
2 nd CeBiTec Symposium The Future of Cenome Research in the Light of Ultrafast Sequencing Technologies	 Overview Two Base Encoding in SOLiD Michael Rhodes, Applied Biosystems Assembly of short read data D.Evers, D.Platt (Forge) Heinz Himmelbauer, MPI MG, (SHARCGS) Metagenomics / Microbes Huson, Tübingen (MEGAN) Stoye, Bielefeld Richardson, JGI Exploring Transcriptomes Weber, Düsseldorf
 Two Base Encoding in the SOLiD Sequencing System Supported Oligo Ligation Detection <i>Massively parallel</i> sequencing by stepwise ligation with dye-labeled oligonucleotides up to 3 GB per run mate-pair analysis (25 bp) Complex genomes (mammalian) SNPs, CNVs, inversions, insertions, deletions 2-base encoding: calls each base twice (without much additional effort) 	 "The Next Generation is SOLiD" Product <u>specification</u> SOLiD principles: <u>pdf</u> Two Base Encoding: <u>pdf</u>. Webinars: SOLiD System Chemistry, Two Base Encoding , see <u>Homepage</u> AB
 Assembling of short reads Next generation sequencing technology: more data, shorter reads Even bigger problems with repeats Specific types of sequencing errors 	 Assembly Forge Assembler (Platt & Evers) New assembler: Forge Merge Sanger, 454, Illumina, SOLiD PC/Linux cluster MPI (Message Passing Interface)

Forge Assembler contd. • "overlap – layout – consensus" • Overlap graph: - nodes = reads - edges = overlaps between reads • 15-mer footprints as seed for 454 data • exclude overrepresented reads • linearization of the graph	 Metagenomics Study of genomes recovered from environmental samples as opposed to from clonal cultures, <u>Wikipedia</u> Sargasso Sea Project webinar (C. Venter) press release (NCBI): 1,2 M proteins (ORFs) Ultrafast sequencing technologies / Whole Genome Shotgun Sequencing
 MEGAN analysis of metagenomic data Bioinformatics challenge: methods for identifying taxonomial content of environmental samples MEtaGenome Analyzer, Uni Tübingen, free MEGAN paper 	 MEGAN approach (LCA approach) 1. Compare reads to databases, such as NCBI-nr or NCBI-nt, using BLAST(N,X,Z). 2. Determine all taxa matched by a read 3. Find the lowest node in the NCBI taxonomy that encompasses all hits of a given read - assign the read to this node (i.e. to this taxon)
 Computational chracterization of short environmental DNA fragments Identify gene fragments by alignment to Pfam strategy to find suitable reads: paper (?) "Environmental gene tags" characterize the sample: Simulation of 454 reads (readsim) from 77 complete genomes Conclusion: 454 sequencing can be used to characterize the genetic diversity & taxonomic composition of microbial communities 	 New Sequencing Strategies for Microbes Richardsen, Joint Genome Institute (JGI) Most efficient manner to sequence microbial genomes (150 genomes done) Hybrid 454/Sanger approach: coverage: 15 x 454 and 4-5 x Sanger Goal: eliminate Sanger completely

 Strategy of hybrid sequencing assemble 454 reads into contigs (Newbler) shear (in silico) into 1000 bp overlapping fragments (pseudo-Sanger) Assemble together with Sanger reads using <u>Phrap</u>, <u>PGA</u>, <u>Arachne</u> Realign with original 454 contigs 	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
 Corynebacterium continued Synteny analysis at the protein level with other corynebacterial genomes Evidence for genomic rearrangements "Bidirectional best BlastP hit analysis" of genome synteny, see <u>Sybil</u> package identify orthologous genes between genomes groups together any pair of proteins for which each is the other's best BLASTP hit problem: families of closely-related paralogs 	 Access to the plasmid mobilome of wastewater treatment plant bacteria by applying the 454-sequencing technology wastewater treatment plants are a reservoir for bacteria harbouring antibiotic resistence plasmids 350.000 454 reads 49.000 reads could be mapped to known plasmid genes deposited in the databases Annotation with: <u>GenDB</u>, <u>SAMS</u> Results: many reads represent genes involved in plasmid replication, mobilisation, and stability
 Next Generation Sequencing: Comparison of the technologies for bacterial genome sequencing K. Stangier, GATC, Konstanz, Germany A bacterial genome (6.5 MB) has been sequenced using 3 technologies: Sanger, Roche/454, <u>Illumina</u>/Solexa Recommendations: de-novo assemblies: Sanger combined with 454 SNP detection: Solexa (ultradeep coverage) re-sequencing: Illumina/Solexa Mewbler assembly can be imported to <u>DNASTAR</u> [distributor: GATC] and assembled with ABI 3730 data" 	 Sequencing wine grape: Pinot Noir Methodology: 7 x Sanger; 4.2 x 454 "highly parallel" primer walking metacontigs: end sequences of 2 BAC libraries and a fosmid library 705 metacontigs oriented and ordered using genetic markers (F1 of Syrah x Pinot Noir) Detailed data

Assembly and Annotation of short read data sets

- · Himmelbauer, MPI for Molecular Genetics
- · de-novo assembling of genomic sequences from short-read data
- SHARCGS (SHort-read Assembler based on Robust Contig-extension for Genome Sequencing)
- 25-50mer reads
- · BAC inserts, yeast chromosomes, bacteria

generation is based on signal averaging where all aligned flowgram signals at each position are averaged and the final base call is done on the averaged signal. The signal averaging allows higher quality consensus base calls.