
BINARY SIMPLE HOMOGENEOUS STRUCTURES

VERA KOPONEN

Abstract. We describe all binary simple homogeneous structures M in terms of ∅-
de�nable equivalence relations on M , which �coordinatize� M and control dividing,
and extension properties that respect these equivalence relations.
Keywords: model theory, homogeneous structure, simple theory.

1. Introduction

We describe the �ne structure of binary simple homogeneous structures to the extent that
seems feasible without further assumptions and with known concepts and methods from
in�nite model theory. In this respect, this article completes the earlier work on this topic
by Aranda Lopéz [3], Ahlman [2] and the present author [2, 19, 20, 21]. Before discussing
the results, we explain what �homogeneity� means here, and give some background.

We call a structureM homogeneous if it is countable, has a �nite relational vocabulary
(also called signature) and every isomorphism between �nite substructures ofM can be
extended to an automorphism ofM. For a countable structureM with �nite relational
vocabulary, being homogeneous is equivalent to having elimination of quanti�ers [16,
Corollary 7.42]; it is also equivalent to being a Fraïssé limit of an amalgamation class of
�nite structures [10, 16]. A structure with a relational vocabulary will be called binary
if every relation symbol is unary or binary. Certain kinds of homogeneous structures
have been classi�ed. This holds for homogeneous partial orders, graphs, directed graphs,
�nite 3-hypergraphs, and coloured multipartite graphs [4, 12, 13, 22, 25, 27, 26, 30, 31].
For a survey about homogeneous structures, including their connections to permutation
groups, Ramsey theory, topological dynamics and constraint satisfaction problems, see
[29] by Macpherson.

A detailed theory, due to Lachlan, Cherlin, Harrington, Knight and Shelah [5, 17,
22, 23, 24], exists for stable in�nite homogeneous structures, for any �nite relational
language, which describes them in terms of (�nitely many) dimensions and ∅-de�nable
indiscernible sets (which may live inMeq); see [23] for a survey. This theory also sheds
light on �nite homogeneous structures. But we seem to be a very long way from a
classi�cation of (even binary) �nite homogeneous structures. This has consequences for
(eventual) classi�cations of in�nite homogeneous structures, for the following reason.
Suppose that N is a �nite (binary) homogeneous structure. LetM be the disjoint union
of ω copies of N and add an equivalence relation such that each equivalence class is ex-
actly the set of elements in some copy of N . ThenM is a (binary) stable homogeneous
structure. Hence a classi�cation of all (binary) stable homogeneous structures presup-
poses an equally detailed classi�cation of all (binary) �nite homogeneous structures.
Thus we ignore the inner structure of such (�very local�) �nite �blocks� as the copies of
N in the example, and focus on the �global �ne structure� of an in�nite structureM.

The notion of simplicity generalizes stability and implies that there is a quite useful
notion of independence. Moreover, there are interesting (binary) simple homogeneous
structures which are unstable, such as the Rado graph and (other) homogeneous metric
spaces with a �nite distance set. (More about this is Section 7.4.) From this point of
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view it is natural, and seems feasible, to study simple homogeneous structures. From
now on when saying that a structure is simple we assume that it is in�nite, so �simple
and homogeneous� implies that it is countably in�nite. The theory of binary simple
homogeneous structures has similarities to the theory of stable homogeneous structures,
but also di�erences. Every stable (in�nite) homogeneous structure is ω-stable, hence
superstable, with �nite SU-rank (which is often called U-rank in the context of stable
structures). Analogously, every binary simple homogeneous structure is supersimple with
�nite SU-rank (which is bounded by the number of 2-types over ∅) [19]. However, the
rank considered in the work on stable homogeneous structures is Shelah's �CR( , 2)-rank�
[32, p. 55]. This rank is �nite for stable homogeneous structures, but it is in�nite for
the Rado graph. IfM is stable (in�nite) and homogeneous and C ⊆M eq is ∅-de�nable
and such that, on C, there is no ∅-de�nable nontrivial equivalence relation, then C is an
indiscernible set. This is not true in general for (binary) simple homogeneous structures,
as witnessed again by the Rado graph.

Suppose that M is binary, simple, and homogeneous. We already mentioned that
Th(M), the complete theory ofM, is supersimple with �nite SU-rank. It is also known
that Th(M) is 1-based and has trivial dependence/forking [21, Fact 2.6 and Remark 6.6].
If M is, in addition, primitive, then M has SU-rank 1 and is a random structure [21].
(See Section 2.3 for a de�nition of `primitive structure'.) Before stating the main results
of this article, we note that, although the de�nition (above) of `homogeneous structure'
involves the assumption that the structure is countable, the main results hold for every
model of Th(M). The reason is that,M (being homogeneous) is ω-categorical and hence
ω-saturated. So if elements could be found in some N |= Th(M) such that one of the
statements (a)�(d) below fails in N , then such elements could also be found inM.

Main results (Theorems 5.1 and 6.2). Suppose that M is binary, simple, and homo-
geneous (hence supersimple with �nite SU-rank and trivial dependence). Let R be the
(�nite) set of all ∅-de�nable equivalence relations on M . If a ∈M and R ∈ R, then aR
denotes the R-equivalence class of a as an element of M eq.

(a) Coordinatization by equivalence relations: For every a ∈ M , if SU(a) = k, then
there are R1, . . . , Rk ∈ R, depending only on tp(a), such that a ∈ acl(aRk),
SU(aR1) = 1, Ri+1 ⊂ Ri and SU(aRi+1/aRi) = 1 for all 1 ≤ i < k (or equiva-
lently, SU(a/aRi) = k − i for all 1 ≤ i ≤ k).

(b) Characterization of dividing: Suppose that a, b, c̄ ∈ M and a |̂�
c̄
b. Then there is

R ∈ R such that a |̂�
c̄
aR and aR ∈ acl(b) (and thus aR /∈ acl(c̄)).

(c) Characterization of dividing in the symmetric case: Suppose that all binary ∅-
de�nable relations on M are symmetric. If a, b, c̄ ∈ M and a |̂�

c̄
b, then there is

R ∈ R such that a |̂�
c̄
aR and R(a, b) (hence aR ∈ acl(b), aR /∈ acl(c̄) and thus

¬R(a, c) for every c ∈ c̄).
(d) Extension properties: Let a, b, c, d̄ ∈M .

(i) There is R ∈ R such that c |̂
cR
d̄.

(ii) If for some R as in part (i),
a |̂
cR
c, b |̂

cR
d̄ and tp(a/acl(cR)) = tp(b/acl(cR)), where `acl' is taken inM eq,

then there is e ∈M such that tp(e, c) = tp(a, c) and tp(e, d̄) = tp(b, d̄). Otherwise
such e may not exist (in any elementary extension ofM), not even when d̄ is a
single element.

In parts (b) and (c) we only consider singletons a and b becauseM has trivial dependence.
We will show (in Section 7.2) that the �symmetry condition� in part (c) cannot be
removed; in other words, the conclusion in part (b) cannot be strengthened so that it
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becomes identical to the conclusion in part (c). Further remarks on (a)�(c) are made in
Remark 5.2. Regarding part (d)(ii), the conditions that a |̂

cR
c, b |̂

cR
d̄ and tp(a/acl(cR)) =

tp(b/acl(cR)) are just the premisses (in the present context) of the independence theorem
for simple theories. So the interesting part, with respect to (d)(ii), is that if (for every
R as in (i)) these premisses are not satis�ed, then a �common extension� may not exist.
Thus we do not, in general, get anything �for free� beyond what the independence theorem
guarantees. From this, one may get the impression that common extensions of types like
in (d) are unusual. But note that, by part (i) of (d), we can always �nd a ∅-de�nable
equivalence relationR such that c |̂

cR
d̄. Therefore I would say that (by part (ii) of (d)), in a

binary simple structure, common extensions of two types do exist as long as we respect all
∅-de�nable equivalence relations and some other �reasonable� conditions related to them.
The examples in sections 7.1 � 7.3 show that these conditions are, in fact, necessary. The
reason that (d) only considers an extension of two 1-types (one of which has only one
parameter c) is that, since M is binary with elimination of quanti�ers, the problem of
extending more than two k-types (with �nite parameter sets) can be reduced to a �nite
sequence of �extension problems�, each of which involves only two 1-types and one of the
types has only one parameter. More about this is said in the beginning of Section 6.

From the proofs of the main results, one can extract information about ω-categorical
(not necessarily binary or homogeneous) supersimple structures with �nite SU-rank and
trivial dependence. This information is presented in Corollaries 5.3 and 5.4, and may be
useful in future studies of nonbinary simple homogeneous structures.

Now we turn to problems about simple homogeneous structures. If M is stable and
homogeneous, thenM has the �nite submodel property, which means that every sentence
which is satis�ed byM is satis�ed by a �nite substructure of it, and Th(M) is decidable.
(For the �rst result, see [23, Proposition 5.1] or [17, Lemma 7.1]; for the second, see
the proof of Theorem 5.2 in [23].) It is still not settled whether every binary simple
homogeneous structure has the �nite submodel property, nor whether its theory must be
decidable. But my guess is that the answer is `yes' to both questions.

Regarding nonbinary simple homogeneous structures, I would say that all core prob-
lems are unsolved. The answer is unknown to each of these questions, where we assume
that M is (nonbinary) simple and homogeneous: Must Th(M) be supersimple? If
Th(M) is supersimple, must it have �nite SU-rank?. Must Th(M) be 1-based? Must
Th(M) have trivial dependence? (IfM is supersimple, the last two problems are tightly
connecteds to the problem of which kinds of de�nable pregeometries, induced by alge-
braic closure, there can be on the realizations, in M eq, of types of SU-rank 1.) If M
is supersimple with SU-rank 1, what possibilities are there for the �ne structure of M
(according to some �reasonably� informative classi�cation)? Even if we add `primitivity'
and `trivial dependence' to the assumptions of the last question, the answer is unknown.

Here follows an outline of the article. Section 2 explains the notation and terminology
that will be used, and gives background regarding homogeneous (or just ω-categorical)
simple structures. Section 3 describes the �coordinatization� developed in [9, Section 3]
for ω-categorical, supersimple structures with �nite SU-rank and trivial dependence (or
equivalently, ω-categorical simple 1-based structures with trivial dependence). This co-
ordinatization will be the framework in Sections 4 and 5. In Section 4 we prove the main
technical lemmas, on which the main results rest. In Section 5 we prove (a)�(c) from
the main results above. (This involves proving that every �coordinate� in the sense of
Section 3 is interalgebraic with a new coordinate aR where a ∈M and R is a ∅-de�nable
equivalence relation onM .) In Section 6 we partially prove part (d) above, with the help
of part (b). To complete the proof of (d), we also need to construct �counterexamples�,
which is done in Sections 7.1 � 7.3. Section 7.4 is an exposition of results by Conant [7]
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about homogeneous metric spaces, which concretize the main results of this article in
that context.

2. Preliminaries

2.1. Notation and terminology. Structures will be denoted by calligraphic letters,
usuallyM or N in which case their universes are denoted M or N , respectively. Finite
sequences (and only �nite sequences) are denoted by ā, b̄, . . . , x̄, ȳ, . . .. The concatenation
of ā and b̄ is denoted āb̄, but sometimes we also write (ā, b̄) (like when using the type
notation tp(ā, b̄)). The set of elements that occur in ā (in other words, the range/image
of ā) is denoted rng(ā). But when the order of ā does not matter, we often abuse notation
and (notationally) identify the sequence ā with the set rng(ā). So we may write things
like `a ∈ ā' instead of 'a ∈ rng(ā)'. When a, b and c are single elements we sometimes
write `ab' for the pair `(a, b)', or `abc' for the triple `(a, b, c)', and similarly for longer
tuples. Further, we often write `ā ∈ A' when meaning that ā is a �nite sequence such
that rng(ā) ∈ A. If we may emphasize that the length of ā (denoted |ā|) is n, then we
may write ā ∈ An.

As usual, `aclM', `dclM', and `tpM' denote the algebraic closure, de�nable closure,
and type (of a set or sequence) in the structureM; and if A ⊆ M , then SMn (A) is the
set of n-types over A with respect to Th(M), the complete theory ofM. The notation
`ā ≡M b̄' means the same as `tpM(ā) = tpM(b̄)'. The notation `ā ≡atM b̄' means that
ā and b̄ satisfy exactly the same atomic formulas with respect to M. In sections 3 � 6
the structureM is �xed and we work inMeq, so for brevity we will, in those sections,
omit the subscript `Meq' and write for example `tp' instead of `tpMeq '. We remind about
this again in Notation 3.1. If p(x̄) is a type (or formula), then p(M) denotes the set of
realizations of p inM.

If R is a ∅-de�nable equivalence relation onMn for some n < ω, then we may also call
R a sort. For every such R and every ā ∈Mn, [ā]R denotes the R-equivalence class of ā.
When we view [ā]R as an element of M eq we write āR to emphasize this. If A ⊆ M eq

then we say that only �nitely many types are represented in A if there are only �nitely
many sorts R such that for some n < ω and ā ∈Mn, āR ∈ A.

When saying that M is ω-categorical, (super)simple, 1-based, or that M has �nite
SU-rank, then we mean that Th(M) is ω-categorical, (super)simple, 1-based, or that
Th(M) has �nite SU-rank, respectively.

A pregeometry (or matroid) is a pair (X, cl) where X is a set and cl : P(X) → P(X)
satis�es certain conditions (see [16, Chapter 4.6]). We say that a pregeometry (X, cl) is
trivial if for all Y ⊆ X, cl(Y ) =

⋃
a∈Y cl({a}).

2.2. ω-Categorical structures. Since homogeneous structures have elimination of quan-
ti�ers, it follows from the well-known characterization of ω-categoricity [16, Theorem 7.3.1],
that every in�nite homogeneous structure is ω-categorical. We now state some basic facts
aboutMeq whenM is ω-categorical. These will tacitly be used throughout the article.

Fact 2.1. Suppose thatM is ω-categorical and assume that only �nitely many sorts are
represented in A ⊆M eq.

(i) For every n < ω and every �nite B ⊆ M eq, only �nitely many types from
SM

eq

n (aclMeq(B)) are realized by tuples in An.
(ii) For every �nite B ⊆M eq, A ∩ aclMeq(B) is �nite.
(iii) For every ā ∈ M eq and every �nite B ⊆ M eq, the types tpMeq(ā/B) and

tpMeq(ā/aclMeq(B)) are isolated.

For some explanations of the above claims, see [2, Section 2.4]. Part (iii) of Fact 2.1 will
usually not be used in the form stated above, but rather we use the following (namely
ω-homogeneity and a variant of it), which are proved straightforwardly from Fact 2.1 (iii):
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Fact 2.2. Suppose thatM is ω-categorical.

(i) If ā, b̄, c ∈M eq and ā ≡Meq b̄, then there is d ∈M eq such that āc ≡Meq b̄d.
(ii) If ā, b̄, c̄, ē ∈M eq and

tpMeq

(
ā/aclMeq(ē)

)
= tpMeq

(
b̄/aclMeq(ē)

)
,

then there is d̄ ∈M eq such that

tpMeq

(
āc̄/aclMeq(ē)

)
= tpMeq

(
b̄d̄/aclMeq(ē)

)
.

2.3. Simple homogeneous structures. We assume basic knowledge about simple
structures as can be found in [34], for instance, but nevertheless recall a couple of things.
When saying that a structure is simple we automatically assume that it is in�nite.1 Since
ω-categorical simple theories have elimination of hyperimaginaries [34, Corollary 6.1.11],
the independence theorem of simple theories [34, Theorem 2.5.20] takes the following
form if the involved sets of parameters are �nite andM is ω-categorical and simple:

Suppose that ā, b̄ ∈M eq, A,B,C ⊆M eq are �nite, ā |̂
C
A, b̄ |̂

C
B, and

tpMeq

(
ā/aclMeq(C)

)
= tpMeq

(
b̄/aclMeq(C)

)
.

Then there is d̄ ∈M eq such that

tpMeq

(
d̄/A ∪ aclMeq(C)

)
= tpMeq

(
ā/A ∪ aclMeq(C)

)
and

tpMeq

(
d̄/B ∪ aclMeq(C)

)
= tpMeq

(
b̄/B ∪ aclMeq(C)

)
.

Note that ifM is ω-categorical and supersimple with �nite SU-rank, then (since SM1 (∅)
is �nite) there is n < ω such that SU(p) ≤ n for every p ∈ SM1 (∅). Before recalling what
is known from before about binary simple homogeneous structures, we give the de�nition
of trivial dependence (also called `totally trivial forking' in [14]).

De�nition 2.3. A simple complete theory T has trivial dependence if for allM |= T and
all A,B,C ⊆ M eq, if A |̂�

C
B, then A |̂�

C
b for some b ∈ B. We say that a simple structure

M has trivial dependence if Th(M) has it.

Fact 2.4. Suppose thatM is binary, simple, and homogeneous. Then:

(i) M is supersimple with �nite SU-rank (which is bounded by the number of complete
2-types over ∅).

(ii) M has trivial dependence.
(iii) M is 1-based.

Part (i) is given by [19, Theorem 1]. Parts (ii) and (iii) are consequences of [19, Corol-
lary 6], [14, Lemma 1], [15, Corollary 4.7], [8, Corollary 3.23] and [28, Theorem 1.1]; this
is explained in more detail in the text surrounding Fact 2.6 in [21] and in Remark 6.6 of
the same article.

We call a structureM primitive if there there is no nontrivial ∅-de�nable equivalence
relation on M (where by nontrivial we mean that there are at least two equivalence
classes and at least one equivalence class has at least two elements).

Fact 2.5. Suppose thatM is binary, primitive, simple and homogeneous. Then:

(i) M has SU-rank 1.
(ii) M is a random structure in the sense of [21, De�nition 2.1].

1 Thus we do not follow the terminology of the work on stable homogeneous structures, where every
�nite structure is considered to be stable.
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Part (i) is given by [21, Theorem 1.1]. Part (ii) is a consequence of part (i) and [3,
Proposition 3.3.3], where the later result says that every binary simple homogeneous
structure of SU-rank 1 is a random structure. From Theorem 5.1 (i) (i.e. part (a) of the
`main results' in the introduction), it follows that part (i) of Fact 2.5 still holds if the
assumption about `primitivity' is replaced by the condition that there is no ∅-de�nable
equivalence relation on M which has in�nitely many in�nite equivalence classes.

Fact 2.5 (i) fails without the binarity condition as shown by Example 2.7 in [21],
which is primitive, homogeneous, and superstable with SU-rank 2 (but nonbinary). It
is also not a random structure. Consequently also part (ii) of Fact 2.5 fails without the
binarity condition. But in fact it fails (without the binarity condition) in a stronger
sense. Because the generic tetrahedron-free 3-hypergraph is primitive, homogeneous,
supersimple with SU-rank 1 and 1-based, but not a random structure. All mentioned
properties of the generic tetrahedron-free 3-hypergraph, except for the 1-basedness, have
been known for a long time. Results which imply that it is 1-based were recently proved
by Conant [6] and by the present author [21].

3. Coordinatization

Throughout this section we assume thatM is ω-categorical, supersimple with �nite SU-
rank and trivial dependence (hence it is 1-based). Then the �coordinatization� results of
Section 3 in [9] apply to M. We will now go through these results, since they are the
framework in which the arguments of sections 4 � 6 take place.

Notation 3.1. In this section and Sections 4 � 6, `tp', `≡', `acl', and `dcl' will abbreviate
`tpMeq ', `≡Meq ', `aclMeq ', and `dclMeq ', respectively.

The basic idea with a coordinatization of M is that we want to �nd a �xed set of
�coordinates� such that only �nitely many 1-types over ∅ are realized in it and if a ∈M
and SU(a) = n, then there are coordinates (of a) c1, . . . , cn such that the �place� of
a in M is approximated with higher and higher precision by the sequences c1, c1c2,
c1c2c3, . . . , c1c2c3 . . . cn. More technically speaking, we wish to �nd C ⊆ M eq such that
M ⊆ C, only �nitely many 1-types over ∅ are realized in C and if a ∈ C has SU-
rank n, then there are c1, . . . , cn ∈ C such that SU(a/c1, . . . , ck) = n − k for every
1 ≤ k ≤ n. Actually, for the set C that we consider below only a subset of C will be our
set of �coordinates�. This set of coordinates (denoted Cr below) has a number of useful
properties which are listed in the facts below. Among other things, the coordinates can
be partitioned into �nitely many levels: the �rst level contains all coordinates of SU-rank
1 over ∅, the second level consists of all coordinates of SU-rank 1 over the �rst level and
so on. Below, Ck is the union of the �rst k levels (for technical reasons we have also a
level C0 which is empty). Another property of the coordinates is that all coordinates of
an element belong to its algebraic closure. Moreover (as said in Lemma 3.7), for tuples
ā, b̄, c̄, whether ā is independent from b̄ over c̄ is entirely determined by the coordinates
of ā, b̄ and c̄. We now continue with the technical notions and results that will be used
later.

Fact 3.2. Let U ⊆M eq and suppose that only �nitely many sorts are represented in U .
Then there are 0 < r < ω and

C0 ⊆ C1 ⊆ . . . ⊆ Cr ⊆ C ⊆M eq

such that:

(i) U ⊆ C, only �nitely many sorts are represented in C, and C is self-coordinatized
in the sense of [9, De�nition 3.3].

(ii) C and Ci are ∅-de�nable, for every i = 1, . . . , r.
(iii) C0 = ∅ and, for every n < r and every c ∈ Cn+1 \ Cn, SU(c/Cn) = 1.
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(iv) C ⊆ acl(Cr).
(v) For every 1 < n ≤ r and every c ∈ Cn, acl(c) ∩ Cn−1 6= ∅.

Assumption 3.3. In the rest of this section we suppose the following:

(a) M ⊆ U ⊆M eq and only �nitely many sorts are represented in U .
(b) C and Ci, for i = 0, . . . , r, are as in Fact 3.2.

We can think of Cr as set coordinates of C (and hence of M) and we call r the height of
the coordinatization.

De�nition 3.4. (i) For every c̄ ∈ C and every 0 ≤ s ≤ r, let crds(c̄) = acl(c̄) ∩ Cs.
(ii) We abbreviate `crdr' with `crd'.

Observe that for every c̄ ∈ C, crd(c̄) is �nite. We can think of crd(c̄) as the coordinates
of c̄ (with respect to the given coordinatization Cr) and crds(c̄) as the coordinates of c̄
up to �level� s.

Fact 3.5. (i) If c ∈ Cr, d1, . . . , dn ∈ M eq and c ∈ acl(d1, . . . , dn), then c ∈ acl(di)
for some 1 ≤ i ≤ n.

(ii) For every 0 < s ≤ r, (Cs \ Cs−1, cl), where cl(A) = acl(A) ∩ (Cs \ Cs−1) for all
A ⊆ Cs \ Cs−1, is a trivial pregeometry

(iii) For every c̄ ∈ C and every 0 ≤ s ≤ r, crds(c̄) =
⋃
c∈rng(c̄) crds(c). Thus the same

holds for `crd' in place of `crds'.
(iv) For all c̄ ∈ C, acl(c̄) = acl(crd(c̄)).
(v) For all ā, b̄ ∈ C, ā is independent from b̄ over crd(ā) ∩ crd(b̄).

Part (i) above is [9, Lemma 3.16]; part (ii) is an immediate consequence of [9, Lemma 3.18],
because Cs \Cs−1 is a ∅-de�nable set and a subset of the (∅-de�nable) set Ns considered
there [9, Construction 3.13]; part (iii) is [18, Lemma 5.4]. By de�nition, crd(c̄) ⊆ acl(c̄),
so to prove (iv) it su�ces to show that c̄ ∈ acl(crd(c̄)). By [9, Lemma 5.1], for every c ∈ c̄,
c ∈ acl(crd(c)). Thus the conclusion now follows from part (iii). Regarding part (v):
Let c̄ enumerate crd(ā) and let d̄ enumerate crd(b̄). By part (iv), acl(ā) = acl(c̄) and
acl(b̄) = acl(d̄), so acl(crd(ā) ∩ crd(b̄)) = acl(crd(c̄) ∩ crd(d̄)). Therefore it su�ces to
prove that c̄ is independent from d̄ over crd(c̄) ∩ crd(d̄). Since c̄, d̄ ∈ Cr, this is exactly
the content of [18, Lemma 5.16].

We note the following strengthening of part (iii) of Fact 3.2:

Fact 3.6. Let 0 ≤ n < r. For every c ∈ Cn+1 \ Cn, SU(c/crdn(c)) = 1.

Proof. Suppose that c ∈ Cn+1 \ Cn. By Fact 3.2 (iii), SU(c/Cn) = 1. By supersimplic-
ity, there is d̄ ∈ Cn such that SU(c/d̄) = 1. Fact 3.5 (v) implies that c is independent
from d̄ over crd(c) ∩ crd(d̄), so SU(c/crd(c) ∩ crd(d̄)) = 1. Since d̄ ∈ Cn it follows from
Fact 3.2 (iii) that crd(d̄) ⊆ Cn. Therefore SU(c/crdn(c)) = 1. �

The following generalization of Fact 3.5 (v) will be convenient to use.

Lemma 3.7. Suppose that ā, b̄, c̄ ∈ C. Then ā |̂
c̄
b̄ if and only if crd(ā)∩ crd(b̄) ⊆ acl(c̄).

Proof. Suppose that crd(ā) ∩ crd(b̄) ⊆ acl(c̄). By extending the sequence c̄ with new
elements from crd(ā) ∩ crd(b̄), if necessary, we may assume that crd(ā) ∩ crd(b̄) ⊆ c̄. By
Fact 3.5 (iii), crd(b̄c̄) = crd(b̄)∪ crd(c̄), so by Fact 3.5 (v), ā is independent from b̄c̄ over

crd(ā) ∩
(
crd(b̄) ∪ crd(c̄)

)
=
(
crd(ā) ∩ crd(b̄)

)
∪
(
crd(ā) ∩ crd(c̄)

)
.

So by monotonicity and the assumption that crd(ā) ∩ crd(b̄) ⊆ c̄, it follows that ā is
independent from b̄c̄ over c̄. Hence ā is independent from b̄ over c̄.
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Now suppose that ā |̂
c̄
b̄. For a contradiction, suppose that d ∈ crd(ā) ∩ crd(b̄) and

d /∈ acl(c̄). Then SU(d/c̄) ≥ 1. Using that acl(ā) = acl(crd(ā)) (by Fact 3.5 (iv), we get,
by the Lascar equation,

SU(ā/c̄) = SU(ād/c̄) = SU(ā/dc̄) + SU(d/c̄).

Hence SU(ā/dc̄) < SU(ā/c̄). Therefore ā |̂�
c̄
d, and as d ∈ crd(b̄) ⊆ acl(b̄), we get ā |̂�

c̄
b̄. �

De�nition 3.8. For every 0 ≤ s ≤ r and all a, b ∈ C, let
Es(a, b) ⇐⇒ crds(a) = crds(b) and tp

(
a
/

acl(crds(a))
)

= tp
(
b
/

acl(crds(b))
)
.

From Fact 2.1 (iii) it is straightforward to derive the following:

Fact 3.9. For every 0 ≤ s ≤ r, Es is a ∅-de�nable equivalence relation on C.

Lemma 3.10. We may, without loss of generality, assume that Cr has the following
property: for all a, b ∈M and all c ∈ Cr, if ac ≡ bc then tp(a/acl(c)) = tp(b/acl(c)).

Proof. Let c ∈ Cr and q(x) = tp(c). Suppose that there are a, b ∈ M such that
tp(a/acl(c)) 6= tp(b/acl(c)). By Fact 2.1 (i), only �nitely many complete types over
acl(c) are realized in M . By part (iii) of the same fact, each such type is isolated. Let
p1, . . . , pn enumerate all complete 1-types over acl(c) which are realized in M . For each
i, choose a formula that isolates pi and let d̄i be the parameters (from acl(c)) that occur
in that formula. Let d̄ = cd̄1 . . . d̄n. Then acl(d̄) = acl(c). As Meq has elimination of
imaginaries, there is d ∈ M eq such that dcl(d) = dcl(d̄). Let q′ = tp(d). Now remove
from C all c′ ∈ C which realize q and then add to what is left of C all d′ ∈ M eq which
realize q′. Then the modi�ed C has the property that whenever a, b ∈ M , c ∈ C, c
realizes q′ and ac ≡ bc, then tp(a/acl(c)) = tp(b/acl(c)). Since (by Assumption 3.3)
only �nitely many types over ∅ are realized in C, it follows that we can continue this
procedure in �nitely many steps and get (new) C and Cr ⊆ C such that the conclusion
of the lemma holds. Since the types q and q′ above are isolated and every change of
element in this process, say from c to d, is such that acl(c) = acl(d), it follows that the
new C and C0 ⊆ . . . ⊆ Cr that we get have all the properties of the earlier facts and
lemmas in this section. �

4. The main technical lemmas

Throughout this section we assume that M is binary, simple, and homogeneous. By
Fact 2.4, M is supersimple, 1-based, with �nite SU-rank and with trivial dependence.
We thus adopt Assumption 3.3, as well as Notation 3.1. However, the assumption that
M is binary and homogeneous (as opposed to only ω-categorical) is only used once at
the end of the proof of Lemma 4.2 and once at the end of the proof of Lemma 4.6.

The goal of this section is to prove the following:

For all 0 < s ≤ r, a ∈ M and c1, c2 ∈ crds(a) \ Cs−1, if c1
|̂

crds−1(a)
c2 then

ac1 6≡ ac2.

This is also the statement of Lemma 4.6. It will be used in the next section where
we show that we can choose the coordinates to be imaginaries de�ned by ∅-de�nable
equivalence relations on M (rather than on Mn for some n > 1), and that dividing is
controlled by these equivalence relations.
For the rest of this section we �x (an arbitrary) 0 < s ≤ r.

Remark 4.1. (The intuition behind Lemma 4.2.) Let C be the structure where C = N
and the vocabulary of C is empty. Let G be the set of all 2-element subsets of C. Turn
G into a graph G by saying that a, b ∈ G are adjacent if and only if their intersection
is a singleton. Since C is ω-categeorical and stable and G is interpretable in C (without
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parameters) it follows, for example by [16, Theorem 7.3.8] and [32, Ch. III, Lemma 6.7],
that G is ω-categorical and stable, in fact superstable with SU-rank 2, which follows
by a straightforward argument using the de�nition of dividing. However, G is not ho-
mogeneous, because it is easy to see that the following two triples of elements from G
satisfy the same quanti�er-free formulas, but not the same formulas with quanti�ers:
({1, 2}, {2, 3}, {1, 3}), ({1, 2}, {1, 3}, {1, 4}). Note that the intersection of the elements
in the �rst triple is empty, but the intersection of the elements in the second triple is
nonempty.

The idea of the proof of Lemma 4.2 is as follows, where we let crds(a) abbreviate
`crds(a) \ Cs−1' : If a ∈ M and c1, c2 ∈ crds(a) satisfy the premisses of the lemma,
and Es−1(c1, c2), then we can �nd a, a′, a′′, a∗ ∈ M such that aa′′ ≡ aa∗ and a′a′′ ≡
a′a∗, but aa′a′′ 6≡ aa′a∗. This is done by choosing the elements in such a way that
crds(a) ∩ crds(a

′) ∩ crds(a
′′) = ∅ and crds(a) ∩ crds(a

′) ∩ crds(a
∗) 6= ∅.

The proof of Lemma 3.9 in [20] builds on the same idea. But in its context, s = 1
so all elements of Cs have SU-rank 1. Then, by [2, Theorem 5.1], the �canonically
embedded structure� (inMeq) with universe C1, is, modulo �dividing out by the relation
acl(x) = acl(y)�, a reduct of a binary random structure. This simpli�ed the arguments
in the proof of [20, Lemma 3.9]. Here we use only (besides the given coordinatization)
properties of forking/dividing and, in particular, the independence theorem for simple
structures; but the arguments become more intricate.

Lemma 4.2. If a ∈M , c1, c2 ∈ crds(a) \ Cs−1, ac1 ≡ ac2 and c1
|̂

crds−1(c1)
c2, then

tp
(
c1/acl(crds−1(c1))

)
6= tp

(
c2/acl(crds−1(c1))

)
, and hence

tp
(
c1/acl(crds−1(a))

)
6= tp

(
c2/acl(crds−1(a))

)
.

Proof. For a contradiction suppose that there are a ∈ M and c1, c2 ∈ crds(a) \ Cs−1

such that

(4.1) ac1 ≡ ac2, c1
|̂

crds−1(c1)
c2, and

(4.2) tp(c1/acl(crds−1(c1))) = tp(c2/acl(crds−1(c1))).

Note that this implies that crds−1(c1) = crds−1(c2), so

(4.3) Es−1(c1, c2).

By (4.1) there is c∗1 ∈ C such that

(4.4) ac1c2 ≡ ac2c
∗
1.

Then

(4.5) c∗1 ∈ crds(a) \ Cs−1 and c2
|̂

crds−1(c1)
c∗1.

From (4.3), (4.4) and Fact 3.9 we also get

Es−1(c2, c
∗
1).(4.6)

By (4.1), (4.5), (4.6) and the independence theorem there is c′2 ∈ Cs \ Cs−1 such that

(4.7) c1c
′
2 ≡ c1c2 ≡ c2c

′
2 and c′2

|̂
crds−1(c1)

c1, c2.

In addition, we may, without loss of generality, assume that

(4.8) c′2
|̂

c1c2
a,

because if this is not the case then we can replace c′2 by a realization of a nondividing
extension of tp(c′2/c1, c2) to {a, c1, c2} (and recall that crds−1(c1) ⊆ acl(c1)).
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Since (by Fact 3.2 (iii)) SU(c′2/crds−1(c1)) ≥ 1, it follows from c′2
|̂

crds−1(c1)
c1c2 (see (4.7))

that c′2 /∈ acl(c1, c2). From this together with (4.8) we get

(4.9) c′2 /∈ acl(a) so c′2 /∈ crds(a).

From (4.7), (4.8) and transitivity, we get

(4.10) c′2
|̂

crds−1(c1)
a.

By (4.7) there are a′, a′′ ∈M such that

(4.11) a′c1c
′
2 ≡ ac1c2 ≡ a′′c2c

′
2.

By considering nondividing extensions if necessary we may assume, without loss of gen-
erality, that

(4.12) a′ |̂
c1c′2

a and a′′ |̂
c2c′2

aa′.

Before continuing, observe that for every c ∈ Cs, crd(c) = crds(c) ⊆ Cs, because of
Fact 3.2 (iii).

Claim 4.3.

crd(a) ∩ crd(a′) = crd(c1),(4.13)

crd(a) ∩ crd(a′′) = crd(c2), and(4.14)

crd(a′) ∩ crd(a′′) = crd(c′2).(4.15)

Proof of the claim. First note that by the choice of a, c1 and c2, and by (4.11), we get
c1 ∈ crd(a)∩ crd(a′)∩Cs. Hence crd(c1) ⊆ crd(a)∩ crd(a′). From (4.12) and Lemma 3.7
we get

(4.16) crd(a) ∩ crd(a′) ⊆ acl(c1, c
′
2).

Regarding (4.13), it remains to prove that crd(a) ∩ crd(a′) ⊆ crd(c1). Suppose that
d ∈ crd(a) ∩ crd(a′). By (4.16) and Fact 3.5 (i), d ∈ acl(c1) or d ∈ acl(c′2). If d ∈ acl(c1)
then we have d ∈ crd(c1).

Suppose that d ∈ acl(c′2). Hence d ∈ crd(a)∩crd(c′2). From (4.10) we have c′2
|̂

crds−1(c1)
a,

so by Lemma 3.7 we get d ∈ acl(crds−1(c1)) and hence (by the de�nition of crds−1)
d ∈ crd(c1). Thus we have proved (4.13).

Observe that (4.13) and Lemma 3.7 imply that

(4.17) a |̂
c1
a′.

If c2 ∈ acl(a′) then, as c2 ∈ acl(a), it follows from (4.17) and Lemma 3.7 that c2 ∈ acl(c1),
but this contradicts (4.1). Hence,

(4.18) c2 /∈ acl(a′)

Now we prove (4.14). From (4.11) it follows that c2 ∈ crd(a) ∩ crd(a′′), so crd(c2) ⊆
crd(a)∩crd(b). It remains to prove that if d ∈ crd(a)∩crd(b) then d ∈ acl(c2). So suppose
that d ∈ crd(a) ∩ crd(b). By (4.12) and Lemma 3.7, d ∈ acl(c2, c

′
2), so by Fact 3.5 (i),

d ∈ acl(c2) or d ∈ acl(c′2). If d ∈ acl(c2) then we are done, so suppose that d ∈ acl(c′2).
First assume that d ∈ Cs \ Cs−1. Recall that, by Fact 3.5 (ii), (Cs \ Cs−1, cl), where

`cl' is `acl' restricted to Cs \ Cs−1, is a trival pregeometry. By assumption, d ∈ acl(c′2),
so (by the �exchange property� of pregeometries) c′2 ∈ acl(d) and hence c′2 ∈ acl(a),
contradicting (4.9).

Hence we must have d ∈ Cs−1. By assumption we have d ∈ crd(c′2) ∩ crd(a). This
together with (4.10) and Lemma 3.7 implies that d ∈ crds−1(c1). By (4.3), Es−1(c1, c2),
so crds−1(c1) = crds−1(c2) and therefore d ∈ crds−1(c2). Thus (4.14) is proved.
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It remains to prove (4.15). By (4.11), c′2 ∈ crd(a′) ∩ crd(a′′), so crd(c′2) ⊆ crd(a′) ∩
crd(a′′). It remains to prove that if d ∈ crd(a′) ∩ crd(a′′) then d ∈ crd(c′2). Suppose
that d ∈ crd(a′)∩ crd(a′′). Then, from (4.12) and Lemma 3.7, we get d ∈ acl(c2, c

′
2). By

Fact 3.5 (i), d ∈ acl(c2) or d ∈ acl(c′2). If d ∈ acl(c′2) then we are done, so suppose that
d ∈ acl(c2).

First assume that d ∈ Cs \ Cs−1. As Cs \ Cs−1 is a trivial pregeometry (with `acl'
restricted to Cs \ Cs−1) and d ∈ acl(c2) we get c2 ∈ acl(d) ⊆ acl(a′), which contra-
dicts (4.18).

Hence we have d ∈ Cs−1. Then d ∈ crds−1(c2). By (4.3), Es−1(c1, c2) and by (4.7) we
get Es−1(c2, c

′
2), so crds−1(c2) = crds−1(c′2). Therefore d ∈ crds−1(c′2). This concludes

the proof of Claim 4.3. �

By (4.1) there is d ∈M such that

(4.19) ac1d ≡ ac2a
′′,

so in particular, c1 ∈ crds(d) \Cs−1. By (4.1) and (4.11) we have a′c1 ≡ a′c′2, so there is
e ∈M such that

(4.20) a′c1e ≡ a′c′2a′′,
so in particular, c1 ∈

(
crds(d)∩crds(e)

)
\Cs−1. By (4.20), (4.11), (4.1), (4.11) and (4.19),

in the mentioned order, we have

c1e ≡ c′2a
′′ ≡ c2a ≡ c1a ≡ c2a

′′ ≡ c1d.

Hence c1e ≡ c1d and by Lemma 3.10 we get

(4.21) tp(d/acl(c1)) = tp(e/acl(c1)).

From (4.14), (4.15) and Lemma 3.7 we get

a |̂
c2
a′′ and a′ |̂

c′2

a′′,

which together with (4.19) and (4.20) gives

(4.22) a |̂
c1
d and a′ |̂

c1
e.

By (4.17), (4.21), (4.22) and the independence theorem there is a∗ ∈M such that

(4.23) ac1a
∗ ≡ ac2a

′′ and a′c1a
∗ ≡ a′c′2a′′.

This together with (4.14) and (4.15) implies that

crd(a) ∩ crd(a∗) = crd(c1) and(4.24)

crd(a′) ∩ crd(a∗) = crd(c1).

Hence

(4.25) c1 ∈ crd(a) ∩ crd(a′) ∩ crd(a∗) ∩ (Cs \ Cs−1).

By (4.1) and (4.7), {c1, c2, c
′
2} is an independent set over crds−1(c1). Hence acl(c1) ∩

acl(c2) ∩ acl(c′2) ∩ (Cs \ Cs−1) = ∅. Now Claim 4.3 implies that

(4.26) crd(a) ∩ crd(a′) ∩ crd(a′′) ∩ (Cs \ Cs−1) = ∅.
Since a, a′, a′′, a∗ ∈ M and M is a binary structure with elimination of quanti�ers, it
follows from (4.23) that

(4.27) aa′a′′ ≡ aa′a∗.
But this contradicts (4.25) and (4.26), because the relation �crd(x) ∩ crd(y) ∩ crd(z) ∩
(Cs \ Cs−1) is nonempty� is ∅-de�nable inM. This concludes the proof of Lemma 4.2.
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�

Before proving our next main lemma we need the following auxilliary lemma:

Lemma 4.4. Let a ∈M , c ∈ crds(a) \ Cs−1 and p(x, y) = tp(a, c).
(i) Suppose that X1, . . . , Xn enumerates all Es−1-equivalence classes with which acl(c)∩
p(a,Meq) has nonempty intersection. Furthermore, suppose that a′ ∈M and Es−1(a, a′)
(so in particular crds−1(a) = crds−1(a′)). Then there is c′ ∈ crds(a

′) such that p(a′, c′)
and acl(c′) ∩ p(a′,Meq) has nonempty intersection with all of X1, . . . , Xn.
(ii) Suppose that a′ ∈ M , c′ ∈ crds(a

′) \ Cs−1 and p(a′, c′). Then acl(c′) ∩ p(a′,Meq)
has nonempty intersection with the same number of Es−1-equivalence classes as acl(c) ∩
p(a,Meq) has.
(iii) Suppose that X1, . . . , Xn is an enumeration of all Es−1-equivalence classes with
which acl(c) ∩ p(a,Meq) has nonempty intersection. Furthermore suppose that a′ ∈ M
and Es−1(a, a′). If c′ ∈ crds(a

′) \Cs−1, p(a
′, c′) and Es−1(c, c′), then acl(c′)∩ p(a′,Meq)

has nonempty intersection with all of X1, . . . , Xn.

Proof. Let a ∈M , c ∈ crds(a)\Cs−1 and p(x, y) = tp(a, c). In this proof we abbreviate
Es−1 by E.

(i) We �rst note that cE may, strictly speaking, be an element of (M eq)eq. But since
Meq has elimination of imaginaries we may identify cE with an element of M eq. By
slight abuse of terminology, we also denote the sort of cE by E. Let acl(c)∩p(a,Meq) =
{c1, . . . , cn} and, for each i = 1, . . . , n, let Xi = [ci]E . From the de�nition of E (= Es−1)
it follows that (ci)E ∈ acl(crds−1(a)) for all i = 1, . . . , n. Let ϕ(x, z1, . . . , zn) be a formula
in the language ofMeq which expresses the following condition:

�each one of z1, . . . , zn is of sort E and

∃y
(
p(x, y) ∧ ∀u

((
p(x, u) ∧ u ∈ acl(y)

)
→

for some 1 ≤ i ≤ n, u belongs to the E-class represented by zi

))
�.

Then Meq |= ϕ(a, (c1)E , . . . , (cn)E). Let a′ ∈ M be such that E(a, a′). Then (ci)E ∈
acl(crds−1(a)) = acl(crds−1(a′)) for all i, and

tp
(
a/acl(crds−1(a))

)
= tp

(
a′/acl(crds−1(a′))

)
.

Hence we getMeq |= ϕ(a′, (c1)E , . . . , (cn)E). Thus there is c′ ∈ crds(a
′) such thatM |=

p(a′, c′) and acl(c′)∩ p(a,Meq) has nonempty intersection with Xi for each i = 1, . . . , n.
(ii) The assumption that p(a, c) and p(a′, c′) gives ac ≡ a′c′ so there is an automor-

phism ofMeq which takes ac to a′c′. The conclusion follows from this.
(iii) Let X1, . . . , Xn be an enumeration of all E-classes with which acl(c) ∩ p(a,Meq)

has nonempty intersection. Suppose that a′ ∈ M , E(a, a′), c′ ∈ crds(a
′), p(a′, c′) and

E(c, c′). Using part (ii) we can enumerate all E-classes with which acl(c′) ∩ p(a′,Meq)
has nonempty intersection as X ′1, . . . , X

′
n. Without loss of generality, assume that

X1 = X ′1 and c, c′ ∈ X1. By part (i), there is c′′ ∈ crds(a
′) \ Cs−1 such that p(a′, c′′)

and acl(c′′) ∩ p(a′,Meq) has nonempty intersection with all X1, . . . , Xn. In particular,
acl(c′′)∩p(a′,Meq) has nonempty intersection with X1. Let c

∗ ∈ acl(c′′)∩p(a′,Meq)∩X1

(so in particular c∗ ∈ Cs \ Cs−1). As, by Fact 3.5, Cs \ Cs−1 is a trivial prege-
ometry, with `acl' restricted to Cs \ Cs−1, we get acl(c∗) = acl(c′′). Consequently
acl(c∗) ∩ p(a′,Meq) has nonempty intersection with all X1, . . . , Xn. By the choice of
c∗ we have a′c∗ ≡ a′c′ and E(c∗, c′). Hence Lemma 4.2 implies that c∗ |̂�

crds−1(c′)
c′. Since,

by Fact 3.6, SU(c′/crds−1(c′)) = 1, we get c′ ∈ acl({c∗} ∪ crds−1(c′)). By Fact 3.5 (i),
we get c′ ∈ acl(c∗) or c′ ∈ acl(crds−1(c′)). But as SU(c′/crds−1(c′)) = 1 we must have
c′ ∈ acl(c∗). Since Cs \ Cs−1 is a trivial pregeometry we get acl(c′) = acl(c∗). Then
acl(c′) ∩ p(a′,Meq) has nonempty intersection with all X ′1, . . . , X

′
n, X1, . . . , Xn, which,
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by part (ii) and the choice of X1, . . . , Xn and X ′1, . . . , X
′
n, implies that {X1, . . . , Xn} =

{X ′1, . . . , X ′n}. �

Remark 4.5. (The intuition behind Lemma 4.6.) Let C = (N, E), where E is interpreted
as an equivalence relation with two in�nite equivalence classes. Let us assume that one
of the classes contains all even numbers and the other all odd numbers. Let

G = {{n,m} : n ∈ N is even and m ∈ N is odd}.

Turn G into a graph G by letting a, b ∈ G be adjacent if and only if their intersection
is a singleton. Since C is ω-categorical and stable, and G is interpretable in C (without
parameters) it follows that G is ω-categorical and stable, in fact superstable of SU-rank 2.
Moreover, without going into the details, C (= N) is a ∅-de�nable subset of Geq and the
equivalence relation E on C is ∅-de�nable in Geq. Consider the following two quadruples
of elements from G:

({1, 2}, {1, 4}, {3, 6}, {3, 8}), ({1, 2}, {1, 4}, {3, 6}, {5, 6}).

Clearly, the two quadruples satisfy the same quanti�er-free formulas. Note that {1, 2}
and {1, 4} have a common element in the E-class of odd numbers, and the same is true for
{3, 6} and {3, 8}. Hence the �rst quadruple above satis�es the formula ϕ(x1, x2, x3, x4)
which expresses �there are u, v ∈ C such that E(u, v), x1 ∩ x2 = {u} and x3 ∩ x4 = {v}�.
But the second quadruple does not satisfy this formula. Since all elements in the two
quadruples above are �real� elements of Geq (i.e. belong to G), it follows that there is a
formula in the (graph) language of G which is satis�ed by the �rst quadruple, but not
by the second. Thus G is not homogeneous.

The idea of the proof of Lemma 4.6 is the following: If a ∈M , c1, c2 ∈ crds(a) \Cs−1,
c1

|̂
crds−1(a)

c2, and ac1 ≡ ac2, then we can �nd a∗, b∗, a′, b′, b′′ ∈M such that

a∗b∗b′ ≡ a∗b∗b′′ and a′b′ ≡ a′b′′, but a∗b∗a′b′ 6≡ a∗b∗a′b′′.

This is done by choosing the elements so that, with p = tp(a, c1), there are c, d ∈ Cs\Cs−1

such that Es−1(c, d), p(a∗, c), p(b∗, c), p(a′, d) and p(b′, d), but no such c and d exist if
we replace b′ by b′′. In �nding such elements we use Lemma 4.2, which implies that
¬Es−1(c1, c2), where `Es−1' plays the role of `E' in Geq.

The same idea is behind the proof of [21, Proposition 4.4], as becomes apparent in
the last page of that proof. However, in the context of [21] one can assume that s = 1,
and then all c ∈ Cs have SU-rank 1. Moreover, one can assume (in [21]) that for all
c, d ∈ Cs, if d ∈ acl(c), then c = d, and that the �canonically embedded� structure (in
Meq) with universe Cs is a binary random structure (by [2, Theorem 5.1] and some
additional observations in [21, Fact 3.6]). In the present context, the arguments in the
more specialized situation of [21] are replaced by dividing/forking arguments.

Lemma 4.6. For all a ∈M and all c1, c2 ∈ crds(a)\Cs−1, if c1
|̂

crds−1(a)
c2 then ac1 6≡ ac2.

Proof. Towards a contradiction suppose that there are a ∈M and c1, c2 ∈ crds(a)\Cs−1

such that c1
|̂

crds−1(a)
c2 and ac1 ≡ ac2. Let

q(x) = tp(a) and p(x, y) = tp(a, c1).

Note that if p(a′, c) then c ∈ crds(a
′) \ Cs−1. So for every a′ ∈M which realizes q there

are c, c′ ∈ crds(a
′) \Cs−1 such that c |̂

crds−1(a′)
c′ and both a′c and a′c′ realize p. Also, for

all a′ and c such that a′c realizes p there is c′ such that a′c′ realizes p and c |̂
crds−1(a′)

c′.
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Choose any c ∈ crds(a)\Cs−1 such that ac realizes p. Let b ∈M realize a nondividing
extension of tp

(
a/acl

(
{c} ∪ crds−1(a)

))
to {a} ∪ acl

(
{c} ∪ crds−1(a)

)
. Then

(4.28) a |̂
{c}∪

crds−1(a)

b, Es−1(a, b) and p(a, c) ∧ p(b, c).

By the choice of p, (4.28) and Lemma 3.7 we get

p(a,Meq) ∩ p(b,Meq) ⊆ crd(a) ∩ crd(b) ⊆ acl
(
{c} ∪ crds−1(a)

)
.

Let d ∈ p(a,Meq) ∩ p(b,Meq). By Fact 3.5 (i), d ∈ acl(c) or d ∈ acl(crds−1(a)). In
the later case d ∈ Cs−1, because of Fact 3.2 (iii), and this contradicts that p(a,Meq) ⊆
Cs \ Cs−1. Hence d ∈ acl(c), so we have proved that

(4.29) c ∈ p(a,Meq) ∩ p(b,Meq) ⊆ crd(c).

Let a′ ∈M realize a nondividing extension of tp
(
a/acl

(
crds−1(a)

))
to {a, b}∪acl

(
crds−1(a)

)
.

Then

(4.30) Es−1(a, a′), a′ |̂
crds−1(a)

ab,

and by Lemma 3.7 and Fact 3.5 (iii),

(4.31) crd(a′) ∩ (crd(a) ∪ crd(b)) = crds−1(a).

By Lemma 4.4 (i) there is c′ ∈ crds(a
′) \ Cs−1 such that p(a′, c′) and Es−1(c, c′). As

explained in the beginning of the proof, there is c′′ ∈ crds(a) \ Cs−1 such that p(a′, c′′)
and c′ |̂

crds−1(a′)
c′′. By (4.30), crds−1(a) = crds−1(a′) and therefore

(4.32) c′ |̂
crds−1(a)

c′′.

Let b′ ∈M realize a nondividing extension of

tp(a′/{c′} ∪ acl(crds−1(a))) to {a′, a, b, c′} ∪ acl(crds−1(a)).

Then

(4.33) Es−1(a′, b′), a′ab |̂
{c′}∪

crds−1(a)

b′,

and, in the same way as we proved (4.29), we get

(4.34) c′ ∈ p(a′,Meq) ∩ p(b′,Meq) ⊆ crd(c′).

From (4.31) and c′ ∈ crds(a
′) we get c′ |̂

crds−1(a)
ab, so by (4.33) and transitivity of dividing

we also have

(4.35) ab |̂
crds−1(a)

b′.

Since p(a′, c′), p(a′, c′′) and Es−1(a′, b′), there is b′′ ∈M such that

(4.36) a′c′b′ ≡ a′c′′b′′, so Es−1(a′, b′′) and hence Es−1(b′, b′′).

This together with (4.33) implies that

(4.37) a′ |̂
{c′′}∪

crds−1(a)

b′′.

Note that since Es−1(a, b), Es−1(a, a′), Es−1(a′, b′) and Es−1(b′, b′′), all the elements
a, a′, b, b′ and b′′ have the same type over acl(crds−1(a)). By considering a nondividing
extension of

tp
(
b′′/{a′, c′′} ∪ acl(crds−1(a))

)
to {a′, c′′, a, b, b′} ∪ acl(crds−1(a)),
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if necessary, we may, in addition, assume that

(4.38) b′′ |̂
{a′,c′′}∪
crds−1(a)

abb′.

This together with (4.37) and transitivity gives b′′ |̂
{c′′}∪

crds−1(a)

abb′. By the choice of c′′,

c′′ ∈ crds(a
′). Hence (4.30) implies that c′′ |̂

crds−1(a)
ab, so by transitivity

(4.39) b′′ |̂
crds−1(a)

ab.

Claim 4.7. c′′ |̂
crds−1(a)

b′.

Proof of the claim. By (4.33), Lemma 3.7 and facts 3.2 (iii) and 3.5 (i),(
crds(a

′) ∩ crds(b
′)
)
\ Cs−1 ⊆ acl(c′).

Recall that we have chosen c′′ so that c′ |̂
crds−1(a)

c′′. Hence c′′ /∈ acl(c′). Since c′′ ∈ crds(a
′)

it follows that c′′ /∈ acl(b′), and hence

c′′ /∈ crds(b
′).

Suppose, for a contradiction, that there is d ∈
(
crds(c

′′)∩crds(b
′)
)
\Cs−1. Since Cs\Cs−1

is a trivial pregeometry (by Fact 3.5 (ii)), we get c′′ ∈ acl(d), and hence c′′ ∈ crds(b
′),

contradicting what we obtained above. It follows that crd(c′′) ∩ crd(b′) ⊆ Cs−1, so

crd(c′′) ∩ crd(b′) = crds−1(c′′) ∩ crds−1(b′).

Since a′ and b′ have the same type over acl(crds−1(a)) = acl(crds−1(a′)) = acl(crds−1(b′)),
it follows that crds−1(a′) = crds−1(b′). As c′′ ∈ crds(a

′) we get crds−1(c′′) ⊆ crds−1(b′).
Consequently, crds−1(c′′) ∩ crds−1(b′) = crds−1(c′′). Since we proved that crd(c′′) ∩
crd(b′) = crds−1(c′′) ∩ crds−1(b′) it follows from Lemma 3.7 that c′′ |̂

crds−1(c′′)
b′ and hence

c′′ |̂
crds−1(a)

b′. �

On the line after (4.38) we obtained b′′ |̂
{c′′}∪

crds−1(a)

abb′, from which we get b′′ |̂
{c′′}∪

crds−1(a)

b′. This

together with Claim 4.7 and transitivity gives

(4.40) b′ |̂
crds−1(a)

b′′.

We have Es−1(b′, b′′) and this implies that crds−1(b′) = crds−1(b′′) = crds−1(a) and

tp(b′/acl(crds−1(a))) = tp(b′′/acl(crds−1(a))).

It follows (from Fact 2.2) that there are a+, b+ ∈M such that

(4.41) tp(a, b, b′/acl(crds−1(a))) = tp(a+, b+, b′′/acl(crds−1(a))),

which by (4.35) implies that

(4.42) a+b+ |̂
crds−1(a)

b′′.

By (4.35), (4.40), (4.41), (4.42) and the independence theorem there are a∗, b∗ ∈M such
that

tp(a∗, b∗, b′/acl(crds−1(a))) = tp(a, b, b′/acl(crds−1(a))),(4.43)

tp(a∗, b∗, b′′/acl(crds−1(a))) = tp(a+, b+, b′′/acl(crds−1(a))), and

a∗b∗ |̂
crds−1(a)

b′b′′.
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By considering a nondividing extension if necessary we may, in addition, assume that

a∗b∗ |̂
crds−1(a)

a′b′b′′.

From (4.41) and (4.43) we get

a∗b∗b′ ≡ a∗b∗b′′.
From (4.36) we have a′b′ ≡ a′b′′. Since a∗, b∗, a′, b′, b′′ ∈ M where M is binary with
elimination of quanti�ers it follows that

(4.44) a∗b∗a′b′ ≡ a∗b∗a′b′′.

By (4.41) and (4.43) we have tp(a∗, b∗/acl(crds−1(a))) = tp(a, b/acl(crds−1(a))). Re-
call that c ∈ p(a,Meq) ∩ p(b,Meq). Therefore (and by Fact 2.1 (iii)) there is c∗ ∈
p(a∗,Meq) ∩ p(b∗,Meq) such that Es−1(c, c∗). We have chosen c′ so that, among other
things, Es−1(c, c′) (see the line after (4.31)). As Es−1 is an equivalence relation we get
Es−1(c′, c∗). These observations and (4.34) imply that the following statement, abbrevi-
ated ϕ(x1, x2, x3, x4), is satis�ed by (a∗, b∗, a′, b′):

�There are y1, y2 ∈ Cs \ Cs−1 such that Es−1(y1, y2) and p(x1, y1), p(x2, y1),
p(x3, y2) and p(x4, y2).�

Note that ϕ(x1, x2, x3, x4) can be expressed by a �rst-order formula in the language of
Meq. The next step is to show that ϕ is not satis�ed by (a∗, b∗, a′, b′′).

Suppose that d, e ∈ Cs \ Cs−1 are such that

p(a∗, d) ∩ p(b∗, d) and p(a′, e) ∩ p(b′′, e).

To prove thatMeq 6|= ϕ(a∗, b∗, a′, b′′) it su�ces to show that ¬Es−1(d, e). By the choice
of c∗, (4.28) and (4.43), we have a∗ |̂

{c∗}∪
crds−1(a)

b∗ and therefore

crd(a∗) ∩ crd(b∗) ∩ (Cs \ Cs−1) ⊆ acl(c∗).

Moreover, from (4.37) it follows that

crd(a′) ∩ crd(b′′) ∩ (Cs \ Cs−1) ⊆ acl(c′′).

Therefore the assumptions about d and e imply that

d ∈ acl(c∗) ∩ p(a∗,Meq) and e ∈ acl(c′′) ∩ p(a′,Meq).

Since Cs \ Cs−1 is a trivial pregeometry it follows that c′′ ∈ acl(e), and hence acl(e) =
acl(c′′). Recall that Es−1(c′, c∗). By Lemma 4.4 (iii), there is e′ ∈ acl(c′) ∩ p(a′,Meq)
such that Es−1(d, e′). By again using that Cs \ Cs−1 is a trivial pregeometry it follows
that c′ ∈ acl(e′), and consequently acl(c′) = acl(e′). Thus we have acl(e′) = acl(c′) and
acl(e) = acl(c′′), and by (4.32) we have c′ |̂

crds−1(a)
c′′. It follows that e |̂

crds−1(a)
e′. By the

choice of e and e′ we also have a′e ≡ a′e′. Therefore Lemma 4.2 implies that ¬Es−1(e, e′).
Since Es−1(d, e′) we must have ¬Es−1(d, e). Thus we have shown that

Meq |= ϕ(a∗, b∗, a′, b′′) ∧ ¬ϕ(a∗, b∗, a′, b′′),

which contradicts (4.44). This concludes the proof of Lemma 4.6. �

5. Coordinatization by equivalence relations

Throughout this section we adopt Notation 3.1. Theorem 5.1, below, is slightly more
general than (a) � (c) of the main results in the introduction, because we only assume
that c̄ ∈ C here (where M ⊆ C). Corollaries 5.3 and 5.4 have more general assumptions
than Theorem 5.1 and are derived from its proof.
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Theorem 5.1. Suppose thatM is binary, simple, and homogeneous (hence supersimple
with �nite SU-rank). Let R be the (�nite) set of all ∅-de�nable equivalence relations
on M .

(i) For every a ∈M , if SU(a) = k, then there are R1, . . . , Rk ∈ R, depending only on
tp(a), such that a ∈ acl(aRk), SU(aR1) = 1, Ri+1 re�nes Ri and SU(aRi+1/aRi) =
1 for all 1 ≤ i < k (or equivalently, SU(a/aRi) = k − i for all 1 ≤ i ≤ k).

(ii) Suppose that a, b ∈ M , c̄ ∈ C, and a |̂�
c̄
b (where we recall that M ⊆ C ⊆ M eq).

Then there is R ∈ R such that a |̂�
c̄
aR and aR ∈ acl(b) (and hence aR /∈ acl(c̄)).

(iii) Suppose that all binary ∅-de�nable relations on M are symmetric. If a, b ∈ M ,
c̄ ∈ C, and a |̂�

c̄
b, then there is R ∈ R such that a |̂�

c̄
aR and R(a, b) (and therefore

aR ∈ acl(b), aR /∈ acl(c̄) and hence ¬R(a, c) for every c ∈ c̄).

Note that the assumptions of part (iii) imply that Th(M) has only one 1-type over ∅.

Remark 5.2. (i) Suppose that a ∈ M . The �coordinatization by R1, . . . , Rk� as in
Theorem 5.1 (i) may not be unique. In other words, there may also be ∅-de�nable
equivalence relations R′1, . . . , R

′
k with the same properties as R1, . . . , Rk such that some

R′i is (in a strong sense2) not equivalent with Ri. This is shown by the example M in
Section 7.2.
(ii) The conclusion in Theorem 5.1 (ii) cannot be strengthened so that it, in addition,
says that R(a, b). This is also shown by the exampleM in Section 7.2.

The following two corollaries follow from an analysis of the proof of Theorem 5.1, which
is given in Section 5.3.

Corollary 5.3. Suppose that M is ω-categorical, supersimple with �nite SU-rank and
with trivial dependence. Also, suppose that part (i) of Theorem 5.1 does not hold forM.
Then there are distinct ai, bi ∈ M , i = 1, . . . , 4, such that tp(ai, aj) = tp(bi, bj) for all
i, j and tp(a1, . . . , a4) 6= tp(b1, . . . , b4).

Corollary 5.4. Suppose that M is ω-categorical, supersimple with �nite SU-rank and
with trivial dependence. Moreover, assume that M has no ∅-de�nable equivalence rela-
tion on M with in�nitely many in�nite equivalence classes. If SU(M) > 1 then there
are distinct ai, bi ∈ M , i = 1, . . . , 4, such that tp(ai, aj) = tp(bi, bj), for all i, j, and
tp(a1, . . . , a4) 6= tp(b1, . . . , b4).

5.1. Proof of part (i) of Theorem 5.1. In this subsection (and the next) we assume
thatM is binary, simple and homogeneous. Moreover, we assume that M ⊆ U ⊆ M eq,
where U , C and Ci, i = 1, . . . , h, are as in Assumption 3.3. Then we can use all results
from sections 2 � 4. The proof is carried out through a sequence of lemmas and is �nished
by the short argument after Lemma 5.14.

Lemma 5.5. Suppose that Q is a ∅-de�nable equivalence relation on Mn. Let ā ∈ Mn

and suppose that b ∈ acl(ā′) for every ā′ ∈ [ā]Q. Then b ∈ acl(āQ).

Proof. If [ā]Q is �nite the acl(ā) = acl(āQ) and the conclusion is immediate. So suppose
that [ā]Q is in�nite. For a contradiction suppose that b /∈ acl(āQ). The we �nd ā′ (in
some elementary extension ofM) realizing a nonforking extension of tp(ā/āQ) to āQb, so
ā′ |̂
āQ
b. AsMeq is ω-saturated we may assume that ā′ ∈Mn. Since tp(ā′/āQ) = tp(ā/āQ)

we have ā′ ∈ [ā]Q. As ā′ |̂
āQ
b and b /∈ acl(āQ), we get b /∈ acl(ā′), contradicting the

assumption. �

2 For example, it can happen, like with M in Section 7.2, that Ri and R′i have only in�nite classes
but Ri ∩R′i has only singleton classes.
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De�nition 5.6. Let a ∈ M , c ∈ crd(a), q(x) = tp(a) and p(x, u) = tp(a, c). De�ne a
relation on M as follows:

Rp(x, y) ⇐⇒
(
¬q(x) ∧ ¬q(y)

)
∨ ∃u, v

(
p(x, u) ∧ p(y, v) ∧ acl(u) = acl(v)

)
.

Lemma 5.7. The relation Rp, as in De�nition 5.6, is an equivalence relation and is
∅-de�nable.

Proof. By ω-categoricity, Rp is ∅-de�nable. It is straightforward to see that it is re�exive
and symmetric, so it remains to show that it is transitive. Suppose that a, b, c ∈ M ,
Rp(a, b) and Rp(b, c). We assume that a 6= b, a 6= c, b 6= c, q(a), q(b), and q(c), as the
other cases are straightforward and only use the de�nition of Rp. By the de�nition of
Rp, there are i, j, k, l and ci, cj , ck, cl such that p(a, ci), p(b, cj), p(b, ck), p(c, cl), acl(ci) =
acl(cj) and acl(ck) = acl(cl). By the choice of p (in De�nition 5.6), it follows that all
ci, cj , ck, cl have the same type over ∅, and for some 0 < s ≤ h they all belong to Cs\Cs−1.

We will prove that acl(cj) = acl(ck), which implies that acl(ci) = acl(cl) and from
this we immediately get Rp(a, c). By symmetry of the argument, it su�ces to show
that cj ∈ acl(ck). By the choice of cj and ck we have p(a, cj) and p(a, ck) and there-
fore bcj ≡ bck. Then Lemma 4.6 implies that cj |̂�

crds−1(b)
ck. By Facts 3.2 (iii) and 3.6,

SU(cj/crds−1(b)) = 1 and therefore cj ∈ acl
(
{ck}∪crds−1(b)

)
. By Fact 3.5 (i), cj ∈ acl(d)

for some d ∈ {ck} ∪ crds−1(b). As SU(cj/crds−1(b)) = 1 we must have cj ∈ acl(ck). �

Lemma 5.8. Let a ∈ M , c ∈ crd(a), p = tp(a, c) and let Rp be as in De�nition 5.6.
Then acl(c) = acl(aRp).

Proof. By the de�nition of Rp, for every a′ ∈ [a]Rp , c ∈ acl(a′). Hence Lemma 5.5
implies that c ∈ acl(aRp). By the de�nition of Rp, [a]Rp is the unique Rp-class such that
for all a′ ∈ [a]Rp , there is c′ with acl(c′) = acl(c) and p(a′, c′). As M is ω-categorical,
the following condition is de�nable by a formula in the language of Meq having only c
as a parameter:

�x is a member of M eq representing an Rp-class such that, for all y in x, there is
z such that tp(y, z) = p and acl(z) = acl(c)�.

Hence aRp ∈ dcl(c). �

Let a ∈M . Let h < ω be minimal such that a ∈ acl(Ch). It follows (from Fact 3.5 (iv))
that a ∈ acl(crdh(a)).

De�nition 5.9. (i) For each 0 < s ≤ h, let ρs be maximal so that there are cs,1, . . . , cs,ρs ∈
crds(a)\crds−1(a) such that {cs,1, . . . , cs,ρs} is an independent set over crds−1(a). (So ρs
is the �dimension� of crds(a) \ crds−1(a) over crds−1(a).) We now �x such cs,1, . . . , cs,ρs .
(ii) For each 0 < s ≤ h and 1 ≤ i ≤ ρs, let ps,i = tp(a, cs,i).
(iii) For each 0 < s ≤ h and 1 ≤ i ≤ ρs, let Rs,i = Rps,i where Rps,i is like Rp in
De�nition 5.6 with p = ps,i.

Observation 5.10. From Lemma 4.6 it follows that, for every 1 ≤ s ≤ h and all
1 ≤ i < j ≤ ρs, ps,i 6= ps,j . And we clearly have ps,i 6= ps′,j if s 6= s′. It follows that if
(s, i) 6= (s′, i′) then Rs,i is di�erent from Rs′,i′ .

De�nition 5.11. Let I = {(s, i) : 1 ≤ s ≤ h, 1 ≤ i ≤ ρs} and let `4' be the lexicographic
order on I, in other words, (s, i) 4 (s′, i′) if and only if s < s′, or s = s′ and i ≤ i′.

Note that while the ordering in the �rst coordinate of (s, i) is natural, since s is the
�height� of cs,i, the order in the second coordinate is arbitrary, since it is given by the
arbitrary enumeration cs,1, . . . , cs,ρs of the same elements.
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De�nition 5.12. For every (s, i) ∈ I, let

Qs,i =
⋂

(s′,i′)4(s,i)

Rs′,i′ .

Since intersections/conjuctions of equivalence relations are still equivalence relations it
follows from Lemma 5.7 that Qs,i is a ∅-de�nable equivalence relation for each (s, i).

Lemma 5.13. For every (s, i) ∈ I,
acl(aQs,i) = acl

(
{cs′,i′ : (s′, i′) 4 (s, i)}

)
.

Proof. Let (s, i) ∈ I. We have cs′,i′ ∈ acl(a) for all (s′, i′) 4 (s, i). From the de�nitions
of Qs,i and Rs′,i′ it follows that for every a

′ ∈ aQs,i , cs′,i′ ∈ acl(a′) for all (s′, i′) 4 (s, i).
Lemma 5.5 now implies that cs′,i′ ∈ acl(aQs,i) for all (s′, i′) 4 (s, i).

By Lemma 5.8, for every (s′, i′) 4 (s, i), acl(aRs′,i′ ) = acl(cs′,i′). From the de�nition

of Qi,s it follows that, for any a
′, b′ ∈ M , a′ ∈ [b′]Qi,s if and only if a′ ∈ [b′]Rs′,i′ for all

(s′, i′) 4 (s, i). Consequently,

aQs,i ∈ acl
(
{aRs′,i′ : (s′, i′) 4 (s, i)}

)
= acl

(
{cs′,i′ : (s′, i′) 4 (s, i)}

)
. �

Lemma 5.14. Suppose that (s, i) ∈ I is not maximal and that (s′, i′) is the least element
in I which is strictly larger (with respect to `4') than (s, i). Then SU(aQs,i/aQs′,i′ ) = 1.

Proof. Let (s, i), (s′, i′) ∈ I satisfy the assumptions of the lemma. By Lemma 5.13, it
su�ces to show that SU(c̄+/c̄) = 1, where

c̄ =
(
ct,j : (t, j) 4 (s, i)

)
and c̄+ =

(
ct,j : (t, j) 4 (s′, i′)

)
.

To show this we only need to show that SU(cs′,i′/c̄) = 1.
We have two cases. First, suppose that s = s′. Then i′ = i+ 1. By the choice of the

elements ct,j and Facts 3.2 (iii) and 3.6, we get SU
(
cs,i+1/{ct,j : (t, j) 4 (s−1, ρs−1)}

)
=

SU
(
cs,i+1/crds−1(a)

)
= 1. And we also have that {cs,1, . . . , cs,i+1} is independent over

crds−1(a). Therefore, SU(cs,i+1/c̄) = 1.
Now suppose that s′ = s + 1, so i = ρs and i′ = 1. As in the previous case we get

SU
(
cs+1,1/c̄) = SU

(
cs+1,1/{ct,j : (t, j) 4 (s, ρs)}

)
= SU

(
cs+1,1/crds(a)

)
= 1 and we are

done. �

Now we can �nish the proof of part (i) of Theorem 5.1. Recall that (by Fact 3.5 (iv))
acl(a) = acl(crdh(a)) and therefore (using Lemma 5.13)

a ∈ acl
(
{cs,i : (s, i) ∈ I}) = acl

(
{aQs,i : (s, i) ∈ I}

)
.

Since Qs,i re�nes Qs′,i′ if (s′, i′) 4 (s, i) we get a ∈ acl(aQh,ρh ). Since c1,1 ∈ C1 we

have (using Lemma 5.13 and Fact 3.2 (iii)) SU(aQ1,1) = SU(c1,1) = 1. From this and
Lemma 5.14 it follows, via the Lascar equation, that SU(a) = |I|. Thus the sequence of
∅-de�nable equivalence relations that we are looking for is, again using Lemma 5.14,

(Qs,i : (s, i) ∈ I),

ordered by `4'.

5.2. Proof of parts (ii) and (iii) of Theorem 5.1. The assumptions and framework
in this subsection are the same as in the previous (i.e. the proof of part (i)).

Suppose that a, b ∈ M , c̄ ∈ C and a |̂�
c̄
b. By Lemma 3.7, there is d ∈ crd(a) ∩ crd(b)

such that d /∈ acl(c̄). Let p = tp(a, d) and let R = Rp be as in De�nition 5.6. By
Lemma 5.7, R is a ∅-de�nable equivalence relation. By Lemma 5.8, acl(d) = acl(aR).
Since d ∈ crd(b) ⊆ acl(b) we get aR ∈ acl(b). By assumption, d /∈ acl(c̄) and hence
aR /∈ acl(c̄). Then there are distinct a′i ∈M eq, for i < ω, such that tp(a′i/c̄) = tp(aR/c̄),
for all i < ω. The type tp(a/aR) contains a formula, ϕ(x, aR) which expresses that
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�x belongs to the equivalence class (represented by) aR�.

Since {ϕ(x, a′i) : i < ω} is clearly 2-inconsistent it follows that a |̂�
c̄
aR. This concludes

the proof of Theorem 5.1 (ii).
Now assume, in addition, that every binary ∅-de�nable relation on M is symmetric.

Suppose that a, b, c̄ ∈M and a |̂�
c̄
b. Just as in the proof of part (ii), we get d ∈ crd(a) ∩

crd(b) such that d /∈ acl(c̄). By letting p = tp(a, d) and R = Rp be just as in the proof
of part (ii), we conclude (just as in part (ii)) that R is a ∅-de�nable equivalence relation
and acl(d) = acl(aR).

Let 0 < s ≤ r be such that d ∈ Cs \ Cs−1. By Fact 3.5, Cs \ Cs−1 is a trivial
pregeometry. So if there is e ∈ Cs \ Cs−1 such that acl(d) = acl(e) and p(b, e), then
Rp(a, b) (by De�nition 5.6) so R(a, b) and hence aR = bR. Since acl(d) = acl(aR) and
d /∈ acl(c̄) we must have aR /∈ acl(c̄).

Now suppose (towards a contradiciton) that, for every e ∈ Cs\Cs−1 such that acl(d) =
acl(e), we have tp(b, e) 6= p.

Let a′ realize a nondividing extension of

tp
(
a
/

(crds−1(a) ∩ crds−1(b)) ∪ {d}
)

to (crds−1(a) ∩ crds−1(b)) ∪ {d, b}.

Then a′ is independent from b over
(
crds−1(a′)∩crds−1(b)

)
∪{d}. As Cs\Cs−1 is a trivial

pregeometry, it follows that if e ∈
(
crds(a

′) ∩ crds(b)
)
\ Cs−1, then acl(e) = acl(d). By

assumption, for every e ∈
(
crds(a

′) ∩ crds(b)
)
\ Cs−1, tp(b, e) 6= p. But then tp(a′, b) 6=

tp(b, a′). Since a′, b ∈M we get tpM(a′, b) 6= tpM(b, a′). As every complete type over ∅
is isolated it follows that there is a binary ∅-de�nable relation which is not symmetric,
which contradicts an assumption of part (iii). Thus the proof of part (iii) is �nished.

5.3. Proof of Corollaries 5.3 and 5.4. Suppose thatM is ω-categorical, supersimple
with �nite SU-rank and with trivial dependence. Moreover, suppose that part (i) of
Theorem 5.1 does not hold forM. The proof of part (i) of Theorem 5.1 only uses

• results from Section 3 all of which hold for all ω-categorical, supersimple struc-
tures with �nite SU-rank and with trivial dependence,
• Lemma 4.6, and
• results from Section 5.1 which, besides Lemma 4.6 only depend on the assump-
tion that M is ω-categorical, supersimple with �nite SU-rank and with trivial
dependence.

So, assuming that part (i) of Theorem 5.1 fails for M, it must be because Lemma 4.6
fails for M. But the proof of Lemma 4.6 is a proof by contradiction. It assumes that
Lemma 4.2 holds (and consequently Lemma 4.4 holds) and that Lemma 4.6 fails, and
then �nds a∗, b∗, a′, b′, b′′ ∈M such that

a∗b∗b′ ≡ a∗b∗b′′ and a′b′ ≡ a′b′′, but a∗b∗a′b′ 6≡ a∗b∗a′b′′.

This �nishes the proof of Corollary 5.3 unless Lemma 4.2 fails forM. But if Lemma 4.2
fails, then (by its proof) there are a, a′, a′′, a∗ ∈M such that aa′′ ≡ aa∗ and a′a′′ ≡ a′a∗,
but aa′a′′ 6≡ aa′a∗. This �nishes the proof of Corollary 5.3.

Now we prove Corollary 5.4. Suppose thatM is ω-categorical, supersimple with �nite
SU-rank and with trivial dependence. Moreover, assume that M has no ∅-de�nable
equivalence relation on M with in�nitely many in�nite equivalence classes. By the proof
of [20, Lemma 3.3], M ⊆ acl(C1).3 Furthermore, assume that SU(M) > 1, so SU(a) > 1
for some a ∈M .

3 Lemma 3.3 in [20] assumes that M is primitive, but its proof only needs the assumption that that
there is no ∅-de�nable equivalence relation on M which has in�nitely many in�nite equivalence classes.
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Suppose that SU(a) = ρ1 > 1. By Fact 3.5 (iv), acl(a) = acl(crd1(a)), and hence
there are c1,1, . . . , c1,ρ1 ∈ crd1(a) such that {c1,1, . . . , c1,ρ1} is an independent set over ∅
and acl(a) = acl(c1,1, . . . , c1,ρ1).

Suppose that Lemma 4.6 holds for M. Then ac1,i 6≡ ac1,j whenever i 6= j. Let
p = tp(a, c1,1). By Lemma 5.7, Rp (as in De�nition 5.6) is a ∅-de�nable equivalence
relation on M . Since SU(c1,1) = 1, it follows from Lemma 5.14 that Rp has in�nitely
many in�nite equivalence classes. This contradicts the assumptions of Corollary 5.4.

Hence Lemma 4.6 fails forM. Then, in the same way as in the proof of Corollary 5.3,
we �nd a1, a2, a3, a4, b1, b2, b3, b4 ∈M such that aiaj ≡ bibj for all i and j, but a1a2a3a4 6≡
b1b2b3b4. This completes the proof of Corollary 5.4.

6. Extension properties

We are interested in knowing under what conditions two or more types are subtypes of
a single type. More precisely, if āi, b̄i ∈ M , for i = 1, . . . , n, under what circumstances
is there ā ∈ M such that tp(ā, b̄i) = tp(āi, b̄i) for all i = 1, . . . , n? Under rather general
conditions, the answer is yes for the Rado graph, the �generic bipartite graph�, as well as
a number of other structures that can be constructed by procedures that involve a �high
degree of randomness�. (The most up to date study of extension problems in the context
of binary ω-categorical structures is probably [1], by Ahlman, where more references can
be found.) Therefore, the idea here is that if the answer is `yes' under fairly general
conditions, then this is a manifestation of a �high degree of randomness�.

De�nition 6.1. Here we call the following an extension problem ofM:

Suppose that ā1, . . . , ān, b̄1, . . . , b̄n ∈ M . We ask: is there ē ∈ M such that
tp(ē, b̄i) = tp(āi, b̄i) for all i = 1, . . . , n? If such ē ∈ M exists then we say
that the extension problem of tp(āi, b̄i), i = 1, . . . , n, has a solution and call ē a
solution to this extension problem.

Observe that since we will assume thatM is homogeneous (hence ω-saturated) it follows
that if an extension problem has a solution ē in some elementary extension ofM, then
it also has a solution inM.

Note also that if we have āi and b̄i as above and, for every i = 1, . . . , n, there is ā′i
such that for every i < n, tp(ā′i+1, b̄1, . . . , b̄i) = tp(ā′i, b̄1, . . . , b̄i) and tp(ā′i+1, b̄i+1) =

tp(āi+1, b̄i+1), then we have tp(ā′n, b̄i) = tp(āi, b̄i) for every i = 1, . . . , n. Therefore we
will only consider the problem of extending two types.

Here we study binary relational structures with elimination of quanti�ers. Under this
assumption, if c̄ = (c1, . . . , ck), and ē is a solution to the extension problem of the types
tp(ā, c1), . . . , tp(ā, ck), tp(b̄, d̄), then ē is also a solution to the extension problem of the
types tp(ā, c̄) and tp(b̄, d̄). And as pointed out above, the extension problem of the types
tp(ā, c1), . . . , tp(ā, ck), tp(b̄, d̄) can be reduced to a sequence of k extension problems of
two types of the form tp(ā′, c′) and tp(b̄′, d̄′), where c′ is a single element.

By considering one coordinate at a time in the sequences ā1, . . . , ān, and using our ob-
servations above, it follows that the extension problem of the types tp(ā1, b̄1), . . . , tp(ān, b̄n)
can be reduced to a sequence of extension problems of two types of the form tp(a′, c′)
and tp(b′, d̄′), where a′, b′ and c′ are single elements. Therefore we will only consider
the extension problem of two types tp(a, c) and tp(b, d̄), where a, b and c are a single
elements. Recall that notation 3.1 is in e�ect in this section.

Theorem 6.2. Suppose thatM is binary, simple and homogeneous. Let a, b, c, d̄ ∈M .

(i) There is a ∅-de�nable equivalence relation R on M such that c |̂
cR
d̄.

(ii) If for some R as in part (i),
a |̂
cR
c, b |̂

cR
d̄ and tp(a/acl(cR)) = tp(b/acl(cR)),
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then the extension problem of tp(a, c) and tp(b, d̄) has a solution. Otherwise it
may not have a solution, not even when d̄ is a single element.

Proof. This follows from Lemmas 6.3 � 6.6 (and the examples in Sections 7.1 � 7.3). �

In the rest of this section we assume that M is binary, simple and homoge-
neous, so Theorem 5.1 applies.

Lemma 6.3. For all c, d̄ ∈ M there is a ∅-de�nable equivalence relation R such that
c |̂
cR
d̄.

Proof. Recall that, by Assumption 3.3, M ⊆ U ⊆M eq and only �nitely many sorts are
represented in U . The only assumption on U that is necessary for Fact 3.2 to hold is
that only �nitely many sorts are represented in U . Since there are only �nitely many
∅-de�nable equivalence relations on M , we may, without loss of generality, assume that
for every ∅-de�nable equivalence relation E on M and every a ∈ M , aE ∈ U and hence
aE ∈ C.

Now we prove (i). Let c, d̄ ∈ M . If c |̂ d̄ then we can take R to be the equivalence
relation with only one equivalence class. So suppose that c |̂�d̄. Then c |̂�d for some d ∈ d̄.
By Theorem 5.1 (ii), there is a ∅-de�nable equivalence relation R1 such that c |̂�cR1 and
cR1 ∈ acl(d) ⊆ acl(d̄). If c |̂

cR1

d̄ then we are done with R = R1. If not, then c |̂�
cR1

d for

some d ∈ d̄ and by Theorem 5.1 (ii) again (where we use that cR1 ∈ C which is why we
need the argument in the �rst paragraph of the proof), there is a ∅-de�nable equivalence
relation R2 such that c |̂�

cR1

cR2 and cR2 ∈ acl(d) ⊆ acl(d̄). If c |̂
cR2

d̄ then we are done with

R = R2. If not, we continue in the same way. SinceM has �nite SU-rank we will, after
�nitely many iterations of this procedure, �nd a ∅-de�nable equivalence relation Rk such
that a |̂

cRk

d̄. (Or alternatively, one could appeal to the fact that there are only �nitely

many ∅-de�nable equivalence relations on M .) �

Lemma 6.4. Suppose that a, b, c, d̄ ∈M and that R is a ∅-de�nable equivalence relation
on M such that c |̂

cR
d̄. If a |̂�

cR
c or b |̂�

cR
d̄, then the extension problem of tp(a, c) and tp(b, d̄)

may not have a solution.

Proof. This is shown by the examples in Sections 7.1 and 7.2. �

Lemma 6.5. Suppose that a, b, c, d̄ ∈M , that R is a ∅-de�nable equivalence relation on
M such that c |̂

cR
d̄ and that a |̂

cR
c and b |̂

cR
d̄. If tp(a/acl(cR)) 6= tp(b/acl(cR)) then the

extension problem of tp(a, c) and tp(b, d̄) may not have a solution.

Proof. This is shown by the example in Section 7.3. �

Lemma 6.6. Suppose that a, b, c, d̄ ∈ M , R is a ∅-de�nable equivalence relation on M
such that c |̂

cR
d̄, a |̂

cR
c, b |̂

cR
d and tp(a/acl(cR)) = tp(b/acl(cR)). Then the extension

problem of tp(a, c) and tp(b, d̄) has a solution.

Proof. If the premisses of the lemma are satis�ed, then all premisses of the independence
theorem of simple theories are satis�ed, and hence a solution exists in some elementary
extension ofM. SinceM is ω-saturated we �nd a solution in M . �

7. Examples

In sections 7.1 � 7.3 we give examples that prove the claims made in Remark 5.2 and
in lemmas 6.4 and 6.5. Section 7.4 tells how certain metric spaces �t nicely into the
context of this article when viewed as binary structures (namely, R-Urysohn spaces for
�nite distance monoids R).
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7.1. Cross cutting equivalence relations. In this subsection we prove Lemma 6.4.
This is also done, in a stronger sense, in Section 7.2, but the example of this section may
nevertheless be instructive because of its simplicity.

Let M = (M,PM, QM), where M is a countably in�nite set and PM and QM are
equivalence relations such that the equivalence relation PM ∩QM

• partitions every equivalence class of PM into in�nitely many parts, all of which
are in�nite, and
• partitions every equivalence class of QM into in�nitely many parts, all of which
are in�nite.

It is a basic exercise to show that M is homogeneous and superstable with SU-rank 2.
Let X1 and X2 be two distinct equivalence classes of PM and let Y1 and Y2 be two
distinct equivalence classes of QM. Pick a ∈ X1 ∩ Y1, b ∈ X2 ∩ Y1, c ∈ X1 ∩ Y2 and
d ∈ X2 ∩ Y2. Then it is straightforward to verify that c |̂

cQ
d, a |̂�

cQ
c and b |̂�

cQ
d, where `cQ' is

shorthand for `cQM '. Moreover, the extension problem of tpM(a, c) and tpM(b, d) does
not have a solution, because if e would be a solution then M |= P (e, c) ∧ P (e, d), so
M |= P (c, d), contradicting the choice of c and d.

7.2. Bipedes with bicoloured legs. In this subsection we prove the claims made in
Remark 5.2 and Lemma 6.4. For any set A, let [A]2 = {X ⊆ A : |X| = 2}. Let

N− = (N ∪ [N]2, FN
−
, LN

−
),

where

FN
−

= N and LN
−

=
{

({m,n}, k) : {m,n} ∈ [N ]2 and k ∈ {m,n}
}
.

We can think of the elements of FN
−

= N as �feet� and elements of [N]2 as �bodies�.
Each body {m,n} ∈ [N]2 has two feet, namely m and n. Clearly, some di�erent bodies,
like {1, 2} and {2, 3}, share a foot, while others do not. We can also imagine any given

pair ({m,n}, n) ∈ LN− as a �leg� which joins the body {m,n} to the foot n. We further
imagine that for every body, one of its legs is coloured �blue� and the other is coloured
�red�. Moreover, the decision regarding which one is blue and which one is red is taken
randomly and independently of the colouring of the legs of other �bodies�. Note that
only legs are coloured. A given foot may be the end of a blue leg and also the end of red
leg, in which case the later leg belongs to another body than the �rst leg.

More formally, we construct such a structure as follows. Let B and R (for �blue� and
�red�) be new binary relation symbols and let Ω be the set of expansions

N = (N ∪ [N]2, FN , LN , BN , RN )

of N− which satisfy the following sentences:

∀x, y
([
B(x, y) ∨R(x, y)

]
→ L(x, y)

)
,

∀x, y
(
L(x, y)→

[
(B(x, y) ∧ ¬R(x, y)) ∨ (R(x, y) ∧ ¬B(x, y))

])
, and

∀x
(
¬F (x)→ ∃y, z

[
B(x, y) ∧R(x, z)

])
.

For any set X let 2X denote the set of functions from X to {0, 1} For every �nite A ⊆ N
and every f ∈ 2A, let 〈A, f〉 = {g ∈ 2N : g(n) = f(n) for all n ∈ A}. If |A| = m then
we let µ0(〈A, f〉) = 2−m. By standard notions and results in measure theory, there is
a σ-algebra Σ ⊆ 2N, containing all 〈A, f〉 for �nite A and f ∈ 2A, and a countably
subadditive probability measure µ : Σ → R which extends µ0.

4 Let λ : [N]2 → N be a
bijection. For every f ∈ 2N we get an expansion Nf ∈ Ω of N that satis�es:

4These notions and results can be found in, for example, [11, chapters 1.1�1.4].
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For every {m,n} ∈ [N]2 withm < n, if f(λ({m,n})) = 0, thenNf |= B({m,n},m)∧
R({m,n}, n), and otherwise Nf |= R({m,n},m) ∧B({m,n}, n).

Moreover, it is clear that for every N ∈ Ω there is a unique f ∈ 2N such that N = Nf .
Via this bijection between 2N and Ω we may also view Ω as a probability space.

Lemma 7.1. There is N ∈ Ω with the following property. Let 0 < n < ω, a1, . . . , an ∈ N
and f : {1, . . . , n} → {0, 1}. Then there are distinct bi ∈ N \ {a1, . . . , an}, for all i < ω,
such that, for every i < ω and every 1 ≤ k ≤ n, the following holds:

• If f(k) = 0 then N |= B({ak, bi}, bi) ∧R({ak, bi}, ak).
• If f(k) = 1 then N |= R({ak, bi}, bi) ∧B({ak, bi}, ak).

Proof. We will prove that with probability 1 a structure in Ω has the stated property.
By countable subadditivity of µ, it su�ces to show the following:

For any choice of 0 < n < ω, a1, . . . , an ∈ N, f : {1, . . . , n} → {0, 1} and distinct
bij ∈ N \ {a1, . . . , an} for i, j < ω,

µ(Xi) = 0, for every i < ω, where

Xi =
{
g ∈ 2N : for all j < ω there is 1 ≤ k ≤ n such that

g(λ({ak, bij})) 6= f(λ({ak, bij}))
}
.

By using the de�nition of µ0 and the fact that µ extends µ0 we get

µ(Xi) ≤
(
1− 2−(n+1)

)j
for every i < ω and every j < ω. Hence µ(Xi) = 0 for every i < ω and the proof is
�nished. �

For the rest of this subsection we assume that N is like in Lemma 7.1.

De�nition 7.2. (i) For every A ⊆ N ∪ [N]2, cl′(A) = A ∪ {b ∈ N : ∃a ∈ A ∩ [N]2, b ∈ a}.
(ii) For every A ⊆ N ∪ [N]2, cl′′(A) = A ∪ {b ∈ [N]2 : ∃m,n ∈ A ∩ N, b = {m,n}}.
(iii) For every A ⊆ N ∪ [N]2, cl(A) = cl′′(cl′(A)).
(iv) We say that A ⊆ N ∪ [N]2 is closed if cl(A) = A.

Lemma 7.3. Suppose that A ⊆ N ∪ [N]2 and a ∈ cl(A). Then there is B ⊆ A such that
|B| ≤ 2 and a ∈ dclN (B). If a ∈ N, then there is b ∈ A such that a ∈ dclN (b).

Proof. This is because,

(a) for any two (di�erent) feet there is a unique body which has precisely these two
feet, and

(b) every body has a unique foot on the other end of its blue leg and a unique foot
on the other end of its red leg. �

Lemma 7.4. Suppose that {a1, . . . , an}, {b1, . . . , bn} ∈ N ∪ [N]2 are two closed sets such
that (a1, . . . , an) ≡atN (b1, . . . , bn).
(i) For every an+1 ∈ N ∪ [N]2 there is bn+1 ∈ N ∪ [N]2 such that cl(a1, . . . , an+1) \
{a1, . . . , an+1} and cl(b1, . . . , bn+1) \ {b1, . . . , bn+1} can be enumerated as a′1, . . . , a

′
m and

b′1, . . . , b
′
m, respectively, so that

(a1, . . . , an+1, a
′
1, . . . , a

′
m) ≡atN (b1, . . . , bn+1, b

′
1, . . . , b

′
m).

(ii) There is an automorphism σ of N such that σ(ai) = bi for every 1 ≤ i ≤ n.
(iii) N is ω-categorical.
(iv) If a, b ∈ N or if a, b ∈ [N]2, then tpN (a) = tpN (b).
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Proof. (i) We consider two cases. First assume that an+1 ∈ N \ {a1, . . . , an}. Without
loss of generality, assume that {a1, . . . , an} ∩ N = {a1, . . . , ak} for some k ≤ n. Then
{b1, . . . , bn}∩N = {b1, . . . , bk} Since (a1, . . . , an) ≡atN (b1, . . . , bn) it su�ces to �nd bn+1 ∈
N such that for every 1 ≤ i ≤ k:

• If B({an+1, ai}, an+1) then B({bn+1, bi), bn+1).
• If R({an+1, ai}, an+1) then R({bn+1, bi), bn+1).

But Lemma 7.1 guarantees that such bn+1 ∈ N exists.
Now suppose that an+1 = {i, j} ∈ [N]2 \ {a1, . . . , an}. Then at least one of i or j does

not belong to {a1, . . . , an}, because this set is, by assumption, closed. First, suppose that
i ∈ {a1, . . . , an} and j /∈ {a1, . . . , an}. Without loss of generality, assume that i = a1.
Then, by the previous case, we �nd j′ ∈ N such that cl(a1, . . . , an, j) \ {a1, . . . , an, j}
and cl(b1, . . . , bn, j

′) \ {b1, . . . , bn, j′} can be enumerated as a′1, . . . , a
′
m and b′1, . . . , b

′
m,

respectively, so that

(a1, . . . , an, j, a
′
1, . . . , a

′
m) ≡atN (b1, . . . , bn, j

′, b′1, . . . , b
′
m).

Moreover, since these sequences are closed, there is 1 ≤ l ≤ m such that an+1 = {i, j} =
{a1, j} = a′l and hence {b1, j′} = b′l, so we are done by taking bn+1 = b′l.

Now suppose that i, j /∈ {a1, . . . , an}. Then we apply what we have already proved
twice. First we �nd we �nd i′ ∈ N such that cl(a1, . . . , an, i) \ {a1, . . . , an, i} and
cl(b1, . . . , bn, i

′) \ {b1, . . . , bn, i′} can be enumerated as a′1, . . . , a
′
m and b′1, . . . , b

′
m, respec-

tively, so that

(a1, . . . , an, i, a
′
1, . . . , a

′
m) ≡atN (b1, . . . , bn, i

′, b′1, . . . , b
′
m).

Then we �nd j′ ∈ N such that cl(a1, . . . , an, i, a
′
1, . . . , a

′
m, j)\{a1, . . . , an, i, a

′
1, . . . , a

′
m, j}

and cl(b1, . . . , bn, i
′, b′1, . . . , b

′
m, j

′) \ {b1, . . . , bn, i′, b′1, . . . , b′m, j′} can be enumerated as
a′′1, . . . , a

′′
s and b′′1, . . . , b

′′
s , respectively, so that

(a1, . . . , an, i, a
′
1, . . . , a

′
m, j, a

′′
1, . . . , a

′′
s) ≡atN (b1, . . . , bn, i

′, b′1, . . . , b
′
m, j

′, b′′1, . . . , b
′′
s).

Then an+1 = {i, j} = a′′l for some l, and we take bn+1 = {i′, j′} = b′′l .
(ii) By part (i), we can carry out a standard back and forth argument to produce an

automorphism f such that f(ai) = bi for all i.
(iii) By the de�nition of `cl' it is clear that, for every �nite A ⊆ N ∪ [N]2, |cl(A)| ≤

3|A| +
(

3|A|
2

)
. Together with part (ii) this implies that there are, up to equivalence in

Th(N ), only �nitely many formulas with free variables x1, . . . , xn, for every n < ω.
Hence N is ω-categorical.

(iv) If a, b ∈ N, then {a} and {b} are closed and a ≡atN b, so part (ii) gives tpN (a) =
tpN (b). If a, b ∈ [N]2, then it is clear from the de�nition of `cl' that cl(a) and cl(b) can
be ordered as a, a′, a′′ and b, b′, b′′, respectively, so that (a, a′, a′′) ≡atN (b, b′, b′′) and again
we use part (ii) to get tpN (a, a′, a′′) = tpN (b, b′, b′′). �

Lemma 7.5. For every A ⊆ N ∪ [N]2, aclN (A) = cl(A) = dclN (A).

Proof. By the de�nition of `cl' it su�ces to prove the lemma for �nite A. By Lemma 7.3,
we have cl(A) ⊆ dclN (A) ⊆ aclN (A). Hence it su�ces to show that if b /∈ cl(A) then
b /∈ aclN (A).

Suppose that b /∈ cl(A). Let cl(A) = {a1, . . . , an} and let b′1, . . . , b
′
m enumerate cl(A∪

{b}) \ (cl(A) ∪ {b}). By Lemma 7.4 (ii) it is enough to �nd distinct bi, for i < ω, such
that, for each i < ω, cl(A ∪ {bi}) \ (cl(A) ∪ {bi}) can be enumerated as b′i,1, . . . , b

′
i,m so

that

(a1, . . . , an, b, b
′
1, . . . , b

′
m) ≡atN (a1, . . . , an, bi, b

′
i,1, . . . , b

′
i,m).

To show this one can argue similarly as in the proof of part (i) of Lemma 7.4 (hence
using Lemma 7.1). The details are left for the reader. �
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Lemma 7.6. Suppose that a1, . . . , an, b1, . . . , bn ∈ [N]2 and (ai, aj) ≡N (bi, bj) for all
1 ≤ i, j ≤ n. Then cl(a1, . . . , an) \ {a1, . . . , an} and cl(b1, . . . , bn) \ {b1, . . . , bn} can be
ordered as a′1, . . . , a

′
m and b′1, . . . , b

′
m, respectively, so that

(a1, . . . , an, a
′
1, . . . , a

′
m) ≡atN (b1, . . . , bn, b

′
1, . . . , b

′
m).

Proof. This is a straightforward consequence of Lemma 7.3. �

Lemma 7.7. Suppose that a1, . . . , an, b1, . . . , bn ∈ [N]2 and (ai, aj) ≡N (bi, bj) for all
1 ≤ i, j ≤ n. Then (a1, . . . , an) ≡N (b1, . . . , bn).

Proof. Immediate consequence of Lemmas 7.4 (ii) and 7.6. �

De�nition 7.8. Let M be a structure with universe [N]2 and such that, for every
p = tpN (a, b) where a, b ∈ [N]2 are distinct, M has a relation symbol Rp which is
interpreted as the set of realizations of p in N . The vocabulary of M has no other
relation symbols.

Lemma 7.9. (i) For all ā, b̄ ∈ [N]2 of the same length, ā ≡N b̄ if and only if ā ≡M b̄.
(ii)M is homogeneous and has only one complete 1-type over ∅.
(iii) For every A ⊆ [N]2, aclM(A) = cl(A) ∩ [N]2 = dclM(A).

Proof. (i) Let a1, . . . , an, b1, . . . , bn ∈ [N]2, ā = (a1, . . . , an) and b̄ = (b1, . . . , bn). If
ā ≡M b̄, then in particular (ai, aj) ≡M (bi, bj) for all i, j. By the de�nition ofM we get
(ai, aj) ≡N (bi, bj) for all i, j, and then Lemma 7.7 gives ā ≡N b̄. If ā ≡N b̄, then, as
N is ω-categorical and countable, there is an automorphism σ of N such that σ(ā) = b̄.
Since [N]2 is ∅-de�nable in N (by ¬F (x)), σ �xes [N]2 setwise. From the de�nition of
M it now follows that the restriction of σ to [N]2 is an automorphism ofM and hence
ā ≡M b̄.

Part (ii) follows from (i) and lemmas 7.7 and 7.4. Part (iii) follows from (i) and
Lemma 7.5 �

Lemma 7.10. For all tuples ā, b̄, c̄ of elements from [N]2, the following holds regardless
of whether dividing is considered inM or in N : ā |̂�

c̄
b̄ if and only if

(a) there is a ∈ ā such that a ∈ cl(b̄) \ cl(c̄), or
(b) there are a ∈ ā and b ∈ b̄ such that a ∩ b 6= ∅, but a ∩ c = ∅ for all c ∈ c̄.

Proof sketch. If (a) or (b) holds, then it is straightforward to show that ā |̂�
c̄
b̄ (regardless

of whether dividing is considered inM or in N ). If neither (a) nor (b) holds, then one
can use Lemma 7.1 similarly as in the proof of Lemma 7.4 to show that ā |̂

c̄
b̄ (again

regardless of whether dividing is inM or in N ). We leave the details to the reader. �

Lemma 7.11. M is supersimple with SU-rank 2, but not stable.

Proof. To prove thatM is supersimple it su�ces to prove (by [34, Theorem 2.4.7 and
De�nition 2.8.12]) that ifM′ ≡ M, ā ∈ M ′ and B ⊆ M ′, then there is a �nite C ⊆ B
such that tpM′(ā/B) does not divide over C.

Let ϕ(x, y) be a formula in the language of M such that for all a, b ∈ M(= [N]2),
M |= ϕ(a, b) if and only if a 6= b and a ∩ b 6= ∅. Recall that cl(A) = dclM(A) for
every A ⊆ M . From Lemma 7.10 it now follows that for any M′ |= Th(M) and any
ā, b̄, c̄ ∈M ′, ā |̂�

c̄
b̄ if and only if either there is some a ∈ ā such that a ∈ dclM′(b̄)\dclM′(c̄),

or there is b ∈ b̄ such thatM′ |= ϕ(a, b), butM′ |= ¬ϕ(a, c) for all c ∈ c̄.
Now suppose thatM′ |= Th(M), ā ∈ M ′ and B ⊆ M ′. Let C ′ = ā ∩ dclM′(B). For

every a ∈ ā\B such that there is b ∈ B such thatM′ |= ϕ(a, b), choose exactly one such
b and call it ba. Let C = C ′ ∪ {ba : a ∈ ā}. Then, for every �nite B′ ⊆ B, tpM′(ā/B

′C)
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does not divide over C. By the �nite character of dividing, tpM′(ā/B) does not divide
over C.

We leave the veri�cation thatM has SU rank 2 to the reader. By using Lemma 7.1, it
is straightforward to see that N has the independence property. From this one can derive
that alsoM has the independence property, from which it follows that it is unstable. �

Consider the following equivalence relation on [N]2:

EB(a, b) ⇐⇒ there is m ∈ a ∩ b such that N |= B(a,m) ∧B(b,m).

It is clearly ∅-de�nable in N and hence it is ∅-de�nable inM. By replacing `B' with `R'
we get a similar ∅-de�nable equivalence relation ER. The equivalence classes of EB and
ER correspond to elements ofMeq. It follows from the de�nitions of EB, ER and choice
of N , that for all a, b ∈ [N]2, EB(a, b) ∧ ER(a, b) if and only if a = b.

Let a ∈ [N]2. By using Lemma 7.10 and basic �forking/dividing calculus� one can
now show that, for every a ∈ [N]2, SU(aEB ) = SU(aER) = 1 and SU(a=/aEB ) =
SU(a=/aER) = 1 (where clearly a ∈ aclMeq(a=)). This proves the claim made in
Remark 5.2 (i), namely that the �coordinatization sequence� of equivalence relations,
called R1, . . . , Rk in Theorem 5.1 (i), need not be unique.

Lemma 7.12. EB and ER are the only nontrivial ∅-de�nable (in M) equivalence rela-
tions on M = [N]2.

Proof. Suppose that E is a nontrivial ∅-de�nable (in M) equivalence relation on [N]2

and that E 6= EB and E 6= ER. Suppose that a, b ∈ [N]2 are such that a ∩ b = ∅
and E(a, b). Then one can prove, using Lemma 7.1, that E(a′, b′) for all a′, b′ ∈ [N]2,
contradicting that E is nontrivial. We do not give the details, but the idea is that, for any
a′, b′ ∈ [N]2, one can (by Lemma 7.1) �nd c ∈ [N]2 such that (a′, c) ≡N (b′, c) ≡N (a, b),
and consequently E(a′, c) and E(b′, c), and thus E(a′, b′). Hence, we conclude that, for
all a, b ∈ [N]2, E(a, b) implies that a ∩ b 6= ∅.

Using the construction of M, one can show that there are exactly two binary non-
trivial ∅-de�nable relations which properly re�ne EB, and none of these two relations
is symmetric, hence none of them is an equivalence relation. In the same way one can
show that there is no nontrivial ∅-de�nable equivalence relation which properly re�nes
ER. From this (and since E 6= EB and E 6= ER) it follows that E does not re�ne EB or
ER.

Suppose that for all a, b ∈ [N]2, E(a, b) implies EB(a, b) ∨ ER(a, b). Since E does
not re�ne EB or ER, and sinceM has a unique 1-type over ∅, it follows that there are
distinct a, b, c ∈ M such that E(a, b), E(b, c), EB(a, b) and ER(b, c). Then E(a, c), so
by assumption, EB(a, c) or ER(a, c). But neither case is possible because EB(a, b) and
ER(b, c).

Hence, there are a, b ∈ [N]2 such that E(a, b), ¬EB(a, b) and ¬ER(a, b) (so a 6= b).
Then there is m ∈ a ∩ b such that N |= B(a,m) ∧ R(b,m) or vice versa. Without
loss of generality, suppose that N |= B(a,m) ∧ R(b,m). Then all a′, b′ such that
tpM(a′, b′) = tpM(a, b) or tpM(b′, a′) = tpM(a, b) satisfy E(a′, b′). Since (by Lemma 7.9)
tpM(a) = tpM(b), there is c ∈ [N]2 such that tpM(a, b) = tpM(b, c), so in particular,
E(b, c). Then tpN (a, b) = tpN (b, c) so there is n ∈ b∩ c such that N |= B(b, n)∧R(c, n).
Since N |= R(b,m) we have n 6= m. Since aclM(b) = cl(b) ∩ [N]2 = {b} and b 6= c
(because a 6= b) we can assume that c /∈ aclM(a, b), from which it follows (together with
n ∈ b ∩ c) that a ∩ c = ∅. But then ¬E(a, c), contradicting the transitivity of E. �

Now we prove the claim made in Remark 5.2 (ii). Suppose that a, b ∈ [N]2, a 6= b,
m ∈ a ∩ b, N |= B(a,m) ∧ R(b,m). Then (by Lemma 7.10) a |̂�b, aEB ∈ aclM(b),
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and (by some standard forking calculus) a |̂�aEB . However, by Lemma 7.12, there is no
∅-de�nable equivalence relation E such that E(a, b) and a |̂�aE .

Now we prove Lemma 6.4 again, this time giving a �stronger� example than in Sec-
tion 7.1 in the sense that, with the notation of Lemma 6.4, a |̂�

cR
b but b |̂

cR
d. By the

choice of N and Lemma 7.1, there are distinct i, j, k, l,m ∈ N such that, with a = {i, j},
b = {k, l}, c = {j, l} and d = {l,m}, the following holds in N :

B(a, j), R(c, j), B(b, l), R(d, l).

Then c |̂
cEB

d, b |̂
cEB

d, and a |̂�
cEB

c. (The somewhat tedious, but standard, veri�cations of

this are left to the reader.) Suppose, for a contradiction, that the extension problem (in
M) of tpM(a, c) and tpM(b, d) has a solution e = {i′, j′}. Then i′ = j or j′ = j. We
can as well assume that j′ = j. Since e 6= c we get i′ 6= l. As b ∩ d 6= ∅ we must have
e ∩ d 6= ∅, which gives i′ = m. Hence e = {j,m}. Since tpM(e, c) = tpM(a, c) we get
tpN (e, c) = tpN (a, c). Hence B(e, j) and consequently R(e,m). Then

N |= ∃x
(
R(e, x) ∧B(d, x)

)
∧ ¬∃x

(
R(b, x) ∧B(d, x)

)
.

Hence tpN (e, d) 6= tpN (b, d) and therefore tpM(e, d) 6= tpM(b, d), which contradicts that
e is a solution to the given extension problem.

7.3. ω-Pedes. In this subsection we outline a proof of Lemma 6.5. The constructions
and arguments are similar to, but easier than, those in Section 7.2. Therefore the proofs
of the lemmas that follow are left out. Let N = (N, FN , EN0 , EN1 ) where:

• F is unary and FN and N \ FN are in�nite.
• EN0 and EN1 are equivalence relations such that EN1 ⊆ EN0 .
• E0 partitions FN into in�nitely many in�nite equivalence classes and EN1 parti-
tions each EN0 -class which is included in FN into exactly two EN1 -classes, both
of which are in�nite.
• All a, b ∈ N \ FN belong to the same EN1 -class (hence to the same EN0 -class).

Let L be a binary relation symbol and let Ω be the set of expansions

M = (N, FM, EM0 , EM1 , LM)

of N which have the following properties:

• M |= ∀x, y
(
L(x, y)→

(
¬F (x) ∧ F (y)

))
.

• For every a ∈ N\FN , every EN0 -classX ⊆ FN and distinct EN1 -classes Y,Z ⊆ X,
eitherM |= L(a, b) for all b ∈ Y andM |= ¬L(a, c) for all c ∈ Z, or vice versa.

Let

Ψ =
{

(a,X) : a ∈ N \ FN and X ⊆ FN is an EN0 -class.
}

Let Σ and µ be precisely as in Section 7.2. Let λ : Ψ → N be a bijection and let Yi,
i < ω, be an enumeration of all EN1 -classes which are included in FN . For every f ∈ 2N,
letMf be the unique structure in Ω which has the following property:

For every (a,X) ∈ Ψ and Yi, Yj ⊆ X, where i < j, if f(λ(a,X)) = 0 thenM |=
L(a, b) for all b ∈ Yi andM |= ¬L(a, c) for all c ∈ Yj , otherwiseM |= ¬L(a, b)
for all b ∈ Yi andM |= L(a, c) for all c ∈ Yj .

Moreover, for everyM ∈ Ω there is a unique f ∈ 2N such thatM = Mf . In a similar
spirit as in the proof of Lemma 7.4 (but easier), one can now prove the following:

Lemma 7.13. There isM∈ Ω with the following properties:
(i) For all 0 < n < ω, all a1, . . . , an ∈ N \ FM and every f : {1, . . . , n} → {0, 1}, there
is an EM0 -class X ⊆ FM with Yi, Yj ⊆ X, where i < j, such that
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for every 1 ≤ k ≤ n, if f(k) = 0 then M |= L(ak, b) for all b ∈ Yi (and hence
M |= ¬L(a, c) for all c ∈ Yj), and otherwise M |= ¬L(ak, b) for all b ∈ Yi (and
henceM |= L(a, c) for all c ∈ Yj).

(ii) For all 0 < n < ω, all EM0 -classes X1, . . . , Xn and every f : {1, . . . , n} → {0, 1},
there is a ∈ N \ FM such that

for every 1 ≤ k ≤ n and Yi, Yj ⊆ Xk, where i < j, if f(k) = 0 thenM |= L(a, b)
for every b ∈ Yi, and otherwiseM |= ¬L(a, b) for every b ∈ Yi.

For the rest of this subsection assume that M is like in Lemma 7.13. Using
Lemma 7.13, one can prove the following by a standard back-and-forth argument which
builds up an automorphism:

Lemma 7.14. M is homogeneous.

It is straightforward to see, using Lemma 7.13, that for every A ⊆ M , aclM(A) = A.
With this at hand, it is also straightforward to characterize dividing as follows:

Lemma 7.15. For all ā, b̄, c̄ ∈M , tpM(ā/b̄c̄) divides over c̄ if and only if there is a ∈ ā
such that

(i) a ∈ b̄ \ c̄, or
(ii) M |= F (a) and there is b ∈ b̄ such that M |= E0(a, b) and for all c ∈ c̄,
M |= ¬E0(a, c).

With Lemma 7.15 and standard arguments as in the proof of Lemma 7.11, one can prove:

Lemma 7.16. M is supersimple (but not stable). If M |= F (a) then SU(a) = 2,
otherwise SU(a) = 1.

Now we are ready to prove Lemma 6.5. There are c, d ∈M such that

M |= F (c) ∧ F (d) ∧ E0(c, d) ∧ ¬E1(c, d).

By Lemma 7.13, we can also �nd a, b ∈ M such thatM |= L(a, c) ∧ L(b, d), and hence
M |= ¬F (a) ∧ ¬F (b). Since M is homogeneous there is an automorphism of Meq

which takes (a, c) to (b, d). This automorphism can be extended to an automorphism
of Meq. Since E0(c, d) it follows that this automorphism (of Meq) �xes cE0 . Hence
tpMeq(a/cE0) = tpMeq(b/cE0). But there is no e such that tpM(e, c) = tpM(a, c) and
tpM(e, d) = tpM(b, d), because this would give L(e, c)∧L(e, d) where E0(c, d)∧¬E1(c, d).
However note that tpMeq(a/aclMeq(cE0)) 6= tpMeq(b/aclMeq(cE0)), because cE1 , dE1 ∈
aclMeq(cE0).

7.4. Metric spaces. Unlike sections 7.1 � 7.3, the examples of this section are not meant
to show that things can be more complicated than one might have hoped for. Instead
these are examples for which the main results of this article are concretized in nice and
natural ways.

In [7], Conant studies the in�nite countable homogeneous (in a more general sense that
in this article) metric space, denoted UR and called R-Urysohn space, over a countable
distance monoid R = (R,⊕,≤, 0) (see [7, Section 2] for a de�nition of distance monoid).
In other words, �x some distance monoid R and let KR be the class of all �nite R-metric
spaces. Then, for a suitable relational language, KR is closed under isomorphism and
has the hereditary property and the amalgamation property. Hence the Fraïssé limit
of KR exists and we denote it by UR. The language that we use has a binary relation
symbol dr for every r ∈ R, where dr(a, b) is interpreted as �the distance between a and
b is at most r�. So a structureM for this vocabulary is viewed as an R-metric space if
for all a, b, c ∈M ,

• d0(a, b) if and only if a = b,
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• for all r ∈ R, dr(a, b) if and only if dr(b, a), and
• (triangle inequality) for all r, s, t ∈ R, if dr(a, b), ds(b, c) and dt(a, c), then
r ⊕ s ≥ t.

If R is �nite then the vocabulary of an R-metric space is �nite and hence UR is homo-
geneous in the sense of this article. From now on, assume that R is a �nite distance
monoid. As examples of �nite distance monoids one can take R = (R,⊕,≤, 0), where
R ⊆ R≥0 is �nite and chosen so that 0 ∈ R, `≤' is the usual order on R, `⊕' is `+R'
where for all r, s ∈ R,

r +R s = max{x ∈ R : x ≤ r + s} and +R is associative.

For example, this holds if one takes R = {0, 1, 2} or R = {0, 1, 3, 4}. In the �rst case,
however, UR is essentially the Rado graph, by viewing �d1(a, b) ∧ ¬d0(a, b)� as saying
that there is an edge between a and b, and �d2(a, b) ∧ ¬d1(a, b)� as saying that there is
no edge between a and b (and a 6= b). More examples of �nite distance sets are analyzed
in Appendix A of L. Nguyen van Thé's thesis [33].

By [7, Theorem 4.9], UR is simple if and only if for all r, s ∈ R such that r ≤ s,
r⊕ r⊕ s = r⊕ s. One can check that if, for example, R = {0, 1, 3, 4} then this condition
holds. From now on, suppose that UR is simple. Hence it is (by Fact 2.4) supersimple
with �nite SU-rank and trivial dependence. An element r ∈ R is called idempotent if
r ⊕ r = r. By [7, Theorem 4.16], the SU-rank of UR is the number of non-maximal
idempotent elements in R. Moreover, by [7, Corollary 7.9], the ∅-de�nable equivalence
relations on the universe of UR are exactly those which are de�ned by the formulas dr(x, y)
where r is idempotent. Suppose that 0 < r < s ∈ R are idempotent elements. Using
the idempotency one can easily show that the equivalence relation dr(x, y) partitions
every class of the equivalence relation ds(x, y) into in�nitely many parts, all of which
are in�nite. Thus the sequence of equivalence relations R1, . . . , Rk in Theorem 5.1 (i)
corresponds, in the case of UR, to dr1(x, y), . . . , drk(x, y), where r1 > . . . > rk is a list of
all non-maximal idempotent elements (so rk = 0).

For any r ∈ R, let `2r' denote `r ⊕ r'. From the characterization of UR being simple
(given above), it follows that 2r is idempotent for every r ∈ R. Let d(a, b) be the least
r ∈ R such that dr(a, b) holds. From [7, Corollary 4.10] we have for all a, b and c̄ from
any model of Th(UR):

a |̂�
c̄
b ⇐⇒ 2d(a, b) < 2d(a, c) for all c ∈ c̄.

Since 2r is idempotent for every r ∈ R, it follows that, for every r ∈ R, a |̂�
c̄
b if and

only if there is a ∅-de�nable equivalence relation E, de�ned by dr(x, y) for some idem-
potent r, such that E(a, b) but ¬E(a, c) for all c ∈ c̄. This is the speci�c version of
Theorem 5.1 (iii) in the case of UR.
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