GEOMETRY/TOPOLOGY – LECTURE 3

1. The fundamental group

Let X be a topological space and fix $x \in X$. A loop based a x is a map $\gamma: I \to X$ with $\gamma(0) = \gamma(1) = x$. Two loops γ and β based at x are homotopic if

$$\gamma \simeq \beta \quad \text{rel } \partial I.$$

We write $[\gamma]$ for the homotopy class of γ .

1.1. Definition and basic properties.

Theorem 1. The set of homotopy classes of loops based at x form a group with multiplication

$$[\gamma] \cdot [\beta] = [\gamma \star \beta]$$

and with inverse

$$[\gamma]^{-1} = [\gamma^{-1}],$$

where we view γ as a homotopy of a 1-point space, the unit is the class of the constant loop at x.

Proof. This follows from the three observations about concatentaion made at the end of Lecture 2. \Box

The group in the above theorem is called the fundamental group (or the Poincaré group) and is denoted $\pi_1(X, x)$.

Theorem 2. If X is path connected then $\pi_1(X, p) \approx \pi_1(X, q)$ for any $p, q \in X$.

Proof. Let $\omega: I \to X$ be a path with $\omega(0) = p$ and $\omega(1) = q$. Then concatenation with ω defines a maps between $\pi_1(X, p)$ and $\pi_1(X, q)$. More precisely, we have

$$\phi \colon \pi_1(X, p) \to \pi_1(X, q), \quad \phi([\gamma]) = [\omega \star \gamma \star \omega^{-1}]$$

and

$$\psi \colon \pi_1(X,q) \to \pi_1(X,p), \quad \psi([\beta]) = [\omega^{-1} \star \beta \star \omega].$$

First,

$$\begin{split} \phi([\gamma][\alpha]) &= \phi([\gamma \star \alpha]) = [\omega \star \gamma \star \alpha \star \omega^{-1}] \\ &= [\omega \star \gamma \star \omega^{-1} \star \omega \star \alpha \star \omega^{-1}] = [\omega \star \gamma \star \omega^{-1}] \cdot [\omega \star \alpha \star \omega^{-1}] \\ &= \phi([\gamma]) \cdot \phi([\alpha]), \end{split}$$

so that ϕ is a homomorphism. Likewise ψ is and moreover

$$\phi \circ \psi([\beta]) = [\omega \star \omega^{-1} \star \beta \star \omega \star \omega^{-1}] = [\beta]$$

The lemma follows.

1.2. Maps and induced homomorphisms. Let $f: X \to Y$ be a map with f(x) = y. If γ is a loop in X based at x then $f \circ \gamma$ is a loop in Y based at Y. Define the map $f_{\#}: \pi_1(X, x) \to \pi_1(Y, y)$ as follows

$$f_{\#}([\gamma]) = [f \circ \gamma].$$

Theorem 3. The map $f_{\#}$ is a homomorphism.

Proof.

$$f_{\#}([\gamma] \cdot [\beta]) = f_{\#}([\gamma \star \beta]) = [f \circ (\gamma \star \beta)]$$
$$= [(f \circ \gamma) \star (f \circ \beta)] = [f \circ \gamma] \cdot [f \circ \beta]$$
$$= f_{\#}([\gamma]) \cdot f_{\#}([\beta]).$$

Theorem 4. Homotopic maps induce the same homomorphism on π_1 .

Proof. If f_0 and f_1 are homotopic then $[f_0 \circ \gamma] = [f_1 \circ \gamma]$.

Corollary 5. Homotopy equivalent spaces have isomorphic fundamental groups.

In fact there is an infinite set of homotopy groups $\pi_1(X), \pi_2(X), \ldots$ such that if X and Y are spaces then X and Y are (weakly) homotopy equivalent if and only if $\pi_j(X) \approx \pi_j(Y)$ for all j.

Examples: $\pi_1(\mathbb{R}^n) = \{1\}$ and $\pi_1(D^n) = 1$. Also $\pi_1(S^n) = 1$ if n > 1, see Lecture 4.

Theorem 6. The fundamental group of the circle S^1 is $\pi_1(S^1) \approx \mathbb{Z}$. The element in \mathbb{Z} corresponding to $\gamma: I \to S^1$ with $\gamma(0) = \gamma(1) = 1$ can be computed by lifting γ to \mathbb{R} : find the unique continuous $\theta: I \to \mathbb{R}$ such that

$$\gamma(t) = e^{2\pi i\theta(t)}, \quad \theta(0) = 0$$

and evaluate at 1, i.e. the homotopy class of γ is given by $\theta(1) \in \mathbb{Z}$.

Proof. Note that the endpoint $\theta(1)$ of θ depends continuously on γ . We thus have an integer valued continuous function on loops in S^1 . Since integer valued continuous functions are locally constant we find that it gives a map $\pi_1(S^1, 1) \to \mathbb{Z}$. This map is a homomorphism by the definition of the product as concatenation. The map is obviously surjective and injective since any loop in \mathbb{R} is contractible.

2