The assignments marked with * must be correctly completed in order to pass the course.

1^{*}. In this assignment you will prove the completeness theorem for propositional logic. Let the smallest building blocks of the propositional language, called *atomic sentences*, or *propositional variables*, be the symbols P_n , $n \in \mathbb{N}$. Let F be the set of sentences that can be built from the atomic sentences and the connectives \land , \lor and \neg . (We skip the connectives \rightarrow and \leftrightarrow in order to have fewer cases to deal with in some assingments below.)

We assume that we have a formal proof system and, as usual, if $T \subseteq F$ and $A \in F$, then $T \vdash A$ means that there is a formal proof Π such that A is the conclusion of Π and Π uses only assumptions from T.

By ' $T \models A$ ' we mean that every truth assignment $\sigma : \{P_n : n \in \mathbb{N}\} \to \{t, f\}$ to the atomic sentences which makes all sentences in T true also makes A true (in other words, A cannot be false if all sentences in T are true). We say that T is *satisfiable* if there is some truth assignment which makes all sentences in T true.

We also assume the following about the formal proof system:

Assumptions

(1) The formal proof system is sound, that is, if $T \vdash A$ then $T \models A$. (2) $A \in T \implies T \vdash A$. (3) $T \vdash A$ and $T' \vdash B \implies T \cup T' \vdash A \land B$. (4) $T \vdash A \land B \implies T \vdash A$ and $T \vdash B$. (5) $T \vdash \neg \neg A \implies T \vdash A$. (6) $T \cup \{A\} \vdash B \land \neg B \implies T \vdash \neg A$. (7) $T \vdash A \land \neg A \implies T \vdash B$ for every $B \in F$. (8) $T \vdash A \implies T \vdash A \lor B$ and $T \vdash B \lor A$. (9) $T \cup \{A\} \vdash C$ and $T \cup \{B\} \vdash C \implies T \cup \{A \lor B\} \vdash C$.

Definitions

(i) A subset $T \subseteq F$ is also called a *theory*

(ii) A theory $T \subseteq F$ is *inconsistent* if for some $A \in F$, $T \vdash A \land \neg A$.

(iii) A theory $T \subseteq F$ is *consistent* if it is not inconsistent.

(iv) A theory $T \subseteq F$ is maximal consistent if it is consistent and for every $A \in F - T$, $T \cup \{A\}$ is inconsistent.

Let $T \subseteq F$ be a theory and let $A, B \in F$.

- (a) Prove that $T \cup \{A\}$ is inconsistent $\iff T \vdash \neg A$.
- (b) Prove that $T \cup \{\neg A\}$ is inconsistent $\iff T \vdash A$.
- (c) Prove that if T is maximal consistent, then:
- $(c_1) \ T \vdash A \iff A \in T,$
- $(c_2) \ T \vdash \neg A \Longleftrightarrow A \notin T,$
- $(c_3) \ T \vdash A \land B \iff \{A, B\} \subseteq T,$
- (c_4) $T \vdash A \lor B \iff A \in T$ or $B \in T$.

(d) Prove that if $T \subseteq F$ is consistent, then there is $T' \subseteq F$ such that $T \subseteq T'$ and T' is maximal consistent.

(e) Prove that if $T \subseteq F$ is maximal consistent then T is satisfiable. (Use induction on the complexity of formulas and part (c).)

(f) Prove that if $T \subseteq F$, then: T is satisfiable $\iff T$ is consistent.

(g) Prove the completeness theorem: $T \models A \Longrightarrow T \vdash A$.

2. In this assignment we use the same notation and terminology as in the previous assignment. Describe an algorithm which, given a finite sequence of sentences $A_1, \ldots, A_n, B \in F$, finds a formal proof with conclusion B and assumptions A_1, \ldots, A_n , if such proof exists, and otherwise the algorithm replies that no such proof exists.

3. In this assignment we work with first-order logic. Let V be some vocabulary, F_V the set of all first-order formulas that can be built up from V, and let $T \subseteq F_V$ be a theory (i.e. a set of sentences). Suppose that $\varphi \in F_V$ is a sentence which is true in every infinite model of T. Prove that there is $n \in \mathbb{N}$ such that whenever \mathcal{M} is a finite model of T with at least n elements in its universe, then $\mathcal{M} \models \varphi$; in other words, φ is true in every sufficiently large finite model of T. (Observe that the statement is (trivially) true if T has no finite model.) Hint: use the compactness theorem.