Multivariate Methods

Course literature:

Johnson & Wichern: Applied multivariate statistical analysis, 6th edition, Pearson

Reference literature:

Gut: An intermediate course in probability, Springer (Lecture 2)
Hastie, Tibshirani & Friedman: The elements of statistical learning, Springer (Lectures 6 and 8-10)
Sharma: Applied multivariate techniques, Wiley (Lectures 6-10)
Tan, Steinbach & Kumar: Introduction to data mining, Addison Wesley (Lectures 1 and 8-10)

Teacher:

Måns Thulin. E-mail: thulin@math.uu.se. Office: 74115 (4th floor, house 7, the Ångström laboratory). Phone: (018) 471 33 89.

Examination:

Take-home exam late May or early June 2011. Oral presentation of a method for clustering. Four mandatory homeworks. In each homework (and in the exam) there will also be non-mandatory problems which, if solved in a satisfactory manner, will give higher grades if you pass the course.

Course goals (from syllabus):

In order to pass the course (grade 3) the student should...

-have a knowledge of methods of visualizing multivariate data sets

-be familiar with the multivariate normal distribution

-know how to perform statistical tests of the mean value vector of a multivariate normal distribution

-know how to perform statistical tests of two or several populations of a multivariate normal distribution

-know methods and techniques for validation of multivariate normal distribution

-be able to use principal component and factor analysis for typical problems

-be able to use canonical correlation analysis

-be able to use classification techniques

-be familiar with methods for multivariate cluster analysis

-be able to present mathematical statistical arguments to others

Teaching:

15 sessions, divided into 10 lectures, 2 problem solving sessions and 3 computer exercises.

In the preliminary course outline below, L=lectures, C=computer exercises, P=problem solving sessions and E=examination.

Date		Topics	Homeworks
22/3	L1	Introduction. Some multivariate problems. Visualization. (Ch 1)	
24/3	L2	Sample geometry, multivariate moments and multivariate normal distri-	H 1 out
		bution (MND). (Ch 2.6 & 3-4.2)	
28/3	C1	Visualization and descriptive statistics. Multivariate normal distribu-	
		tion.	
1/4	L3	Estimation of parameters for MND. Wishart distribution. Tests for nor-	HW1 in
		mality. Outliers. (Ch 4.3-4.8)	
6/4	L4	Inference about the mean vector. Hotelling's T^2 . Confidence regions.	
		(Ch 5)	
8/4	L5	MANOVA. Testing for equality of covariance matrices. (Ch 6)	HW2 out
11/4	C2	Inference under MND.	
13/4	P1	Problems from Chapters 4-6.	
2/5	L6	Principal Components Analysis (Ch 8)	
4/5	L7	Factor analysis (Ch 9) and Canonical Correlation Analysis (Ch 10)	HW2 in
6/5	P2	Problems from Chapters 8-10.	HW3 out
10/5	C3	PCA, factor analysis and CCA.	
13/5	L8	Classification and discrimination (Ch 11)	HW3 in, HW4
			out
17/5	L9	Some problems from Ch 11. More about classification: algorithmic	
		methods and decision trees (not in the book)	
23/5	L10	Cluster analysis (Ch 12). Presented by students.	Oral presentat-
			ions, HW4 in
??/?	Ε	Take-home exam	

Computer exercises:

Three scheduled computer exercises using the free software R, which can be downloaded from http://www.r-project.org/. Instructions for the computer exercises will be available for download from the student portal.

Course homepage:

All files and documents necessary for the course can be found on the course page at the student portal: http://studentportalen.uu.se/

After each lecture, slides (if used) and a brief summary of the lecture along with reading instructions will be posted on the course page.

Note that you will need to be logged in using an Upunet-S account to access some of the functions of the page. See http://www.uu.se/node327 for more information.