GEOMETRY/TOPOLOGY - PROBLEMS 1

- 1. Classify regular closed curves up to regular homotopy on S^2 .
- **2.** Classify regular closed curves up to regular homotopy on T^2 .
- **3.** Classify regular closed curves up to regular homotopy on S^1 .
- **4.** Classify regular closed curves up to regular homotopy in \mathbb{R}^n , n > 2.
- **5.** Think of S^2 as the unit sphere in \mathbb{R}^3 and let (x, y, z) be standard coordinates on \mathbb{R}^3 . Let $F: S^1 \times [0, 1] \to S^2$ be a smooth homotopy such that

$$F(t,0) = (\cos t, \sin t, 0)$$
 and $F(t,1) = (\cos 2t, \sin 2t, 0)$.

Estimate the area of F,

$$\operatorname{area}(F) = \int_{S^1 \times [0,1]} \left| \frac{\partial F}{\partial t} \times \frac{\partial F}{\partial s} \right| \, dt \, ds,$$

where \times denote the cross product in \mathbb{R}^3 , from below. Is your estimate sharp?

- **6.** Let $f: \mathbb{R} \to \mathbb{R}^n$ be Hölder continuous with exponent $\alpha \in (0,1)$, i.e. there exists a constant C such that $|f(x) f(y)| \le C|x y|^{\alpha}$ for all $x, y \in \mathbb{R}$. Estimate the Hausdorff dimension of the image of f.
- 7. Let U(n) denote the space of unitary complex $n \times n$ -matrices and let $SU(n) \subset U(n)$ denote the subspace of the matrices of determinant 1. Compute $\pi_1(U(n))$ and $\pi_1(SU(n))$.
- 8. Let Q denote the space of positive definite quadratic forms on \mathbb{R}^3 . Let $Q' \subset Q$ denote the space of forms with at least two distinct eigenvalues, and let $Q'' \subset Q'$ denote the space of forms with three distinct eigenvalues. Compute $\pi_1(Q)$, $\pi_1(Q')$, and $\pi_1(Q'')$.
- **9.** Let X'_d denote the space of complex polynomials of degree d in one variable with at least d-1 distinct roots and let $X_d \subset X'_d$ denote the space of polynomials with d distinct roots. Compute $\pi_1(X'_d)$ and $\pi_1(X_d)$.
- **10.** Consider the region $A = \{(x, y, z) \in \mathbb{R}^3 : 10^{-2} \le x^2 + y^2 + z^2 \le 10^2\}$. Let l_1, l_2 , and l_3 be line segments in A with endpoints in ∂A as follows:

$$l_1$$
: $(-10,0,0)$ and $(-0.1,0,0)$,

$$l_2$$
: $(0,0,-10)$ and $(0,0,-0.1)$,

$$l_3$$
: $(0,0,0.1)$ and $(0,0,10)$.

Rotating the inner boundary of A two full turns around the z-axis deforms the line segment l'_1 (which is assumed completely elastic and flexible) to a curve as in the figure below.

Show the following:

- If the line segments l_2 and l_3 are made of steel (i.e. completely fixed) then we cannot untangle l'_1 , i.e. deform it continuously to l_1 , keeping ∂A fixed.
- If the line segments l_2 and l_3 are also flexible (and allowed to move) then we can untangle l'_1 .
- 11. Draw a step-by-step movie of a deformation of l'_1 to l_1 for flexible l_2 , l_3 in Problem 10. Alternatively build a physical model with three strings attached to a small ball and show how to untangle it after two full rotations of the ball around an axis.

