets 
Y < forests < x 

support vectors 

So we are facing two black boxes, where ours 
seems only slightly less inscrutable than nature's. 
In data generated by medical experiments, ensem- 
bles of predictors can give cross-validated error 
rates significantly lower than logistic regression. 
My biostatistician friends tell me, "Doctors can 
interpret logistic regression." There is no way they 
can interpret a black box containing fifty trees 
hooked together. In a choice between accuracy and 
interpretability, they'll go for interpretability. 

Framing the question as the choice between accu- 
racy and interpretability is an incorrect interpre- 
tation of what the goal of a statistical analysis is. 



210 L. BREIMAN 

The point of a model is to get useful information 
about the relation between the response and pre- 
dictor variables. Interpretability is a way of getting 
information. But a model does not have to be simple 
to provide reliable information about the relation 
between predictor and response variables; neither 
does it have to be a data model. 

* The goal is not interpretability, but accurate 
information. 

The following three examples illustrate this point. 
The first shows that random forests applied to a 
medical data set can give more reliable informa- 
tion about covariate strengths than logistic regres- 
sion. The second shows that it can give interesting 
information that could not be revealed by a logistic 
regression. The third is an application to a microar- 
ray data where it is difficult to conceive of a data 
model that would uncover similar information. 

11.1 Example 1: Variable Importance in a 
Survival Data Set 

The data set contains survival or nonsurvival 
of 155 hepatitis patients with 19 covariates. It is 
available at ftp.ics.uci.edu/pub/MachineLearning- 
Databases and was contributed by Gail Gong. The 
description is in a file called hepatitis.names. The 
data set has been previously analyzed by Diaconis 
and Efron (1983), and Cestnik, Konenenko and 
Bratko (1987). The lowest reported error rate to 
date, 17%, is in the latter paper. 

Diaconis and Efron refer to work by Peter Gre- 
gory of the Stanford Medical School who analyzed 
this data and concluded that the important vari- 
ables were numbers 6, 12, 14, 19 and reports an esti- 
mated 20% predictive accuracy. The variables were 
reduced in two stages-the first was by informal 
data analysis. The second refers to a more formal 

(unspecified) statistical procedure which I assume 
was logistic regression. 

Efron and Diaconis drew 500 bootstrap samples 
from the original data set and used a similar pro- 
cedure to isolate the important variables in each 
bootstrapped data set. The authors comment, "Of 
the four variables originally selected not one was 
selected in more than 60 percent of the samples. 
Hence the variables identified in the original analy- 
sis cannot be taken too seriously." We will come back 
to this conclusion later. 

Logistic Regression 

The predictive error rate for logistic regression on 
the hepatitis data set is 17.4%. This was evaluated 
by doing 100 runs, each time leaving out a randomly 
selected 10% of the data as a test set, and then 
averaging over the test set errors. 

Usually, the initial evaluation of which variables 
are important is based on examining the absolute 
values of the coefficients of the variables in the logis- 
tic regression divided by their standard deviations. 
Figure 1 is a plot of these values. 

The conclusion from looking at the standard- 
ized coefficients is that variables 7 and 11 are the 
most important covariates. When logistic regres- 
sion is run using only these two variables, the 
cross-validated error rate rises to 22.9%. Another 
way to find important variables is to run a best 
subsets search which, for any value k, finds the 
subset of k variables having lowest deviance. 

This procedure raises the problems of instability 
and multiplicity of models (see Section 7.1). There 
are about 4,000 subsets containing four variables. 
Of these, there are almost certainly a substantial 
number that have deviance close to the minimum 
and give different pictures of what the underlying 
mechanism is. 

3.5. 
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FIG. 1. Standardized coefficients logistic regression. 
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FIG. 2. Variable importance-random forest. 

Random Forests 

The random forests predictive error rate, evalu- 
ated by averaging errors over 100 runs, each time 
leaving out 10% of the data as a test set, is 12.3%- 
almost a 30% reduction from the logistic regression 
error. 

Random forests consists of a large number of 
randomly constructed trees, each voting for a class. 
Similar to bagging (Breiman, 1996), a bootstrap 
sample of the training set is used to construct each 
tree. A random selection of the input variables is 
searched to find the best split for each node. 

To measure the importance of the mth variable, 
the values of the mth variable are randomly per- 
muted in all of the cases left out in the current 
bootstrap sample. Then these cases are run down 
the current tree and their classification noted. At 
the end of a run consisting of growing many trees, 
the percent increase in misclassification rate due to 
noising up each variable is computed. This is the 

measure of variable importance that is shown in 
Figure 1. 

Random forests singles out two variables, the 
12th and the 17th, as being important. As a verifi- 
cation both variables were run in random forests, 
individually and together. The test set error rates 
over 100 replications were 14.3% each. Running 
both together did no better. We conclude that virtu- 
ally all of the predictive capability is provided by a 
single variable, either 12 or 17. 

To explore the interaction between 12 and 17 a bit 
further, at the end of a random forest run using all 
variables, the output includes the estimated value 
of the probability of each class vs. the case number. 
This information is used to get plots of the vari- 
able values (normalized to mean zero and standard 
deviation one) vs. the probability of death. The vari- 
able values are smoothed using a weighted linear 
regression smoother. The results are in Figure 3 for 
variables 12 and 17. 

VARIABLE 12 vs PROBABILITY #1 VARIABLE 17 vs PROBABILITY #1 
1 1 

0 

co :2-1 

-2 
-3 
4 3 

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 
class 1 probability class 1 probability 

FIG. 3. Variable 17 vs. probability #1. 
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FIG. 4. Variable importance-Bupa data. 

The graphs of the variable values vs. class death 
probability are almost linear and similar. The two 
variables turn out to be highly correlated. Thinking 
that this might have affected the logistic regression 
results, it was run again with one or the other of 
these two variables deleted. There was little change. 

Out of curiosity, I evaluated variable impor- 
tance in logistic regression in the same way that I 
did in random forests, by permuting variable val- 
ues in the 10% test set and computing how much 
that increased the test set error. Not much help- 
variables 12 and 17 were not among the 3 variables 
ranked as most important. In partial verification 
of the importance of 12 and 17, I tried them sep- 
arately as single variables in logistic regression. 
Variable 12 gave a 15.7% error rate, variable 17 
came in at 19.3%. 

To go back to the original Diaconis-Efron analy- 
sis, the problem is clear. Variables 12 and 17 are sur- 
rogates for each other. If one of them appears impor- 
tant in a model built on a bootstrap sample, the 
other does not. So each one's frequency of occurrence 

is automatically less than 50%. The paper lists the 
variables selected in ten of the samples. Either 12 
or 17 appear in seven of the ten. 

11.2 Example 11 Clustering in Medical Data 

The Bupa liver data set is a two-class biomedical 
data set also available at ftp.ics.uci.edu/pub/Mac- 
hineLearningDatabases. The covariates are: 

1. mcv mean corpuscular volume 
2. alkphos alkaline phosphotase 
3. sgpt alamine aminotransferase 
4. sgot aspartate aminotransferase 
5. gammagt gamma-glutamyl transpeptidase 
6. drinks half-pint equivalents of alcoholic 

beverage drunk per day 

The first five attributes are the results of blood 
tests thought to be related to liver functioning. The 
345 patients are classified into two classes by the 
severity of their liver malfunctioning. Class two is 
severe malfunctioning. In a random forests run, 

1 - cluster 1 class 2 

cluster2 class 2 

5 _ cluster -class 1 7 
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0 3 5 6 7 
variable 

FIG. 5. Cluster averages-Bupa data. 
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the misclassification error rate is 28%. The variable 
importance given by random forests is in Figure 4. 

Blood tests 3 and 5 are the most important, fol- 
lowed by test 4. Random forests also outputs an 
intrinsic similarity measure which can be used to 
cluster. When this was applied, two clusters were 
discovered in class two. The average of each variable 
is computed and plotted in each of these clusters in 
Figure 5. 

An interesting facet emerges. The class two sub- 
jects consist of two distinct groups: those that have 
high scores on blood tests 3, 4, and 5 and those that 
have low scores on those tests. 

11.3 Example Ill: Microarray Data 

Random forests was run on a microarray lym- 
phoma data set with three classes, sample size of 
81 and 4,682 variables (genes) without any variable 
selection [for more information about this data set, 
see Dudoit, Fridlyand and Speed, (2000)]. The error 
rate was low. What was also interesting from a sci- 
entific viewpoint was an estimate of the importance 
of each of the 4,682 gene expressions. 

The graph in Figure 6 was produced by a run 
of random forests. This result is consistent with 
assessments of variable importance made using 
other algorithmic methods, but appears to have 
sharper detail. 

11.4 Remarks about the Examples 

The examples show that much information is 
available from an algorithmic model. Friedman 

(1999) derives similar variable information from a 
different way of constructing a forest. The similar- 
ity is that they are both built as ways to give low 
predictive error. 

There are 32 deaths and 123 survivors in the hep- 
atitis data set. Calling everyone a survivor gives a 
baseline error rate of 20.6%. Logistic regression low- 
ers this to 17.4%. It is not extracting much useful 
information from the data, which may explain its 
inability to find the important variables. Its weak- 
ness might have been unknown and the variable 
importances accepted at face value if its predictive 
accuracy was not evaluated. 

Random forests is also capable of discovering 
important aspects of the data that standard data 
models cannot uncover. The potentially interesting 
clustering of class two patients in Example II is an 
illustration. The standard procedure when fitting 
data models such as logistic regression is to delete 
variables; to quote from Diaconis and Efron (1983) 
again, "...statistical experience suggests that it is 
unwise to fit a model that depends on 19 variables 
with only 155 data points available." Newer meth- 
ods in machine learning thrive on variables-the 
more the better. For instance, random forests does 
not overfit. It gives excellent accuracy on the lym- 
phoma data set of Example III which has over 4,600 
variables, with no variable deletion and is capable 
of extracting variable importance information from 
the data. 
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FIG. 6. Microarray variable importance. 
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These examples illustrate the following points: 

* Higher predictive accuracy is associated with 
more reliable information about the underlying data 
mechanism. Weak predictive accuracy can lead to 
questionable conclusions. 

* Algorithmic models can give better predictive 
accuracy than data models, and provide better infor- 
mation about the underlying mechanism. 

12. FINAL REMARKS 

The goals in statistics are to use data to predict 
and to get information about the underlying data 
mechanism. Nowhere is it written on a stone tablet 
what kind of model should be used to solve problems 
involving data. To make my position clear, I am not 
against data models per se. In some situations they 
are the most appropriate way to solve the problem. 
But the emphasis needs to be on the problem and 
on the data. 

Unfortunately, our field has a vested interest in 
data models, come hell or high water. For instance, 
see Dempster's (1998) paper on modeling. His posi- 
tion on the 1990 Census adjustment controversy is 
particularly interesting. He admits that he doesn't 
know much about the data or the details, but argues 
that the problem can be solved by a strong dose 
of modeling. That more modeling can make error- 
ridden data accurate seems highly unlikely to me. 

Terrabytes of data are pouring into computers 
from many sources, both scientific, and commer- 
cial, and there is a need to analyze and understand 
the data. For instance, data is being generated 
at an awesome rate by telescopes and radio tele- 
scopes scanning the skies. Images containing mil- 
lions of stellar objects are stored on tape or disk. 
Astronomers need automated ways to scan their 
data to find certain types of stellar objects or novel 
objects. This is a fascinating enterprise, and I doubt 
if data models are applicable. Yet I would enter this 
in my ledger as a statistical problem. 

The analysis of genetic data is one of the most 
challenging and interesting statistical problems 
around. Microarray data, like that analyzed in 
Section 11.3 can lead to significant advances in 
understanding genetic effects. But the analysis 
of variable importance in Section 11.3 would be 
difficult to do accurately using a stochastic data 
model. 

Problems such as stellar recognition or analysis 
of gene expression data could be high adventure for 
statisticians. But it requires that they focus on solv- 
ing the problem instead of asking what data model 
they can create. The best solution could be an algo- 
rithmic model, or maybe a data model, or maybe a 

combination. But the trick to being a scientist is to 
be open to using a wide variety of tools. 

The roots of statistics, as in science, lie in work- 
ing with data and checking theory against data. I 
hope in this century our field will return to its roots. 
There are signs that this hope is not illusory. Over 
the last ten years, there has been a noticeable move 
toward statistical work on real world problems and 
reaching out by statisticians toward collaborative 
work with other disciplines. I believe this trend will 
continue and, in fact, has to continue if we are to 
survive as an energetic and creative field. 

GLOSSARY 

Since some of the terms used in this paper may 
not be familiar to all statisticians, I append some 
definitions. 

Infinite test set error. Assume a loss function 
L(y, 9) that is a measure of the error when y is 
the true response and 9 the predicted response. 
In classification, the usual loss is 1 if y 7 9 and 
zero if y = 9. In regression, the usual loss is 
(y - 9)2. Given a set of data (training set) consist- 
ing of {(Yn Xn)n = 1, 2, ..., N}, use it to construct 
a predictor function +(x) of y. Assume that the 
training set is i.i.d drawn from the distribution of 
the random vector Y, X. The infinite test set error 
is E(L(Y, +(X))). This is called the generalization 
error in machine learning. 

The generalization error is estimated either by 
setting aside a part of the data as a test set or by 
cross-validation. 

Predictive accuracy. This refers to the size of 
the estimated generalization error. Good predictive 
accuracy means low estimated error. 

Thees and nodes. This terminology refers to deci- 
sion trees as described in the Breiman et al book 
(1984). 

Dropping an x down a tree. When a vector of pre- 
dictor variables is "dropped" down a tree, at each 
intermediate node it has instructions whether to go 
left or right depending on the coordinates of x. It 
stops at a terminal node and is assigned the predic- 
tion given by that node. 

Bagging. An acronym for "bootstrap aggregat- 
ing." Start with an algorithm such that given any 
training set, the algorithm produces a prediction 
function +(x). The algorithm can be a decision tree 
construction, logistic regression with variable dele- 
tion, etc. Take a bootstrap sample from the training 
set and use this bootstrap training set to construct 
the predictor +1(x). Take another bootstrap sam- 
ple and using this second training set construct the 
predictor 42(x). Continue this way for K steps. In 
regression, average all of the { k(X)} to get the 
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bagged predictor at x. In classification, that class 
which has the plurality vote of the {4k(X)} is the 
bagged predictor. Bagging has been shown effective 
in variance reduction (Breiman, 1996b). 

Boosting. This is a more complex way of forming 
an ensemble of predictors in classification than bag- 
ging (Freund and Schapire, 1996). It uses no ran- 
domization but proceeds by altering the weights on 
the training set. Its performance in terms of low pre- 
diction error is excellent (for details see Breiman, 
1998). 
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