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Abstract. Suppose thatM is an in�nite structure with �nite relational vocabulary
such that every relation symbol has arity at most 2. IfM is simple and homogeneous
then its complete theory is supersimple with �nite SU-rank which cannot exceed the
number of complete 2-types over the empty set.
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1. Introduction

A �rst-order structure M will be called homogeneous (sometimes called �nitely homo-
geneous or ultrahomogeneous) if it is countable, has a �nite vocabulary (signature) with
only relation symbols (a relational vocabulary) and every isomorphism between �nite
substructures ofM can be extended to an automorphism ofM. Although being count-
able and having a �nite relational vocabulary is part of being homogeneous according to
this de�nition, we will sometimes repeat these assumptions. If the vocabulary ofM has
only relations symbols that are unary or binary, then say that the vocabulary is binary
and callM a binary structure. For countableM with �nite relational vocabulary,M is
homogeneous if and only if M has elimination of quanti�ers [15, Corollary 7.4.2]. Via
quanti�er elimination one can see that in�nite homogeneous structures are ω-categorical
[15]. Moreover, a structure is homogeneous if and only if it is the so called Fraïssé limit
of an �amalgamation class� of �nite structures [10, 15]. Besides being interesting ob-
jects from a model theoretic point of view, homogeneous structures have been studied in
connection to Ramsey theory, constraint satisfaction problems, permutation groups and
topological dynamics. See [3, 5, 14, 27, 28] for surveys of homogeneous structures and
their applications.

We are far from a good understanding of homogeneous structures in general, although
some particular classes of homogeneous structures have been classi�ed or are very well
understood [5, 11, 12, 16, 20, 22, 23, 25, 31, 32]. The framework of model theoretic sta-
bility theory, later generalized to simplicity theory, gives tools which makes it possible
to understand structures in a quite general context. We say that an in�nite structure is
stable/simple if its complete �rst-order theory is stable/simple. Lachlan and his collabo-
rators used tools available for stable structures to work out a very detailed understanding
of in�nite stable homogeneous structures; see for example the survey [22].1 When saying
that a structure is stable or simple we will from now on assume that it is in�nite. The
present work and [1, 2, 19] can be seen as a continuation and (to the extent possible)
generalization of the work on stable homogeneous structures. This seems worthwhile
since, on the one hand, stability/simplicity theoretic ideas appear to be useful beyond
the context of stable homogeneous structures, and, on the other hand, because new
phenomena arise in unstable simple homogeneous structures, and these new phenomena
show that the class of simple homogeneous structures is, in interesting ways, richer than

1 They considered every �nite homogeneous structure to be stable so also �nite homogeneous struc-
tures were part of their analysis, but for the �nite ones the theory is not as conclusive as for the in�nite
ones.
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the class of stable homogeneous structures. This may be of interest to applications of
homogeneous structures. Some of these di�erences are discussed below.

All stable homogeneous structures are in fact ω-stable and hence superstable. This fact
follows fairly quickly from the characterizations of these notions by counting types and
the fact that homogeneous structures have elimination of quanti�ers. Somewhat more
precisely, ifM is (in�nite) homogeneous and not ω-stable, then, for some countable set
A the set of complete 1-types over A is uncountable, and by elimination of quanti�ers
with respect to a �nite relational vocabulary there must be an atomic formula ϕ such
that there are uncountably many pairwise inconsistent 1-types over A which use only the
formula ϕ. Shelah's �unstable formula theorem� [33, Ch. II,Theorem 2.2] now implies
thatM is not stable. This argument cannot be generalized to prove that every (binary)
simple homogeneous structure is supersimple, because, by a well known characterization
of stability, every unstable (�rst-order) theory has 2λ complete types over some set of
parameters of cardinality λ, for every choice of in�nite cardinal λ.

The following is essential for the theory of stable homogeneous structures, where rk is
the rank used by Lachlan which is derived from Shelah's �CP( , 2)-rank�: ifM is stable
and homogeneous then (a) rk(M) is �nite, and (b) every set with U-rank 1 and without
a nontrivial de�nable equivalence relation is indiscernible.2 Neither (a) nor (b) is true in
general for (even binary) simple homogeneous structures. For example, ifM is the Rado
graph, in model theory often called the random graph, then its universe is a set with U-
rank 1 and without a nontrivial de�nable equivalence relation, but it is not indiscernible.
This failure can at least partially be blamed on the failure of simple unstable structures
to have �unique nondividing extensions of stationary types�; a property which all stable
structures have [33, Ch. III, Corollary 2.9]. The failure of (a) for unstable in�nite
structures is tightly connected to Shelah's �unstable formula theorem�; see Theorem 2.2,
Theorem 3.2, De�nition 3.4 and Exercise 3.8 in Chapter II of [33].

In spite of the failures of (a) and (b) for unstable simple homogeneous structures, these
statements seem to point in the right direction. For example, Theorem 5.1 in [2] may be
seen as a version of (b) in the case of binary simple homogeneous structures. It also makes
sense to use some notion of rank when studying simple homogeneous structures, as will
be further discussed below. The so-called U-rank is important in many studies of stable
in�nite structures and since for all ω-categorical superstableM we have U(M) ≤ rk(M)
3 it follows from (a) that every in�nite stable homogeneous structure M has �nite U-
rank. The U-rank also makes sense for simple structures, but in the context of simple
structures it is usually called SU-rank, a convention which we follow here. If T is a
simple theory then the SU-rank of a complete type (over any set of parameters) is an
ordinal or ∞, where ∞ is understood to be larger than every ordinal [4, 34]. If every
type has ordinal valued SU-rank then the theory is called supersimple. The SU-rank of
a supersimple theory T is the supremum of the SU-ranks of all 1-types over ∅ (that are
realized by �real elements�). Experience has shown that properties of a simple theory
with �nite SU-rank can often be analysed via properties of types of SU-rank 1. For
example, an ω-categorical simple theory T with �nite SU-rank is 1-based if and only if
all types of SU-rank 1 are 1-based (sometimes called modular) [13, Corollary 4.7].

2The connection with Lachlan's terminology is the following: if the structure under consideration
is stable and homogeneous, then any set which has U-rank 1 and no nontrivial de�nable equivalence
relation is strictly minimal (and hence indiscernible).

3 This inequality can be understood as follows. By [30, Corollary 6.48], U-rank coincides with Morley
rank [30, De�nition 6.16] if the structure is ω-categorical and superstable. Moreover, it is straightforward
to see that rk(M) is at least as big as the Morley rank ofM (where the latter is the supremum of the
Morley ranks of all 1-types consistent with the complete theory ofM). Since every stable homogeneous
structureM is ω-categorical and superstable, we get U(M) ≤ rk(M).
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All known simple homogeneous structures have complete theories which are supersim-
ple and have �nite SU-rank (and are 1-based). The most famous example is probably
the random graph, which has SU-rank 1. Aranda Lópes [1, Theorem 3.2.7] has proved
that if M is binary, homogeneous and supersimple, then the SU-rank of the complete
theory ofM cannot be ωα for any ordinal α ≥ 1. I am not aware of other results in this
direction for simple (unstable) homogeneous structures. The main result of this article
is the following, where S2(T ) is the set of complete 2-types over ∅ with respect to the
theory T :

Theorem 1. Suppose thatM is a countable, binary, homogeneous and simple structure.
Let T be the complete theory ofM. Then T is supersimple with �nite SU-rank which is
at most |S2(T )|.

Since homogeneous structures have elimination of quanti�ers it follows from Theorem 1
that, for every binary �nite relational vocabulary V , every simple homogeneous V -
structure is supersimple with SU-rank at most 2c|V |, where c is a constant that depends
only on V .

With the above theorem at hand some questions about a binary homogeneous and
simple structure M can be studied by asking the analogous questions for types of SU-
rank 1. Let T be the complete theory ofM. By a result of Hart, Kim and Pillay [13],
T is 1-based (called `modular' in [13]) if and only if every type of SU-rank 1 is 1-based.
Moreover, by also involving work of Macpherson [26] and De Piro and Kim [9] it follows
that T is 1-based if and only if T has trivial dependence if and only if every type of
SU-rank 1 has trivial pregeometry (see for example [19, Section 2.3] for de�nitions and
more explanation). If for every homogeneous simple structure M its complete theory
has trivial dependence and �nite SU-rank, then the behavior of dependence in simple
homogeneous structures parallels that of stable homogeneous structures (see [22] for a
survey of stable homogeneous structures). The reader is referred to [2, 1, 19] for more
results about simple homogeneous structures.

It is natural to ask whether the `binarity' assumption in Theorem 1 is necessary, es-
pecially as Cherlin and Lachlan proved that rk(M), and hence U(M), is �nite for every
stable homogeneousM [7]. Their proof relies heavily on the classi�cation of �nite simple
groups and on the possibility, in their context, to reduce certain problems to questions
about the automorphism group of a �nite structure. (However, in the binary case this
classi�cation is not needed [24].) Moreover, the rank rk that they consider makes sense
for �nite and in�nite structures while the de�nition of SU-rank (and U-rank) presupposes
that the structure in question is in�nite. In addition, the reduction to �nite structures
in [7] may depend on a property called smooth approximability (by �nite substructures)
[6, 17] which holds for all stable homogeneous structures, but not for all simple homoge-
neous structures (the random bipartite graph is not smoothly approximable [17, p 457]).
So there are some seemingly di�cult obstacles if one tries to generalize Theorem 1 to
nonbinary structures via the approach of [7]. On the other hand, the more advanced
state of stability/simplicity theory at present compared to the 1980'ies may o�er tools
with which one can bypass or mitigate these obstacles. The proofs of this article and
of [1, 2, 19] show that simplicity (of structures) and binarity have strong consequences
when combined (via application of the �independence theorem� of simple structures [34,
Theorem 2.5.20]); these consequences do not in an obvious way transfer to the context of
nonbinary structures.4 But nevertheless I tend to believe that the assumption of binary
vocabulary in Theorem 1 is not necessary.

4 At least one result in the binary case, namely Theorem 5.1 in [2], cannot be �naturally translated�
to the nonbinary case, as witnessed by the �generic pyramid-free 3-hypergraph� which is simple with
SU-rank 1; see [8, Section 3] for details.
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The structure of this article is as follows. The next section recalls the necessary back-
ground and explains some notation and terminology. Theorem 1 is proved in Section 4.
In Section 3 a technical result about independence in simple homogeneous structures is
proved, which is then used in the proof of Theorem 1.

2. Preliminaries

The notation and terminology that we use is more or less standard, but nevertheless we
explain some notational issues here. Structures are denoted byM or N (orMeq or N eq

if we deal with imaginaries) and their universes are denoted byM or N (orM eq or N eq).
Sometimes we attach indices to the letters. Finite sequences (tuples) of elements are
denoted ā, b̄, . . . (and �nite sequences of variables x̄, ȳ, . . .) while a, b, . . . denote elements
from some structure. By `ā ∈ A' we mean that all elements in the sequence ā belong
to the set A. If we want to show that the length of ā is n then we may write ā ∈ An.
For a set A, |A| is its cardinality and for a sequence ā, |ā| is its length. For a sequence
ā, rng(ā) denotes the set of elements occuring in the sequence. The maximal arity of
a �nite relational vocabulary is, of course, the maximum of the arities of the relation
symbols in the vocabulary.

Suppose that M is a structure, ā ∈ M and A ⊆ M . Then aclM(A), dclM(A) and
tpM(ā/A) denote the algebraic closure of A with respect to M, the de�nable closure
of A with respect to M and the complete type of ā over A with respect to M, respec-
tively. By tpatM(ā/A) we mean the restriction of tpM(ā/A) to atomic formulas. We often
write tpM(ā) instead of tpM(ā/∅) (and similarly for `tpatM'). WithM�A we denote the
substructure of M which is generated by A. Observe that if the vocabulary of M is
relational, then tpatM(a1, . . . , an) = tpatM(b1, . . . , bn) is equivalent to saying that the map
ai 7→ bi is an isomorphism fromM�{a1, . . . , an} toM�{b1, . . . , bn}.

Still assume that A ⊆ M . By SMn (A) we denote the set of all complete n-types over
A which are realized in some elementary extension of M. For a complete theory T we
let Sn(T ) be the set of all complete n-types (without parameters) of T . This means
that if M |= T , then Sn(T ) = SMn (∅). Suppose that R ⊆ Mk. Then we say that R is
A-de�nable (in M) if there are a formula ϕ(x̄, ȳ) without parameters and ā ∈ A such
that R = {b̄ ∈ Mk : M |= ϕ(b̄, ā)}. A structure M is called ω-categorical, simple or
supersimple, respectively, if its complete theory, denoted Th(M), has that property.

We refer to [15] (for example) for unexplained basic notions and notation of model
theory, and to [4, 34] for basic concepts and results from simplicity theory.

We have to work a little bit with imaginary elements, in order to show that we can
avoid them in the crucial part of the proof of Theorem 1. As usual Meq denotes the
extension of M by imaginary elements. The approach to imaginary elements that we
adopt is that of [15, 33] in which we do not introduce variables of di�erent sorts but
instead use unary predicates to �point out� the di�erent sorts. This approach is also
used in [2] where it is explained in more detail. The following fact which we will use is
also explained in some more detail in [2].

Fact 2. Suppose thatM is ω-categorical. Then:
(i) For all ā, b̄ ∈M , tpM(ā) = tpM(b̄) if and only if tpMeq(ā) = tpMeq(b̄) (ω-categoricity
is not needed for this part).
(ii) If B ⊆M eq is �nite and ā ∈M eq, then tpMeq(ā/aclMeq(B)) is isolated.
(iii) If B ⊆ Meq is �nite, n < ω and p ∈ SMeq

n (aclMeq(B)) is realized in N eq for some
N <M, then p is realized inMeq.

Let T be a simple theory. For every M |= T , A ⊆ M eq and p ∈ SMeq

n (A), there is a
notion of SU-rank of p, denoted SU(p) (a de�nition is found in [4, 34]). We abbreviate
SU(tpMeq(ā/A)) with SU(ā/A). For every type p, SU(p) is either ordinal valued or
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unde�ned (or alternatively given the value ∞). T is supersimple if and only if for every
0 < n < ω and p ∈ Sn(T ), SU(p) is ordinal valued (by [4, Proposition 13.13] or [34,
Theorem 5.1.5], and the facts that p ⊆ q implies that SU(p) ≥ SU(q) and ifM |= T and
ā ∈M eq, then there is ā′ ∈M such that ā ∈ dclMeq(ā′) and hence SU(ā) ≤ SU(ā′)).

The SU-rank of T is the supremum of {SU(p) : p ∈ S1(T )}. If the SU-rank of T is
�nite then it follows from the Lascar inequalities [4, 34] that SU(p) is �nite for every
p ∈ Sn(T ) and every n < ω; so in particular, T is supersimple.

3. An auxilliary result about independence

In this section we prove a result (generalizing [2, Theorem 3.3] and its proof) which will
be used in the proof of the main theorem. Actually we will only use its corollary to
binary structures, but nevertheless prove the more general version since it may be useful
in the future. A slightly weaker version of Corollary 6 has been proved earlier by Aranda
Lopez [1].

We consider a generalization of the independence theorem for simple theories, namely
the `strong n-dimensional amalgamation property for Lascar strong types', studied by
Kolesnikov in [18, De�nition 4.3]. In the present context of homogeneous structures,
as distinct from that of Kolesnikov, a `Lascar strong type' corresponds to a `type over
an algebraically closed set'. The notation P(S) denotes the powerset of S, and we let
P−(S) = P(S) − {S}. Every n < ω is identi�ed with the set {0, . . . , n − 1}, so the
notation P(n) makes sense. For a type p, dom(p) denotes the set of all parameters that
occur in formulas in p.

De�nition 3. Let T be an ω-categorical and simple complete theory and let n < ω.
(i) A set of types {ps(x̄)|s ∈ P−(n)} (with respect toMeq for someM |= T ) is called an
n-independent system of strong types over A (where A ⊆Meq) if it satis�es the following
properties:

(a) dom(p∅) = A and dom(ps) is algebraically closed inMeq for every s ∈ P−(n).
(b) for all s, t ∈ P−(n) such that s ⊆ t, pt is a nondividing extension of ps.
(c) for all s, t ∈ P−(n), dom(ps) |̂

dom(ps∩t)
dom(pt).

(d) for all s, t ∈ P−(n), ps and pt extend the same type over aclMeq(dom(ps∩t)).

(ii) We say that T (and any N |= T ) has the n-dimensional amalgamation property
for strong types if for every M |= T and every n-independent system of strong types
{ps(x̄)|s ∈ P−(n)} over some set A ⊆ M eq, there is a type p∗ which is a nondividing
extension of ps for each s ∈ P−(n).

Remark 4. The independence theorem (in its general setting when the sets of parame-
ters of the given types may be in�nite [4, 34]) implies that every ω-categorical and simple
theory has the 2-dimensional amalgamation property for strong types. (This relies on
the fact that since ω-categorical theories have elimination of hyperimaginaries [4, 34] we
can replace the `bounded closure' with `algebraic closure'.)

Proposition 5. Suppose thatM has a �nite relational vocabulary with maximal arity ρ.
Also assume that M is countable, homogeneous and simple and has the ρ-dimensional
amalgamation property for strong types. Let 0 < n < ω, ā0, . . . , ān ∈ M and suppose
that for every s ⊆ {0, . . . , n} such that |s| ≤ ρ, {āi : i ∈ s} is independent over B ⊆ M
and that rng(āi) ∩ rng(āj) = ∅ whenever i < j ≤ n. Then {ā0, . . . , ān} is independent
over B.

Proof. Suppose thatM, ρ and ā0, . . . , ān ∈ M satisfy the assumptions of the proposi-
tion. Recall that ρ ≥ 2 by our de�nition in Section 2. We use induction on n. The base
case is when n < ρ and then the conclusion is evident. So suppose that n ≥ ρ. By the
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induction hypothesis, every proper subset of {ā0, . . . , ān} is independent over B. For a
contradiction suppose that {ā0, . . . , ān} is not independent over B. Then for some i ≤ n,
āi |̂�
B
{āj : j ≤ n and j 6= i}. Without loss of generality assume that i = n, so

(1) ān |̂�
B
{āi : i < n}

and, by the induction hypothesis,

(2) {āi : i < n} is independent over B.
The induction hypothesis also implies that

(3) for all s ∈ P−(n), ān |̂
B
{āi : i ∈ s}.

For each s ∈ P−(ρ), let

As = aclMeq

(
{āi : i ∈ s} ∪ {āρ, . . . , ān−1} ∪B

)
.

Claim 1. For all s, t ∈ P−(ρ), As |̂
As∩t

At.

Proof of Claim 1. Suppose that s, t ∈ P−(ρ) and As |̂�
As∩t

At. Then t \ s 6= ∅. If |t \ s| > 1

then there is t′ ⊂ t such that t′ ∩ s = t ∩ s, |t \ t′| = 1 and |t′ \ s| > 0. By transitivity of
dividing, As |̂�

As∩t′
At′ or As |̂�

At′
At; in the latter case As∪t′ |̂�

A(s∪t′)∩t
At (because (s∪t′)∩t = t′).

In the �rst case, |t′\s| < |t\s|. In the second case, |t\(s∪t′)| < |t\s|. By induction on |t\s|
we therefore �nd s′, t′ ∈ P−(ρ) such that As′ |̂�

As′∩t′
At′ and |t′\s′| = 1. By monotonicity of

dividing, As′ |̂�
B
At′ where At′ \ As′ contains exactly one tuple from {āi : i < ρ} (because

|t′ \ s′| = 1). Hence
{
āi : i ∈ s′ ∪ t′ ∪ {ρ, . . . , n − 1}

}
is not independent over B, which

contradicts (2) since s′ ∪ t′ ⊆ ρ ≤ n. �

Now we verify that {
tp(ān/As) : s ∈ P(ρ)−

}
is a ρ-independent system of strong types over aclMeq(B∪{āρ, . . . , ān−1}). Properties (a)
and (d) follow directly from the de�nition of As for s ∈ P−(ρ); (b) follows from (3) and
monotonicity of dividing; and (c) follows from Claim 1. SinceM has the ρ-dimensional
amalgamation property for strong types there is p∗(x̄) which is a nondividing extension of
tp(ān/As) for each s ∈ P−(ρ). Without loss of generality we may assume that dom(p∗) =⋃
s∈P−(ρ)As. Then, by Fact 2, we �nd ā ∈M which realizes p∗. Since p∗ does not divide

over A∅ it follows that

ā |̂
B∪{āρ,...,ān−1}

{āi : i < ρ}.

This together with (3) and transitivity gives ā |̂
B
{āi : i < n}. To sum up, we have:

tp(ā/As) = tp(ān/As) for every s ∈ P−(ρ), and(4)

ā |̂
B
{āi : i < n}.

Let

C = B ∪ rng(ā0) ∪ . . . ∪ rng(ān−1) ∪ rng(ān) and

C ′ = B ∪ rng(ā0) ∪ . . . ∪ rng(ān−1) ∪ rng(ā).

Recall that our assumptions imply that rng(ān) ∩ rng(āi) = ∅ for all i < n. From (4) it
follows that rng(ā) ∩ rng(āi) = ∅ for all i < n

Claim 2. The bijection f :M�C →M�C ′ de�ned by f(x) = x for all x ∈ B∪ rng(ā0)∪
. . . ∪ rng(ān−1) and f(ān) = ā is an isomorphism.
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Proof of Claim 2. By assumption every relation symbol has arity at most ρ. If b̄ ∈ Mk

where k ≤ ρ, then rng(b̄) can have nonempty intersection with at most ρ of the sets
rng(āi) for i ≤ n, and similarly if we replace ān with ā. Therefore (4) implies that for
every relation symbol R of arity k and b̄ ∈ Ck, M�C |= R(b̄) if and only if M�C ′ |=
R(f(b̄)), so f is an isomorphism. �

SinceM is homogeneous and B is �nite, there is an automorphism g ofM which extends
f from Claim 2. Then g(ān) = ā and g �xes B ∪ rng(ā0) ∪ . . . ∪ rng(ān−1) pointwise.
However, since dividing is invariant under automorphisms, this contradicts (1) and the
second part of (4). �

By Proposition 5 and Remark 4 we get:

Corollary 6. (a slight strengthening of [1, Proposition 3.1.4]) Suppose thatM is binary,
countable, homogeneous and simple. Let 0 < n < ω, ā0, . . . , ān ∈M , let B ⊆M be �nite
and suppose that for all i < j ≤ n, āi |̂

B
āj and rng(āi)∩ rng(āj) = ∅. Then {ā0, . . . , ān}

is independent over B.

The (anyway natural) assumption in Proposition 5 and Corollary 6 that if i 6= j then
rng(āi) ∩ rng(āj) = ∅ could be removed, but at the cost of complicating the argument a
little bit.

4. Finiteness of rank

In this section we prove the main result:

Theorem 1. Suppose thatM is a countable, binary, homogeneous and simple structure.
Let T = Th(M). Then T is supersimple with �nite SU-rank which is at most |S2(T )|.

Note that the bound on the rank need not be sharp: For every k < ω there is a binary
random structureM such that |S2(Th(M))| > k, but the SU-rank of Th(M) is 1. (See
[2, Section 2.3] for the exact meaning of binary random structure.)

We give the proof of Theorem 1 in Section 4.1. Before that we do some preparatory
work, including introducing the notion of `preweight' which has a crucial role in the proof
of Theorem 1, more precisely in Lemma 21.

Lemma 7. Suppose that M is a countable homogeneous and simple V -structure. Let
0 < n < ω and suppose that A ⊆Mn is a ∅-de�nable relation. Let M′ be the expansion
of M to the vocabulary V ∪ {RA} where (RA)M

′
= A. Then M′ is homogeneous and

simple.

Proof. It is well known that simplicity is preserved if one adds relation symbols which
are interpreted as relations that are ∅-de�nable in the original language. One way of
seeing this is to consider the tree property which is equivalent to not being simple [4, 34]:
If a (V ∪ {RA})-formula ϕ′ has the tree property with respect to Th(M′), then the V -
formula ϕ obtained by replacing every occurence of RA with the V -formula which de�nes
A has the tree property with respect to Th(M).

Now suppose that ā, b̄ ∈ M and tpatM′(ā) = tpatM′(b̄). Then tpatM(ā) = tpatM(b̄) and
as M is homogeneous there is an automorphism f of M such that f(ā) = b̄. Since

A ⊆Mn is ∅-de�nable, f preserves A setwise. Since (RA)M
′

= A it follows that f is an
automorphism ofM′, soM′ is homogeneous. �

De�nition 8. Suppose that M is a simple structure. Let ā ∈ M eq, B ⊆ M eq and
suppose that κ is a cardinal. The preweight of ā over B (with respect to M), denoted
pw(ā/B), is at least κ if there are N < M and a sequence (āi : i < κ) in N eq which



8 VERA KOPONEN

is independent over B and such that ā |̂�
B
āi for all i < κ. We write pw(ā/B) = κ if

pw(ā/B) ≥ κ and pw(ā/B) 6≥ κ+ (where κ+ is the least cardinal greater than κ).

Lemma 9. (D. Palacín [29, Lemma 2.14]) Let V be a countable vocabulary. Suppose that
M is a V -structure which is ω-categorical and simple. Let ā ∈M eq and let B ⊆M eq be
�nite. Then pw(ā/B) < ω.

4.1. Proof of Theorem 1. Let M be a countable, binary, simple and homogeneous
structure and let T = Th(M). Moreover, by Lemma 7 and the fact that the SU-rank
of T only depends on which relations in models of T are ∅-de�nable (because of the
de�nition of dividing), it follows that we may assume that

for every p(x, y) ∈ S2(T ) there is a binary relation symbol Rp such that(5)

p(x, y) is isolated by Rp(x, y).

Let
t = |S2(T )|.

To prove that the SU-rank of T is at most t we need to prove (by the �nite character of
dividing/forking) that there do not exist N |= T , a ∈ N and �nite sets ∅ = B0 ⊂ B1 ⊂
. . . ⊂ Bt+1 ⊆ N eq such that tpN eq(a/Bn+1) divides over Bn for every n < t + 1. As
explained in the end of Section 2, supersimplicity follows from this. The �rst step in the
proof is to show that it su�ces to consider the case when N =M and Bn ⊆ M for all
n ≤ t+ 1. This is taken care of by Lemmas 10 and 11.

Lemma 10. Suppose that there are N |= T , a ∈ N and �nite subsets

∅ = B0 ⊂ B1 ⊂ . . . ⊂ Bt+1 ⊂ N eq

such that tpN eq(a/Bn+1) divides over Bn for every n < t + 1. Then there are a′ ∈ M
and �nite

∅ = B′0 ⊂ B′1 ⊂ . . . ⊂ B′t+1 ⊂M eq

such that tpMeq(a′/B′n+1) divides over B′n for every n < t+ 1.

Proof. Suppose that N |= T , a ∈ N and that Bn, n ≤ t+ 1 satisfy the assumptions of
the lemma. Without loss of generality we may assume thatM 4 N (andMeq 4 N eq).
Let b̄t+1 enumerate Bt+1. Then tpN eq(a, b̄t+1) ∈ SN eq

k (∅) = SM
eq

k (∅) for suitably chosen
k, so by Fact 2, tpN eq(a, b̄t+1) is also realized in Meq by some a′, b̄′t+1 ∈ M eq. Then

rng(b̄′t+1) contains sets B′n, for n ≤ t+ 1, which satisfy the conclusion of the lemma. �

Lemma 11. Suppose that there are a ∈M and �nite subsets

∅ = B0 ⊂ B1 ⊂ . . . ⊂ Bt+1 ⊂M eq

such that tpMeq(a/Bn+1) divides over Bn for every n < t + 1. Then there are �nite
subsets

∅ = B′0 ⊂ B′1 ⊂ . . . ⊂ B′t+1 ⊂M
such that tpM(a/B′n+1) divides over B′n for every n < t+ 1.

Proof. Suppose that there are a ∈ M and �nite subsets ∅ = B0 ⊂ B1 ⊂ . . . ⊂ Bt+1 ⊂
M eq such that tpMeq(a/Bn+1) divides over Bn for every n < t+ 1. For every n ≤ t+ 1
there is �nite B′n ⊂M such that Bn ⊆ dclMeq(B′n). By enumerating B′n as b̄′n and using
the existence of a nondividing extension of tpMeq(b̄′n/Bn) to Bn∪{a} (and Fact 2) we may
also assume that a |̂

Bn
B′n for all n ≤ t+ 1. Suppose for a contradiction that a |̂

B′n
B′n+1 for

some n < t+ 1. Then a |̂
BnB′n

B′n+1 because Bn ⊆ dclMeq(B′n). By transitivity of dividing

(and since a |̂
Bn
B′n) we get a

|̂
Bn
B′nB

′
n+1, so a

|̂
Bn
B′n+1. As Bn+1 ⊆ dclMeq(B′n+1) we have
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a |̂
Bn
Bn+1 which contradicts the assumption. Hence a |̂�

B′n
B′n+1 for every n < t + 1. Note

that the construction does not guarantee that B′n ⊆ B′n+1. But by letting B′′n =
⋃
i≤nB

′
n

we get B′′n ⊆ B′′n+1 and still have a |̂�
B′′n
B′′n+1 for all n < t+ 1. �

From Lemmas 10 and 11 it follows that to prove that the SU-rank of T = Th(M) is at
most t it su�ces to prove:

Lemma 12. There do not exist a ∈M and �nite subsets

∅ = B0 ⊂ B1 ⊂ . . . ⊂ Bt+1 ⊂M
such that tpM(a/Bn+1) divides over Bn for every n < t+ 1.

Towards a contradiction,

assume that a ∈M and there are �nite ∅ = B0 ⊂ B1 ⊂ . . . ⊂ Bt+1 ⊂M(6)

such that tpM(a/Bn+1) divides over Bn for every n < t+ 1.

We will derive a contradiction via a construction of homogeneous simple substructures
M =M0 ⊃M1 ⊃ . . . ⊃Mt+1 and an argument which is divided into a few lemmas.

Notation 13. We will consider dividing in di�erent structures where the universe of
one is included in another. To distinguish which structure we have in mind we use the
following notation: if N is a structure, ā, b̄ ∈ N and C ⊆ N , then ā |̂

C

N b̄ means that ā

is independent from b̄ over C in N (or �with respect to N �).

Recall that the (�nite) vocabulary ofM is denoted V .

De�nition 14. Let p1(x, y), . . . , pt(x, y) be an enumeration of S2(T ). By assumption (5),
there are binary relation symbols R1, . . . , Rt ∈ V such that for each i, Ri(x, y) isolates
pi(x, y).

Note that, sinceM is homogeneous, every p ∈ S2(T ) is realized inM.

De�nition 15. Let N be a simple V -structure and let R ∈ V be binary.
We call R a dividing relation with respect to N if for all a, b ∈ N , N |= R(a, b) implies
a |̂�N b. We call R a nondividing relation with respect to N if for all a, b ∈ N , N |= R(a, b)
implies a |̂ N b.

Note that, in general, a binary R ∈ V may be neither a dividing relation with respect to
N nor a nondividing relation with respect to N .

De�nition 16. LetM0 =M and T0 = T . For all n = 1, . . . , t+ 1, let

Mn =
{
a′ ∈M : tpM(a′/Bn) = tpM(a/Bn)

}
,

Mn = M�Mn, and

Tn = Th(Mn).

Hence eachMn is a substructure ofM and thus a V -structure. Also note that

M =M0 ⊃M1 ⊃ . . . ⊃Mt+1

and that Mt is in�nite, because tpM(a/Bt+1) divides over Bt and therefore tpM(a/Bt)
cannot be algebraic.

Lemma 17. For all n = 0, . . . , t,Mn is simple and homogeneous.

Proof. The case n = 0 is trivial, so suppose that 1 ≤ n ≤ t. If a simple structure is
expanded with constant symbols (but nothing more) then the resulting expansion is also
simple, by [4, Remark 2.26] for example. Every in�nite structure which is interpretable in
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a simple structure is simple, by [34, Corollary 2.8.11] for example. By the ω-categoricity
ofM, tpM(a/Bn) is isolated (recall that Bn is �nite) and therefore Mn is Bn-de�nable
in M. It follows that Mn is interpretable in the expansion of M with constants for
elements in Bn. ThusMn is simple.

For homogeneity, suppose that ā = (a1, . . . , ak), b̄ = (b1, . . . , bk) ∈ (Mn)k and tpatMn
(ā) =

tpatMn
(b̄). AsMn is a substructure ofM we get

tpatM(ā) = tpatM(b̄).

Since ā, b̄ ∈ (Mn)k we also have

tpM(ai/Bn) = tpM(bi/Bn) = tpM(a/Bn) for all i = 1, . . . , k.

SinceM is binary we get tpatM(ā/Bn) = tpatM(b̄/Bn) and asM is homogeneous there is
an automorphism f of M such that f(ā) = b̄ and f �xes Bn pointwise. Since Mn is
Bn-de�nable inM, it follows that f �xes Mn setwise. Hence f�Mn is an automorphism
ofMn =M�Mn. �

Corollary 18. For all i = 1, . . . , t and all n = 0, 1, . . . , t, Ri(x, y) isolates a type in
S2(Tn). Moreover, every type in S2(Tn) is isolated by some Ri.

Proof. Since M is homogeneous and Mn ⊆ M it follows from De�nition 14 that for
every i = 1, . . . , t and every atomic V -formula ϕ(x, y),

Mn |= ∀x, y
(
Ri(x, y) → ϕ(x, y)

)
∨ ∀x, y

(
Ri(x, y) → ¬ϕ(x, y)

)
.

By Lemma 17, Mn is homogeneous and hence it has elimination of quanti�ers, so the
�rst claim of the corollary follows. The second claim is just a restatement of what is said
in De�nition 14. �

Corollary 18 immediately implies the following:

Corollary 19. For all i = 1, . . . , t and all n = 0, 1, . . . , t, Ri is a dividing relation or a
nondividing relation (but not both) with respect toMn.

Lemma 20. For all n = 0, . . . , t and all c, d ∈Mn, c |̂ Mnd if and only if c |̂
Bn

Md.

Proof. Since B0 = ∅ andM0 =M the lemma is trivial for n = 0. Let 1 ≤ n ≤ t and
c, d ∈ Mn. Suppose that c |̂�Mnd. By the de�nition of dividing there are a V -formula
ϕ(x, y) (without parameters) and di ∈ Mn for i < ω such that ϕ(x, y) ∈ tpMn

(c, d),
tpMn

(di) = tpMn
(d) for all i and {ϕ(x, di) : i < ω} is k-inconsistent (with respect to

Tn = Th(Mn)) for some k < ω. (It follows from the homogeneity of Mn and Fact 2
that such di can be found inMn.) SinceMn is homogeneous we may assume that ϕ is
quanti�er free. By the de�nition ofMn we have tpM(di/Bn) = tpM(d/Bn) for all i.

SinceMn ⊆M, ϕ(x, y) ∈ tpMn
(c, d) and ϕ(x, y) is quanti�er free it follows that

ϕ(x, y) ∈ tpM(c, d).

Let b̄n be an enumeration of Bn and let ψ(x, y, b̄n) isolate tpM(c, d/Bn). By the ho-
mogeneity of M we may assume that ψ is quanti�er free. Then let ϕ′(x, y, b̄n) be the
(quanti�er free) formula

ϕ(x, y) ∧ ψ(x, y, b̄n),

so ϕ′(x, d, b̄n) ∈ tpM(c/{d} ∪ Bn). If {ϕ′(x, di, b̄n) : i < ω} would not be k-inconsistent
with respect toM, then there would be i1, . . . , ik and c′ ∈M such that

M |=
k∧
j=1

ϕ(c′, dij , b̄n),
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which, by the de�nitions ofMn and ϕ′, implies that c′ ∈Mn andMn |=
∧k
j=1 ϕ(c′, dij ).

Then {ϕ(x, di) : i < ω} is not k-inconsistent with respect to Mn, contradicting our
assumptions. Hence {ϕ′(x, di, b̄n) : i < ω} is k-inconsistent with respect to M and
therefore c |̂�

Bn

Md.

Now suppose that c |̂�
Bn

Md and let b̄n enumerate Bn. Then there are ϕ(x, y, b̄n) ∈
tpM(c, d/Bn) and di ∈ M for i < ω such that tpM(di/Bn) = tpM(d/Bn) for all i
and {ϕ(x, di, b̄n) : i < ω} is k-inconsistent with respect to M for some k < ω. By
homogeneity ofM we may assume that ϕ is quanti�er free. Recall that we assume that
c, d ∈ Mn. Since tpM(di/Bn) = tpM(d/Bn) we have di ∈ Mn for all i. SinceMn ⊆M
where both structures are homogeneous we also get

tpMn
(di) = tpMn

(d) for all i.

Let ψ(x, y) isolate tpMn
(c, d). AsMn is homogeneous we may assume that ψ is quanti�er

free.
Suppose for a contradiction that {ψ(x, di) : i < ω} is not k-inconsistent with respect to

Mn. Then there are i1, . . . , ik and c′ ∈Mn such thatMn |=
∧k
j=1 ψ(c′, dij ). Because ψ

is quanti�er free andMn ⊆M we getM |=
∧k
j=1 ψ(c′, dij ). Since ψ isolates tpMn

(c, d)

and c′, c, d, dij ∈ Mn where Mn ⊆ M it follows that tpatM(c′, dij ) = tpatM(c, d) (for
all j). By the de�nition of Mn we have tpM(c′/Bn) = tpM(c/Bn) = tpM(d/Bn) =
tpM(dij/Bn). SinceM is binary it follows that tpatM(c′, dij/Bn) = tpatM(c, d/Bn) which
by the homogeneity ofM gives tpM(c′, dij/Bn) = tpM(c, d/Bn) for all j. Consequently

M |=
∧k
j=1 ϕ(c′, dij , b̄n) so {ϕ(x, di, b̄n) : i < ω} is not k-inconsistent with respect toM,

contradicting the assumption. Hence {ψ(x, di) : i < ω} is k-inconsistent with respect to
Mn and therefore c |̂�Mnd. �

Lemma 21. Let 1 ≤ n ≤ t. There is 1 ≤ s ≤ t such that Rs is a nondividing relation
with respect toMn and, for every m < n, Rs is a dividing relation with respect toMm.

Proof. Recall that for every n = 0, . . . , t, Mn is in�nite and (by Lemma 17) simple
and homogeneous. Fix any 1 ≤ n ≤ t. Let b̄n enumerate Bn. For every 0 ≤ m < n let
αm = pw(b̄n/Bm) where the preweight is taken with respect toM =M0. By Lemma 9,
αm < ω for every m < n. Then let α = max{α0, . . . , αn−1}, so α < ω.

By repeatedly applying the existence of nondividing extensions and Fact 2 toMn it
follows that there are ci ∈Mn for i < ω such that {ci : i < ω} is an independent set over
∅ with respect toMn. By Ramsey's theorem [15, Theorem 11.1.3 or its corollary] there
are distinct k0 < . . . < kα < ω such that

tpMn
(cki , ckj ) = tpMn

(cki′ , ckj′ )

whenever 0 ≤ i < j ≤ α and 0 ≤ i′ < j′ ≤ α. In other words, by renaming elements
for notational simplicity, we have found distinct d0, . . . , dα ∈Mn such that {d0, . . . , dα}
is independent over ∅ with respect to Mn and tpMn

(di, dj) = tp(di′ , dj′) whenever
0 ≤ i < j ≤ α and 0 ≤ i′ < j′ ≤ α. By Corollary 18, for some 1 ≤ s ≤ t, Rs isolates
tpMn

(di, dj) for all 0 ≤ i < j ≤ α. HenceMn |= Rs(di, dj) and thusMm |= Rs(di, dj)
for all m < n and all 0 ≤ i < j ≤ α (because Mn ⊆ Mm if m < n). As M = M0 we
haveM |= Rs(di, dj) for all 0 ≤ i < j ≤ α. Since {d0, . . . , dα} is independent over ∅ in
Mn it follows that Rs is a nondividing relation with respect toMn.

Let m < n and suppose for a contradiction that Rs is a nondividing relation with re-
spect toMm. Then di |̂ Mmdj for all 0 ≤ i < j ≤ α, which by Lemma 20 gives di |̂

Bm

Mdj

for all 0 ≤ i < j ≤ α. Now Corollary 6 implies that {d0, . . . , dα} is independent over
Bm inM. By assumption (6), the de�nition ofMn and since di ∈ Mn and n > m (so
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Bm ⊆ Bn−1) we also have di |̂�
Bm

Mb̄n, for every i ≤ α. But as |{d0, d1, . . . , dα}| > α ≥ αm,

this contradicts the assumption that pw(b̄n/Bm) = αm. Hence Rs is (by Corollary 19) a
dividing relation with respect toMm. �

With Lemma 21 we can now derive a contradiction which proves Lemma 12 and hence
also Theorem 1. By Lemma 21, there is 1 ≤ s ≤ t such that Rs is a nondividing relation
with respect toMt and a dividing relation with respect toMn for every n < t. Without
loss of generality (by just reordering R1, . . . , Rt if necessary) we can assume that s = 1.
By Lemma 21 again, there is 1 ≤ s ≤ t such that Rs is a nondividing relation with
respect to Mt−1 and a dividing relation with respect to Mn for every n < t − 1. By
the previous step we must have s > 1. Without loss of generality (by just reordering
R2, . . . , Rt if necessary) we may assume that s = 2. If we continue in the same way until
t steps are �nished we �nd that each one of R1, . . . , Rt is a dividing relation with respect
toM0 =M. SinceM is simple there are (by the existence of nondividing extensions)
c, d ∈M such that c |̂ Md. Then tpM(c, d) is isolated by Ri for some 1 ≤ i ≤ t and this
Ri must be a nondividing relation with respect to M, contradicting (via Corollary 19)
that every Ri is a diving relation with respect toM. This �nishes the proof of Lemma 12
and of Theorem 1.

The assumption thatM is binary was used directly in the proofs of Lemmas 17 and 20
and indirectly in the proof of Lemma 21 through the use of Corollary 6.
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