Beschreibung von DNA-Sequenzen als Markov-Ketten

Eine Einführung

Uwe Menzel Rudbeck Laboratory, Uppsala University

Inhalt

- 1) Markov-Ketten für CpG-Islands
- Hidden Markov Models (HMM) für CpG-Islands (Ausblick)

DNA-Sequenz

Die *Reihenfolge* der Basen (A,T,G,C) im DNA¹-Molekül bestimmt den "Bauplan" eines Organismus.

Desoxyribonukleinsäure

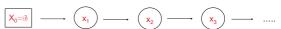
Markov-Ketten

Modellierung von Sequenzen mit Hilfe von stochastischen Modellen – man nimmt an, dass die Sequenz durch einen Zufallsprozess "erzeugt" worden ist.

X: Stochastische Sequenz

- zeitliche oder örtliche Folge (Sprache, DNA)
- Durchnummerieren: x
- An jeder Stelle x_i kann die Sequenz einen von mehreren möglichen Werten annehmen = Alphabet
- DNA: $x_i = \{A, C, G, T\}$
- (A. Markov untersuchte die russische Literatur ...)

P(X): Wahrscheinlichkeit der Sequenz



- <u>Gesucht:</u> Wahrscheinlichkeit des Auftauchens einer bestimmten Sequenz (Buchstabenfolge)
- $P(X) = P(X_1 = X_1, X_2 = X_2, X_3 = X_3, ...) = P(X_1, X_2, X_3, ...)$
- DNA: P(C,C,C,C,C) oder P(C,G,C,G,C,G)

Beispiel: Stochastische Sequenz, aber keine Markov-Kette

• Würfel: X=(3, 4, 2)

• $P(X) = P(X_1=3, X_2=4, X_3=2) = P(3, 4, 2)$

• $P(3, 4, 2) = P(3) \cdot P(4) \cdot P(2) = 1/6 \cdot 1/6 \cdot 1/6$

• Ereignisse unabhängig ⇒ keine Markov-Kette

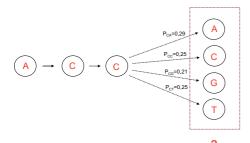
Markov- Kette

 Welcher der Werte (des Alphabets) bei x_i vorliegt, hängt vom Wert beim unmittelbaren Vorgänger x_{i-1} ab,

 ... jedoch *nicht* von noch weiter "davor" liegenden Werten X_{1,21} X_{1,31} ...

• Markov-Eigenschaft - Kopplung (mit dem Nachbarn)

Markov-Kette für DNA



Für dieses Beispiel: Hat man viele Kettenglieder, so wird die Folge "CA" häufiger darin enthalten sein als "CG".

Wahrscheinlichkeit einer Konfiguration der Kette

$$P(\vec{x}) = P(x_1, x_2, x_3, \dots, x_{N-1}, x_N)$$

Durch multiples Anwenden von: $P(x,y) = P(x \mid y) \cdot P(y)$

$$P(\vec{x}) = P(x_1) \cdot P(x_2 \mid x_1) P(x_3 \mid x_2, x_1) \cdot P(x_4 \mid x_3, x_2, x_1) \cdot \dots$$

Bei Markov - Ketten vereinfacht sich dies:

$$P(\vec{x}) = P(x_1) \cdot P(x_2 \mid x_1) \cdot P(x_3 \mid x_2) \cdot P(x_4 \mid x_3) \cdot \dots \cdot P(x_N \mid x_{N-1})$$

Non-Markov Process

Ziehe "blind" drei Kugeln aus dem Behälter ... wie groβ ist die Wahrscheinlichkeit, drei rote Kugeln zu ziehen ?

 $P(rot;rot;rot) = P(x_1 = rot, x_2 = rot, x_3 = rot)$

$$P(\vec{x}) = P(x_1 = rot) \cdot P(x_2 = rot \mid x_1 = rot) \cdot P(x_3 = rot \mid x_2 = rot, x_1 = rot) = \frac{1}{2} \cdot \frac{2}{5} \cdot \frac{1}{4}$$

Vorhandene Kugeln vor der Ziehung	P, "rot" zu ziehen				
• • • • •	P(x ₁ =rot) = ½ = 0,5				
• • • •	P(x ₂ =rot x ₁ =rot) = 2/5 = 0,4				
• • • •	P(x_3 =rot x_1 =rot; x_2 =rot) = $\frac{1}{4}$ = 0,25				

Dagegen:

• • • •

P(x_3 =rot | x_1 =blau; x_2 =rot) = $\frac{1}{2}$ = 0,5

"Wahrscheinlichkeit" der Markov-Kette¹

$$P(\vec{x}) = P(x_1) \cdot P(x_2 \mid x_1) \cdot P(x_3 \mid x_2) \cdot P(x_4 \mid x_3) \cdot \dots \cdot P(x_N \mid x_{N-1})$$

$$sei \ a_{x_{i-1}x_i} = P(x_i \mid x_{i-1})$$

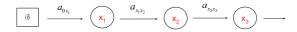
$$P(\vec{x}) = P(x_1) \cdot a_{x_1 x_2} \cdot a_{x_2 x_3} \cdot \dots \cdot a_{x_{N-2} x_{N-1}} \cdot a_{x_{N-1} x_N}$$

$$P(\vec{x}) = P(x_1) \cdot \prod_{i=2}^{n} a_{x_{i-1}x_i} \quad mit \quad P(x_1) = a_{x_0x_1}$$

$$P(\vec{x}) = \prod_{i=1}^{N} a_{x_{i-1}x_i}$$

¹Wir betrachten nur homogene Markov-Ketter

Wahrscheinlichkeit der Markov-Kette folgt aus den Übergangswahrscheinlichkeiten



$$P(x) = a_{0x_1} \cdot a_{x_1x_2} \cdot a_{x_2x_3} \cdot \dots = \prod_{i=0}^{L} a_{x_ix_{i+1}}$$

Übergangswahrscheinlichkeiten

chastische Matrix

					.	Sto
$P(x_i x_{i\text{-}1})$	Α	С	G	Т		0.,
Α	0,300	0,205	0,285	0,210		
С	0,322	0,298	0,078	0,302		
G	0,248	0,246	0,298	0,208		
Т	0,177	0,239	0,292	0,292		

$$P(C, A, A, G) = a_{0C} \cdot a_{CA} \cdot a_{AA} \cdot a_{AG}$$

= 0,25 \cdot 0,322 \cdot 0,300 \cdot 0,285 = 0,00688

Übergangswahrscheinlichkeiten

- Ausgehend von genomischen Daten werden die Häufigkeiten der 16 möglichen Dinukleotide gezählt.
- Diese Häufigkeiten werden zu Wahrscheinlichkeiten normiert (a = Wahrscheinlichkeiten; c = "counts"):

$$a_{st} = \frac{c_{st}}{\sum_{i} c_{si}} \quad s, t \in \{A, C, G, T\}$$

Übergangswahrscheinlichkeiten für Di-Nukleotide

$$c_{CG} = 100 \qquad c_{CA} = 150 \qquad c_{CT} = 50 \qquad c_{CC} = 100$$

$$a_{CG} = \frac{c_{CG}}{c_{CG} + c_{CA} + c_{CT} + c_{CC}} = \frac{100}{100 + 150 + 50 + 100} = 0,25$$

$$a_{CA} = \frac{150}{400} = 0,375$$

$$a_{CT} = \frac{50}{400} = 0,125$$

$$a_{CC} = \frac{100}{400} = 0,25$$
 Stochastische Matrix

CpG - Dinukleotide

- Statistisch gesehen: Häufigkeit ca. 4 6 %
 - P(C,G) ≈ $\frac{1}{4} \cdot \frac{1}{4}$ = 1/16; genauer 0,21 · 0,21 ≈ 4,4%
- Tatsächliche Häufigkeit: ≈ 0,8 % (Mammalia)
- Cytosin (C) ist chemisch instabil:
 Methylierung, Desaminierung: CG → C^{meth}G → TG
- In CpG-Islands¹ ist die Häufigkeit von CG-Dinukleotiden jedoch deutlich höher als im Rest des Genoms

Das "p" in CpG bezieht sich auf die Binding zwischen Cytosin und Guanin (engl. phosphodiester

Markov-Modell für CpG-Islands

- Da es sich um Dinukleotide handelt, also die Häufigkeit von CG (in dieser Reihefolge!), bietet sich ein Markov-Modell geradezu an !
- Wie häufig ist die Folge CG im Vergleich zu den anderen Dinukleotiden CA, CT, GT, usw?
- Wie häufig ist die Folge "CG" in CpG-Islands im Vergleich zur Häufigkeit dieser Folge in Nicht-Islands ?

"Training"

CpG-Islands

Non-Islands

	Α	С	G	Т		Α	С	G	Т
Α	0,180	0,274	0,426	0,120	Α	0,300	0,205	0,285	0,210
С	0,171	0,368	0,274	0,188	С	0,322	0,298	0,078	0,302
G	0,161	0,339	0,375	0,125	G	0,248	0,246	0,298	0,208
Т	0,079	0,355	0,384	0,182	Т	0,177	0,239	0,292	0,292

$$a_{CG}^{+} = 0,274$$
 $a_{CG}^{-} = 0,078$

Unterscheidung: Insel - "Rest"

X = (ATCGCGCGGC)

$$P(X \mid \text{mod} +) = \prod_{i} a_{x_{i-1}x_{i}}^{+} = a_{0A}^{+} \cdot a_{AT}^{+} \cdot a_{TC}^{+} \cdot a_{CG}^{+} \cdot a_{GG}^{+} \cdot a_{GG}^{+} \cdot a_{CG}^{+} \cdot a_{GG}^{+} \cdot a_{GG}^{$$

<u>Ergebnis:</u> Offenbar ist es wahrscheinlicher, dass es sich bei X um ein CpG-Island handelt.

Log-Odds Ratio als Score für Diskriminanzanalyse

 Eine Sequenz X ist nach diesem Modell ein CpG-Island, wenn:

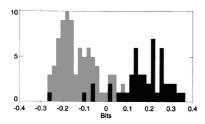
$$P(X \mid \mathsf{mod} +) > P(X \mid \mathsf{mod} -)$$

$$\frac{P(X \mid \text{mod} +)}{P(X \mid \text{mod} -)} > 1$$

$$S = \log \left[\frac{P(X \mid \text{mod} +)}{P(X \mid \text{mod} -)} \right] = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-} = \sum_{i=1}^{L} \beta_{x_{i-1}x_i} > 0$$

"Probe"

• Wir berechnen den "Score" S wieder für das Trainings-Set:



Abweichungen durch: Inkorrekte Labels im Trainings-Set, inkorrekte Bestimmung der Grenzen zwischen Island/Non-Island

sildquelle: Durbin et al. (Ed): Biological Sequence Analysis, Cambridge University Press, 1998

Nachteile Scoring-Modell

- Lange Sequenz (BAC) ?
- Übergang zwischen CpG-Island und Umgebung?

Finden von CpG-Inseln

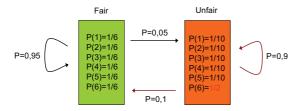
- Berechne Score S in jedem Fenster
- Probleme:
 - Laufzeit
 - · Grösse der Insel nicht bekannt

Bildquelle: Sven Schuirer

Hidden Markov Model - HMM

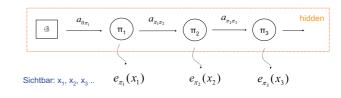
- Detektion von CpG-Inseln in langen DNA-Sequenzen
- Auffinden der Grenze zwischen CpG-Insel und dem Rest-Genom
- Übergangswahrscheinlichkeiten a⁺ und a⁻ in einem Modell

Beispiel: Casino mit 2 Würfeln



Gast sieht nur Augenzahl (Emissionen): 3 4 2 4 6 4 6 3 4 6 6 3 6 6 3 4 6 6 Der benutzte Würfel ist verborgen (state): FFFFFFFUUUUUUUUUUUUU

Hidden Markov Model



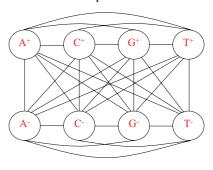
$$\begin{split} P(x,\pi) &= a_{0\pi_1} \cdot \quad e_{\pi_1}(x_1) \cdot a_{\pi_1\pi_2} \cdot \quad e_{\pi_2}(x_2) \cdot a_{\pi_2\pi_3} \cdot \quad \dots \\ P(x,\pi) &= a_{0\pi_1} \cdot \prod_{i=1}^{L} e_{\pi_i}(x_i) \cdot a_{\pi_i\pi_{i+1}} \end{split}$$

HMM für CpG-Islands

- States: A+, C+, G+, T+, A-, C-, G-, T-
- Symbole: A, C, G, T

 A^{+} C^{+} G^{+} T^{+} A^{-} C^{-} G^{+} G^{+} G^{-} T^{-} A C G G G T

HMM für CpG Inseln in DNA-Sequenz



Bildquelle: Sven Schuirer

Übergangswahrscheinlichkeiten

π/π _{i+1}	A+	C+	G+	T+	A-	C-	G-	T-
A ⁺	0.180p	0.274p	0.426p	0.120p	$\frac{1-p}{4}$	$\frac{1-p}{4}$	$\frac{1-p}{4}$	$\frac{1-p}{4}$
C+	0.171p	0.368p	0.274p	0.188p	$\frac{1-p}{4}$	$\frac{1-p}{4}$	$\frac{1-p}{4}$	$\frac{1-p}{4}$
G+	0.161p	0.339p	0.375p	0.125p	$\frac{1-p}{4}$	$\frac{1-p}{4}$	$\frac{1-p}{4}$	$\frac{1-p}{4}$
T+	0.079p	0.355p	0.384p	0.182p	$\frac{1-p}{4}$	$\frac{1-p}{4}$	$\frac{1-p}{4}$	$\frac{1-p}{4}$
A-	$\frac{1-q}{4}$	$\frac{1-q}{4}$	$\frac{1-q}{4}$	$\frac{1-q}{4}$	0.300q	0.205q	0.285q	0.210q
C-	$\frac{1-q}{4}$	$\frac{1-q}{4}$	$\frac{1-q}{4}$	$\frac{1-q}{4}$	0.322q	0.298q	0.078q	0.302q
G-	$\frac{1-q}{4}$	$\frac{1-q}{4}$	$\frac{1-q}{4}$	$\frac{1-q}{4}$	0.248q	0.246q	0.298q	0.208q
T-	$\frac{1-q}{4}$	$\frac{1-q}{4}$	$\frac{1-q}{4}$	$\frac{1-q}{4}$	0.177q	0.239q	0.292q	0.292q

Tabelle: Sven Schuirer

p = P (bleibt in CpG-Insel), q = P (bleibt in Nicht-Insel) $\approx 1-10^{-4}$

Emissionswahrscheinlichkeiten

$$e_{C^+}(C) = 1$$
; $e_{C^-}(C) = 1$ $e_{\pi_i}(C) = 0$ $\pi_i sonst$

$$e_{A^{+}}(A) = 1$$
; $e_{A^{-}}(A) = 1$ $e_{\pi_{i}}(A) = 0$ π_{i} sonst

$$e_{G^{+}}(G) = 1$$
; $e_{G^{-}}(G) = 1$ $e_{\pi_{i}}(G) = 0$ π_{i} sonst

$$e_{T^{+}}(T) = 1$$
; $e_{T^{-}}(T) = 1$ $e_{\pi_{i}}(T) = 0$ π_{i} sonst

Dekodierung

- Beobachtete Sequenz ("emissions"):
 - C G C G
- kann produziert werden von der "state"-Sequenz:
 - C+ G+ C+ G+
 - C- G- C- G-
 - C+G-C+G-
 - ... und vielen anderen ...
- Welche "state"-Sequenz ist am wahrscheinlichsten ?
 - Berechne
 - $\ P(\ X=\{ \ C, \ G, \ C, \ G \ \}, \ \ \pi=\{ \ C^+ \ G^+ \ C^+ \ G^+ \} \)$
 - $\ P(\ X{=}\{ \ C, \ G, \ C, \ G \ \}, \ \ \pi{=}\{ \ C^{{\scriptscriptstyle -}} \ G^{{\scriptscriptstyle -}} \ C^{{\scriptscriptstyle -}} \ G^{{\scriptscriptstyle -}} \} \)$
 - ... und alle anderen

HMM: Übergänge

Aus der Tabelle Übergangswahrscheinlichkeiten:

$$\begin{split} p &= 0,999 \quad q = 0,999 \\ a_{c^+G^+} &= 0,274 \cdot 0,999 = 0,2737 \\ a_{G^+C^+} &= 0,339 \cdot 0,999 = 0,3386 \end{split}$$

$$a_{C^-G^-} = 0,078 \cdot 0,999 = 0,0779$$

$$a_{G^-C^-} = 0,246 \cdot 0,999 = 0,2457$$

$$a_{C^+G^-} = (1-0.999)/4 = 0.00025$$
 klein

$$a_{_{G^-C^+}}=(1-0.999)\big/4=0.00025 \quad klein$$

HMM: $P(x,\pi) = a_{0\pi_1} \cdot \prod_{i=1}^{L} e_{\pi_i}(x_i) \cdot a_{\pi_i \pi_{i+1}}$

$$\begin{split} &P(X=C,G,C,G; \quad \pi=C^*,G^*,C^*,G^*) = \\ &= a_{oC^*} \cdot e_{c^*}(C) \cdot \quad a_{c^*G^*} \cdot e_{c^*}(G) \cdot \quad a_{c^*G^*} \cdot \quad e_{c^*}(C) \cdot \quad a_{c^*G^*} \cdot \quad e_{c^*}(G) \cdot a_{c^*G^*} \\ &= 0.5 \cdot \quad 1 \cdot \quad 0.2737 \cdot \quad 1 \cdot \quad 0.3386 \cdot \quad 1 \cdot \quad 0.2737 \cdot \quad 1 \cdot \quad 1 \quad = 0.01268 \end{split}$$

$$\begin{split} &P(X = C, G, C, G; \quad \pi = C^-, G^-, C^-, G^-) = \\ &= a_{oC^-} \cdot e_{C^-}(C) \cdot \quad a_{C^-G^-} \cdot e_{G^-}(G) \cdot \quad a_{G^-C^-} \cdot \quad e_{C^-}(C) \cdot \quad a_{C^-G^-} \cdot \quad e_{G^-}(G) \cdot a_{G^-0} \\ &= 0,5 \cdot \quad 1 \cdot \quad 0,0779 \cdot \quad 1 \cdot \quad 0,2457 \cdot \quad 1 \cdot \quad 0,0779 \cdot \quad 1 \cdot \quad 1 \quad = 0,000745 \end{split}$$

$$\begin{split} &P(X=C,G,C,G\;;\;\;\pi=C^*,G^-,C^*,G^-)=\\ &=a_{0C^*}\cdot e_{C^*}(C)\cdot \;\;a_{c^*C^*}\cdot \;\;e_{\sigma^*}(G)\cdot \;\;a_{G^*C^*}\cdot \;\;e_{G^*}(C)\cdot \;\;a_{C^*G^*}\cdot \;\;e_{\sigma^*}(G)\cdot \;\;a_{\sigma^{-0}}\\ &=0.5\cdot \quad 1\cdot \quad \quad 0.00025\cdot \quad 1\cdot \quad \quad 0.00025\cdot \quad 1\cdot \quad \quad 0.00025\cdot \quad 1\cdot \quad \quad 1 \quad =0.00000000000000018125 \end{split}$$

Ergebnis: Wahrscheinlichster "state path"

$$P(X = C, G, C, G; \pi = C^+, G^+, C^+, G^+) = 0.01268$$

$$P(X = C, G, C, G; \pi = C^-, G^-, C^-, G^-) = 0.000745$$

Es ist am wahrscheinlichsten, dass X=CGCG von einem CpG-Island stammt (unter diesen Dreien) – alle vier Symbole kommen von "+" states.

<u>Viterbi-Algorithmus</u>: Berechnung des optimalen "state path"

- Natürlich kann man nicht alle möglichen
 Pfade durchrechnen (Anzahl = |S|^N)
- → Viterbi Algorithmus ("dynamic programming")

Viterbi

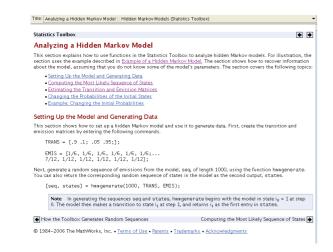
	i = 0	i = 1	i = 2	i = 3	i = 4	i = 5
	B	X ₁	X ₂	x ₃	X ₄	
B	1	-	-	-	-	-
π ₁	0 \	•		•	•	•
π ₂	0	• /	•	•	•	•
π ₃	0		•		•\	•
π ₄	0	•	•	•	•	•
π ₅	0	•	•	•	•	•

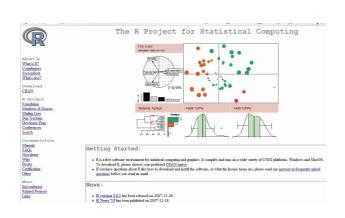
Literatur / Links

- Durbin et al (Ed.)., Biological Sequence Analysis, Cambridge University Press 1998
- A. Isaev, Introduction to Mathematical Methods in Bioinformatics, Universitext, ISBN 9783540219736
- Rabiner, L. R., A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proceedings of the IEEE, Vol. 77, No. 2, 1989
- http://www.stat.uni-muenchen.de/~semwiso/stochastische-prozesse/
- http://www.itu.dk/~sestoft/bsa.html

Software

- R Scripte:
 - CRAN: Bioconductor
 - http://www.stat.uni-muenchen.de/~semwiso/stochastische-prozesse/
 (Ludwig Fahrmeir / Christiane Belitz)
- MATLAB
 - stats package





Vielen Dank für Ihre Aufmerksamkeit

http://puffer.genpat.uu.se/LECTURES/ uwe.menzel@genpat.uu.se

Fragen

- Wieviele unterschiedliche DNA-Sequenzen der Länge L gibt es?
- Ist das Würfeln mit einem (ehrlichen) Würfel ein Markow-Prozess ? $P(x_1=3, x_2=2, x_3=5) = ...$
- Übergangsmatrix für den fairen/unfairen Würfel (S. 27)?
- Ein HMM habe L Symbole und k Zustände: Wieviel mögliche Zustands-Pfade gibt es in diesem HMM?
- Wie viele mögliche Zustandspfade gibt es für die Sequenz CGCG für das CpG-HMM (S. 29) ?
- Schwer: Unehrliches Casino: Erkläre die Bedeutung von
 - $P(X, \pi_3 = F)$
 - $P(X | \pi_3 = F)$
 - $-P(\pi_3 = F \mid X)$ (a posteriori Wahrscheinlichkeit)

Anhang

"Aufspalten" von kombinierten Wahrscheinlichkeiten

 $P(x,y) = P(x \mid y) \cdot P(y)$

 $P(A,B,C) = P(A | B,C) \cdot P(B,C)$

 $P(\vec{x}) = P(x_{\scriptscriptstyle N}, x_{\scriptscriptstyle N-1}, x_{\scriptscriptstyle N-2}, \dots, x_{\scriptscriptstyle 2}, x_{\scriptscriptstyle 1}) =$

 $P(x_N | x_{N-1}, x_{N-2}, \dots, x_2, x_1) \cdot P(x_{N-1}, x_{N-2}, \dots, x_2, x_1) =$

.... jetzt den letzten Faktor aufspalten

 $P(x_{N} \mid x_{N-1}, x_{N-2}, \dots, x_{2}, x_{1}) \cdot P(x_{N-1} \mid x_{N-2}, \dots, x_{2}, x_{1}) \cdot P(x_{N-2}, \dots, x_{2}, x_{1}) = 0$

.... jetzt wieder den letzten Faktor aufspalten

 $P(x_{_{N}}\mid x_{_{N-1}},x_{_{N-2}},\ldots,x_{_{2}},x_{_{1}})\cdot P(x_{_{N-1}}\mid x_{_{N-2}},\ldots,x_{_{2}},x_{_{1}})\cdot P(x_{_{N-2}}\mid,x_{_{N-3}}\ldots,x_{_{2}},x_{_{1}})\cdot \ldots \cdot P(x_{_{2}}\mid x_{_{1}})\cdot P(x_{_{1}})$

Homogene Markov-Kette

Definition 2.1 (Homogeneous Markov chain) A discrete-time stochastic process $\{X_k\}_{k\in\mathbb{N}}$ on a countable state space S is called a homogeneous Markov chain, if the so-called Markov property

$$\mathbb{P}[X_{k+1} = z | X_k = y, X_{k-1} = x_{k-1}, \dots, X_0 = x_0] = \mathbb{P}[X_{k+1} = z | X_k = y] \quad (1)$$

holds for every $k \in \mathbb{N}$, $x_0, \dots, x_{k-1}, y, z \in \mathbf{S}$, implicitly assuming that both sides of equation (1) are defined and, moreover, the right hand side of (1) does not depend on k, hence

$$\mathbb{P}[X_{k+1} = z | X_k = y] = \dots = \mathbb{P}[X_1 = z | X_0 = y].$$
 (2)

Wilhelm Huisinga, & Eike Meerbach

Stochastische Matrix

Definition 2.2 A matrix $P = (p_{xy})_{x,y \in S}$ is called stochastic, if

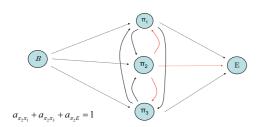
$$p_{xy} \ge 0$$
, and $\sum_{y \in S} p_{xy} = 1$ (3)

for all $x, y \in \mathbf{S}$. Hence, all entries are non-negative and the row-sums are normalized to one.

Wilhelm Huisinga, & Eike Meerbach

HMM - Grafik

Derselbe "state" kann wiederholt durchlaufen werden, daher zeichnen wir das Modell zweckmäßiger so:



Entropie einer DNA-Sequenz

Sei x_i ein Alphabet, z.B. $x_i = \{A, C, G, T\}$

$$H(X) = -\sum_{i} p(x_i) \cdot \log(p(x_i)) = -\sum_{i} p_i \cdot \log(p_i)$$

$$p(A) = p(C) = p(G) = p(T) = \frac{1}{4}$$

$$H = -\sum_{i=1}^{4} \frac{1}{4} \cdot \log_2 \left(\frac{1}{4}\right) = 2 + 2 \text{ bit}; \quad 2 \text{ Ja / Nein} - Fragen$$

Durbin et al, Chapter 11.2

HMM: combined probability of state path and observed symbols

$$P(x,\pi) = a_{0\pi_1} \cdot e_{\pi_1}(x_1) \cdot a_{\pi_1\pi_2} \cdot e_{\pi_2}(x_2) \cdot a_{\pi_2\pi_3} \cdot \dots$$

$$P(x,\pi) = a_{0\pi_1} \cdot \prod_{i=1}^{L} e_{\pi_i}(x_i) \cdot a_{\pi_i \pi_{i+1}}$$

CpG - Inseln

- Genomische Region mit relativ groβer Häufigkeit von CpG – Dinukleotiden¹
 - Observed/Expected Ratio ≥ 0,65
 - GC-Gehalt > 55%
 - Länge ≥ 500 bp
- Epigenetische Regulation der Genexpression
- Rett Syndrom

¹Takai D, Jones PA (2002). *Comprehensive analysis of CpG islands in human chromosomes 21 and 22.". Proc Natl Acad Sci USA 99 (6): 3740-5