
1 Set Theory

1.1 Axioms of set theory

The axioms of Zermelo-Fraenkel axiomatic set theory, stated informaly, are
the following (1)-(7):

(1) axiom of extensionality:
If X and Y are sets and for any element a, a ∈ X ⇔ a ∈ Y , then X = Y .

(2) axiom of pairing:
For any sets a and b there exists a set {a, b} that contains exactly a and b.

(3) axiom of union:
If X is a set of sets then there exists a set Y such that

∀a[ a ∈ Y ⇔ ∃b(b ∈ X and a ∈ b) ]

(we say that Y is the union of X and denote it by
⋃
X)

(4) axiom of power set:
If X is a set then there exists a set Y which contains exactly all subsets of
X, i.e.

∀a[ a ∈ Y ⇔ ∀b(b ∈ a ⇒ b ∈ X) ]

(we call the set Y , the power set of X and denote it by P(X))

(5) axiom schema of separation:
If ϕ is a property and X is a set then

Y = {a ∈ X : a has the property ϕ}

is a set.

(6) axiom schema of replacement:
If X is a set and ϕ(x, y) is a property such that for every a ∈ X there exists
exactly one element b such that ϕ(a, b) holds, then

Y = {b : there exists a ∈ X such that ϕ(a, b) holds}

is a set.
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(7) axiom of infinity:
There exists a set X such that ∅ ∈ X and for every set a, if a ∈ X then
a ∪ {a} ∈ X.
(Observe that if there exists any set at all then by the axiom of extension-
ality there will be a unique set which contains no elements at all.)

Zermelo-Fraenkel axiomatic set theory is usually abbreviated ZF. If we add
the following axiom, called the axiom of choice then we get a theory which
is usually called ZFC:

(8) axiom of choice (abbreviated AC):
For every set X of nonempty sets there exists a function f from X into

⋃
X

such that for every a ∈ X, f(a) ∈ a.
(Such a function f is called a choice function for X.)

The results in the following sections follow from the axioms of ZFC but
we will not explicitly refer to them.

Many familiar objects such as ordered pairs, ordered tuples, relations and
functions can be defined in terms of sets. For example, we define an ordered
pair (a, b) to be the set {{a}, {a, b}}. For k ≥ 2, ordered k+ 1-tuples can be
defined as follows. Suppose that for elements a1, . . . , ak we have already de-
fined what the ordered k-tuple (a1, . . . , ak) is. Then we define (a1, . . . , ak+1)
to be (a1, (a2, . . . , ak+1)). For any sets A1, . . . , Ak, the cartesian product of
A1, . . . , Ak, denoted A1 × . . .×Ak is the set

{(a1, . . . ak) : a1 ∈ A1, . . . , ak ∈ Ak}

If A is a set then the cartesian product

A× . . .×A︸ ︷︷ ︸
k times

is denoted by Ak. A k-ary relation on A1, . . . , Ak is a subset of A1× . . .×Ak.
A k-ary relation on A is a subset of Ak. A function from a set A into a set B
is a binary relation R ⊆ A×B such that for every a ∈ A there exists exactly
one b ∈ B such that (a, b) ∈ R. So the function mentioned in the axiom
of choice is just a particular kind of set. A sequence ai, i ∈ I of elements
such that every ai ∈ A is a function from I into A. We will use the notation
A ⊆ B for “A is a subset of B” and the notation A ⊂ B for “A is a proper
subset of B” , i.e. “A is a subset of B and A 6= B”.
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1.2 Well orderings

Let A be a set. By definition, a linear (or total ) ordering on A is a binary
relation < on A such that for all a, b, c ∈ A the following holds (where we
write a < b for (a, b) ∈<):
(i) a ≮ a (x ≮ y means not x < y)
(ii) if a < b and b < c then a < c
(iii) if a 6= b then a < b or b < a
We define a ≤ b to mean a < b or a = b.

If < is a linear ordering on A then we will say that (A,<) is a linearly
ordered set (or a linear ordering). Sometimes when it is evident which linear
ordering we are refering to, we will just say that A is a linearly ordered set
(or a linear ordering). Observe that if (A,<) is a linear ordering and B ⊆ A
then (B,<) is a linear ordering. The notation B ⊆ A will mean that B is
a subset of A and the notation B ⊂ A will mean that B is a proper subset
of A, that is, B ⊆ A but not B = A. If B ⊆ A then we say that B is an
initial segment of A if for all a, b ∈ A, if a < b and b ∈ B then a ∈ B. If B
is an initial segment of (A,<) and B ⊂ A then we say that B is a proper
initial segment of (A,<). Let < be a linear ordering on the set A. If B is
a nonempty subset of A then we say that a ∈ B is a least element of B if
for all b ∈ B, if b 6= a then a < b. We say that < is a well ordering on A
(or that (A,<) is a well ordering) if (A,<) is a linear ordering and every
nonempty subset of A has a least element. Observe that if (A,<) is a well
ordering and B ⊆ A then (B,<) is a well ordering.

Lemma 1.1 If (A,<) is a well ordering and B ⊂ A is an initial segment
of A then there exists a ∈ A such that B = {b ∈ A : b < a}.

Proof. Let a be the least element in A− B. Since B is an initial segment
it follows that B = {b ∈ A : b < a}. �

Let (A1, <1) and (A2, <2) be two linearly ordered sets. An isomorphism
from (A1, <1) onto (A2, <2) is an injective function from A1 onto A2 such
that for all a, b ∈ A1, a <1 b if and only if f(a) <2 f(b). Note that if f
is an isomorphism from (A1, <1) onto (A2, <2) and if g is an isomorphism
from (A2, <2) onto (A3, <3) then the composition gf is an isomorphism from
(A1, <1) onto (A3, <3). If there exists an isomorphism from (A1, <1) onto
(A2, <2) then we say that (A1, <1) and (A2, <2) are isomorphic.

Lemma 1.2 Let (A1, <1) and (A2, <2) be two well ordered sets.
(i) If B is an initial segment of (A2, <2), and f is an isomorphism from

3



(A1, <1) onto (A2, <2) and g is an isomorphism from (A1, <1) onto (B,<2)
then A2 = B and f = g.
(ii) If f and g are two isomorphisms from (A1, <1) onto (A2, <2) then f = g.
(iii) If f is an isomorphism from (A1, <1) onto (A1, <1) then f is the identity
function, i.e. f(a) = a for all a ∈ A.
(iv) (A1, <1) is not isomorphic to any proper initial segment of itself.
(v) If A is an initial segment of A1 and f is an isomorphism from (A1, <1)
onto (A2, <2) then f(A) is an initial segment of A2.

Proof. (i) Suppose that there exists a ∈ A1 such that f(a) 6= g(a). Then
the set {a ∈ A1 : f(a) 6= g(a)} has a least element, say c. Then for for all
a < c, we have f(a) = g(a). Let C = {a ∈ A : a < c}, and let d be the least
element in A2−f(C) = A2−g(C). Since f is an isomorphism from (A1, <1)
onto (A2, <2) we must have f(c) = d, and since g is an isomorphism from
(A1, <1) onto (B,<2) we must have g(c) = d. Hence f(c) = g(c) which
contradicts the choice of c. Therefore there can not exist a ∈ A1 such that
f(a) 6= g(a).

If B 6= A2 then, since f is onto A2 and g is onto B, there must be
a ∈ A1 such that f(a) 6= g(a). But this contradicts what we just proved and
therefore we must have A2 = B. This concludes the proof of (i). (ii),(iii)
and (iv) are special cases of (i). (v) follows easily from the assumption that
f an isomorphism. �

1.3 Ordinals

We say that a set A is transitive if for every a ∈ A, we have a ⊆ A (so all
the members of A must be subsets of A). We say that a set is an ordinal
number (or just an ordinal) if it is transitive and well ordered by ∈. Ordinals
will be denoted by α, β, γ, . . .. It follows directly that

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

are ordinals.

Lemma 1.3 (i) If α is an ordinal and a ∈ α then a is an ordinal.
(ii) If α and β are ordinals then α ∩ β is an ordinal.
(iii) If α is an ordinal then α ∪ {α} is an ordinal.
(iv) If α is an ordinal then every initial segment of α is an ordinal.
(v) If α and β are ordinals and α ⊆ β then α is an initial segment of β.

Proof. Follows easily from the definitions of ordinals and initial segments.
(Use Lemma 1.1 to prove (iv).) �
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Lemma 1.4 We have α /∈ α for every ordinal α.

Proof. If α is an ordinal it follows that ∈ is a linear ordering on α, so for
all β ∈ α, β /∈ β. So by Lemma 1.3 (iii) we can not have α ∈ α. �

The ordinal ∅ will be denoted by 0, the ordinal 0 ∪ {0} will be denoted by
1, the ordinal 1 ∪ {1} will be denoted by 2, and so on. So in general we
have n + 1 = n ∪ {n}. If α is any ordinal then the ordinal α ∪ {α} will be
denoted by α+ 1. If β is an ordinal and there exists an ordinal α such that
β = α + 1 then we say that β is the successor of α and we say that β is a
successor ordinal. From Lemma 1.4 it follows that if β the successor of α
then there is no ordinal γ such that α ∈ γ ∈ β.

Lemma 1.5 Let α and β be ordinals. Then :
(i) If α ⊂ β then α ∈ β.
(ii) α ⊆ β or β ⊆ α.
(iii) either α ⊂ β or α = β or β ⊂ α.
(iv) either α ∈ β or α = β or β ∈ α.

Proof. (i) Suppose that α ⊂ β. Since ∈ is a linear ordering on β we have
either γ1 ∈ γ2 or γ1 = γ2 or γ2 ∈ γ1 for all γ1, γ2 ∈ β.

Let γ be the least element (with respect to the well ordering ∈ on β) of
β−α. We will show that α = γ. Then, since γ ∈ β it will follow that α ∈ β.

Suppose that δ ∈ α. If δ = γ then γ ∈ α, a contradiction. If γ ∈ δ then
γ ∈ δ ∈ α so by transitivity of α, γ ∈ α, which contradicts the choice of γ.
Hence we must have δ ∈ γ. Since δ ∈ α was arbitrary it follows that α ⊆ γ.

Suppose that δ ∈ γ. By transistivity of β we have δ ∈ β. Since γ is the
least element of β − α (with respect to ∈ ) it follows that δ /∈ β − α, and
hence δ ∈ α. Since δ ∈ γ was arbitrary it follows that γ ⊆ α. Hence we have
proved that α = γ.

(ii) By Lemma 1.3 γ = α ∩ β is an ordinal. Clearly we have γ ⊆ α and
γ ⊆ β. If γ 6= α and γ 6= β then γ ⊂ α and γ ⊂ β so by part (i) we get
γ ∈ α and γ ∈ β. But then γ ∈ α ∩ β = γ which contradicts Lemma 1.4.
Hence we must have γ = α or γ = β, and therefore α ⊆ β or β ⊆ α.

(iii) By (ii), either α ⊆ β or β ⊆ α. If α 6= β then either α ⊂ β or β ⊂ α.
(iv) By (iii), either α ⊂ β or α = β or β ⊂ α, and by (i), either α ∈ β or

α = β or β ∈ α. �

Lemma 1.6 If A is a set of ordinals then
⋃
A is an ordinal.
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Proof. Let B =
⋃
A. It is easy to see that B is a transitive set of ordinals,

so we will only show that ∈ is a well ordering on B. By Lemma 1.4, α /∈ α
for any ordinal α. It follows from the definition of ordinals that if α, β, γ ∈ B
and α ∈ β ∈ γ then α ∈ γ. By Lemma 1.5, if α, β ∈ B and α 6= β then
either α ∈ β or β ∈ α. Now suppose that C ⊆ B and C 6= ∅. We must show
that C has a least element with respect to ∈. Let α ∈ C. If α ∩C = ∅ then
α is the least element of C because if β ∈ C and β ∈ α then α∩C 6= ∅. Now
suppose that α ∩ C 6= ∅. Then since α is well ordered by ∈ there is a least
element β (with respect to ∈) in α ∩ C. If γ ∈ C and γ ∈ β then γ ∈ α by
the transitivity of α, but this contradict the choice of β as the least element
of α ∩ C. Hence β is the least element of C. �

Proposition 1.7 The collection of all ordinals is not a set.

Proof. Suppose that the collection of all ordinals is a set, say A. Then by
Lemma 1.6 β =

⋃
A is an ordinal. Hence β∪{β} is an ordinal so β∪{β} ∈ A

and therefore β ∈
⋃
A = β which contradicts Lemma 1.4. �

A collection of objects which is not necessarily a set will be called a class.
Observe that if α, β and γ are ordinals then
(i) α /∈ α
(ii) if α ∈ β and β ∈ γ then α ∈ γ
(iii) if α 6= β then α ∈ β or β ∈ α
Therefore we will say that the class of ordinals is linearly ordered by ∈. If
α and β are ordinals then will often use the notation α < β for α ∈ β, and
the notation α ≤ β for “α ∈ β or α = β”. If A is a set of ordinals then

⋃
A

will also be denoted by supA which we call the supremum of A. This makes
sense since for every α ∈ A we have α ≤ supA , and if β is an ordinal such
that for every α ∈ A , α ≤ β , then supA ≤ β (so supA is the least upper
bound of A in the class of all ordinals).

Proposition 1.8 If there exists an ordinal with the property P then there
exists a least ordinal α with the property P, in the sense that if β is a different
ordinal with the property P then α < β.

Proof. Let α be an ordinal with the property P. If α is not the least or-
dinal with the property P then A = {γ < α : γ has the property P} is a
nonempty subset of α so A has a least element β. Then if γ has the property
P and γ < β it follows that γ ∈ A which contradicts the choice of β. Hence
β is the least element with the property P. �
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We say that a set A is inductive if ∅ ∈ A and for every set a, if a ∈ A
then a ∪ {a} ∈ A. An ordinal is called a limit ordinal if it is inductive.

Lemma 1.9 Every ordinal is exactly one of the following :
(i) the empty set (also denoted 0)
(ii) a successor ordinal
(iii) a limit ordinal

Proof. Suppose that α 6= 0 and is not a limit ordinal. Then α is nonempty
so ∅ is a proper subset of α and by Lemma 1.5 (i), ∅ ∈ α. Since α is not a
limit ordinal there must be β ∈ α such that β ∪ {β} /∈ α. But β ∪ {β} is an
ordinal so (by Lemma 1.5 (iv)) either β + 1 = β ∪ {β} = α or α ∈ β ∪ {β}.
If α ∈ β ∪ {β} then α = β or α ∈ β and by the assumption β ∈ α and
the transitivity of α we get α ∈ α in both cases, contradicting Lemma 1.4.
Hence α /∈ β ∪ {β} and therefore β ∪ {β} = α so α is a successor ordinal.
To show that at most one of (i), (ii) and (iii) holds for any ordinal is left as
an exercise. �

The least limit ordinal will be called ω. The existence of ω follows from
the existence of an inductive set (which is what the axiom of infinity as-
serts). We will say that an ordinal α is finite if for all ordinals β ≤ α , β
is a successor ordinal or 0. Otherwise we say that α is an infinite ordinal.
It follows that for any ordinal α, α is finite if and only if α < ω. Finite
ordinals will often be denoted by i, j, k, l, n,m, . . ..

Lemma 1.10 Let (A,<) be a well ordering. If every proper initial segment
of (A,<) is isomorphic to a unique ordinal then (A,<) is isomorphic to a
unique ordinal.

Proof. If A = ∅ then (A,<) is isomorphic to 0 and no other ordinal. Now
suppose that A 6= ∅. For every a ∈ A let αa be the unique ordinal to which

Aa = {x ∈ A : x < a}

is isomorphic, and let fa be the unique (by Lemma 1.2 (i)) isomorphism from
Aa onto αa. It follows from Lemma 1.5 (iii), Lemma 1.3 (v) and Lemma 1.2
(iv),(v) that for all a, b, c ∈ A such that a < b < c, αb is an initial segment
of αc and fb(a) = fc(a). Let

A− = {a ∈ A : ∃b ∈ A, a < b}.
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For every a ∈ A−, let a+ be the least b ∈ A such that a < b. Define f(a) =
fa+(a) for every a ∈ A−. Then it f will be an isomorphism from (A−, <) onto
the ordinal α =

⋃
{αa : a ∈ A−}. (It follows from the axiom of replacement

that {αa : a ∈ A−} is a set.) Moreover, if h is an isomorphism from
(A−, <) onto an ordinal γ 6= α, then it follows that fh−1 is an isomorphism
from γ onto α which contradicts Lemma 1.2 (iv) and the fact that one of
α and γ must be a proper initial segment of the other. Hence (A−, <)
is isomorphic to the unique ordinal α. If A− 6= A then A − A− contains
exactly one element, say b. Define g(b) = α and g(a) = f(a) for all a ∈ A−.
Then g is an isomorphism from (A,<) onto the ordinal β = α ∪ {α}. If
h is an isomorphism from (A,<) onto an ordinal γ 6= β, then gh−1 is an
isomorphism from γ onto β which contradicts Lemma 1.2 (iv) and the fact
that one of β and γ must be a proper initial segment of the other. Hence
(A,<) is isomorphic to the unique ordinal β. �

Theorem 1.11 Every well ordering is isomorphic to a unique ordinal.

Proof. Let (A,<) be a well ordering. If (A,<) is not isomorphic to a
unique ordinal then by Lemma 1.10 there must be a proper initial segment
of (A,<) which is not isomorphic to a unique ordinal. By Lemma 1.1 every
proper initial segment has the form

Aa = {x ∈ A : x < a}

for some a ∈ A. Hence there is a least element a ∈ A such that (Aa, <) is
not isomorphic to a unique ordinal. If Aa = ∅ then (Aa, <) is isomorphic
to 0, a contradiction, so Aa must be nonempty. Then every proper initial
segment of (Aa, <) has the form (Ab, <) for some b < a, and for every b < a,
(Ab, <) is isomorphic to a unique ordinal. Hence every proper initial segment
of (Aa, <) is isomorphic to a unique ordinal, so by Lemma 1.10 (Aa, <) is
isomorphic to a unique ordinal, a contradiction. We conclude that (A,<)
must be isomorphic to a unique ordinal. �

Corollary 1.12 For any two well orderings, one of them is isomorphic to
an initial segment of the other.

Proof. Exercise. �

1.4 Equivalents of the axiom of choice

Recall that the axiom of choice is the following statement, which is abbre-
viated AC:
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For any set X of nonempty sets there exists a function f : X →
⋃
X such

that for every a ∈ X, f(a) ∈ a.
We call f a choice function for X. So far AC has not been needed (i.e all
results obtained until now where proved from the axioms (1)-(7), although
we did not emphasize this), but later on we will need AC to prove statements
about cardinals and cardinalities (which will be defined later). We say that
a statement S is equivalent to AC if from (1)-(7) and AC we can prove S,
and from (1)-(7) and S we can prove AC. In this section we will prove that
AC is equivalent to two other statements which are sometimes more usefull
than AC itself.

Let A be a set. A partial order on A is a binary relation < on A such
that for all a, b, c ∈ A the following holds:
(i) a ≮ a (i.e. not a < a)
(ii) if a < b and b < c then a < c
As usual we write a ≤ b for “a < b or a = b”. If < is partial order on A then
we will say that (A,<) is a partially ordered set (or a partial ordering). Let
(A,<) be a partial ordering. A subset B of A is called a chain in A if for
every a, b ∈ B we have a ≤ b or b ≤ a (i.e (B,<) is a linear ordering). Note
that if (A,<) is a linear ordering then every B ⊆ A is a chain in A, and in
particular A is a chain in A. An element a ∈ A is called a maximal element
if there exists no b ∈ A such that a < b.

Theorem 1.13 The following are equivalent:
(i) AC
(ii) Every set can be well ordered.
(iii) If (A,<) is a nonempty partial ordering such that for every chain B ⊆ A
there exists a ∈ A such for every b ∈ B, b ≤ a, then (A,<) has a maximal
element.
Condition (ii) is often called Zermelo’s theorem, and condition (iii) is often
called Zorn’s lemma.

Proof. (i) ⇒ (iii) Let (A,<) be a partial ordering such that for every
chain B ⊆ A there exists a ∈ A such that b ≤ a for all b ∈ B. We will show
that (A,<) has a maximal element. Let X be the set of chains in A. Then
X is nonempty (because ∅ ∈ X) and ⊂ is a partial order on X. Suppose
that C is a maximal element in X (with respect to ⊂). Since C ⊆ A is a
chain there exists a ∈ A such that for all x ∈ C, x ≤ a. Then a must be
a maximal element in A because if there would be b ∈ A such that a < b
then b /∈ C and C ∪ {b} would be a chain , and this would contradict the
maximality of C. Hence it suffices to show that X has a maximal element.
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Observe that if C ∈ X and D ⊆ C then D ∈ X, and that if C ⊆ X
is a chain then

⋃
C is a chain in A, and hence

⋃
C ∈ X. By (i) let f :

P(X)−{∅} → X be a function such that for that for every Y ∈ P(X)−{∅},
f(Y ) ∈ Y . For every C ∈ X let C∗ = {x ∈ A : C ∪ {x} ∈ X}. Note that
C ⊆ C∗. We define a function g : X → X by:

g(C) =

{
C ∪ {f(C∗ − C)} if C∗ − C 6= ∅
C if C∗ − C = ∅

If g(C) = C then there exists no x ∈ A such that C ∪ {x} is a chain
in A, and hence C is a maximal element in X. Therefore it suffices to find
C ∈ X such that g(C) = C.

We say that Y ⊆ X is a tower if:
(I) ∅ ∈ Y
(II) if C ∈ Y then g(C) ∈ Y
(III) if C ⊆ Y is a chain then

⋃
C ∈ Y

Observe that for example X itself is a tower. The intersection of the set of
all towers Y ⊆ X is itself a tower, call it Y0. Now we will show that Y0 is a
chain.

We say that C ∈ Y0 is comparable if for every D ∈ Y0, D ⊆ C or C ⊆ D.
Note that ∅ ∈ Y0 is comparable. Suppose that C ∈ Y0 is comparable. If
D ∈ Y0 and D ⊂ C then g(D) ∈ Y0 (because Y0 is a tower) and if C ⊂ g(D)
then D ⊂ C ⊂ g(D), which contradicts the fact that g(D) contains at most
one more element than D. Hence we have proved that,
(∗) if D ∈ Y0 and D ⊂ C then g(D) ⊆ C.
Let

ZC = {D ∈ Y0 : D ⊆ C or g(C) ⊆ D}

We will show that ZC is a tower. ∅ ⊆ C so ∅ ∈ ZC . Suppose that C ⊆ ZC
is a chain. Then for every D ∈ C we have D ⊆ C or g(C) ⊆ D. If D ⊆ C
for every D ∈ C then

⋃
C ⊆ C so

⋃
C ∈ ZC , and if g(C) ⊂ D for some

D ∈ C then g(C) ⊆
⋃
C. Hence

⋃
C ∈ ZC . Let D ∈ ZC . Then D ⊆ C or

g(C) ⊆ D. If D ⊂ C then by (∗), g(D) ⊆ C, so g(D) ∈ ZC . If D = C then
g(D) = g(C) so g(D) ∈ ZC . If g(C) ⊆ D then g(C) ⊆ g(D) so g(D) ∈ ZC .
Thus, we have proved that ZC is a tower and since ZC ⊆ Y0 we must have
ZC = Y0. So if D ∈ Y0 then D ∈ ZC and hence g(C) ⊆ D or D ⊆ C, and in
the latter case D ⊆ g(C). Hence, g(C) is comparable.

Remember that C is assumed to be a comparable but otherwise arbitrary
element of Y0. It follows that for any C ∈ Y0, if C is comparable then so is
g(C). Let U = {C ∈ Y0 : C is comparable}. Then, by what we have alredy
shown and by the (easily verified) fact that if C ⊆ U is a chain then

⋃
C is
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comparable, it follows that U is a tower, and therefore U = Y0. Hence, Y0 is
a chain in Y0 so C =

⋃
Y0 ∈ Y0 (because Y0 is a tower), and then g(C) ∈ Y0.

Then g(C) ⊆
⋃
Y0 = C , and since we also have C ⊆ g(C) we get g(C) = C,

and this is what we needed to prove.
(iii) ⇒ (ii) Let A be any set. Let X be the set of pairs (B,<) where

B ⊆ A and < is a relation which is a well ordering on B. Then (∅, ∅) ∈ X
so X is not empty. We define a relation < on X as follows:
for (B,<1), (C,<2) ∈ X,

(B,<1) < (C,<2) if and only if

B ⊂ C and for all x, y ∈ B, x <1 y if and only if x <2 y.

It is not difficult to see that < is a partial ordering on X. Let C ⊆ X be a
chain. Let C =

⋃
{B ⊆ A : (B,<) ∈ C}. A well ordering <0 on C can be

defined as follows:
for all x, y ∈ C,

x <0 y if and only if

x <1 y for some (B,<1) ∈ C such that x, y ∈ B.

Then (as the reader can verify) we have (B,<1) ≤ (C,<0) for every (B,<1

) ∈ C. Since C ⊆ X was an arbitrary chain, by (iii) it follows that (X,<)
has a maximal element, say (B,<1). If B ⊂ A then let a ∈ A − B and
let <2 be the relation on B ∪ {a} which is defined by: for all x, y ∈ B,
x <2 a , and x <2 y if and only if x <1 y. Then (B,<2) ∈ X and
(B,<1) < (B ∪ {a}, <2), which contradicts that (B,<1) is a maximal
element of X. Hence, we must have B = A and then (A,<1) is a well
ordering.

(ii)⇒ (i) Let A be a set of nonempty sets. By (ii) there is a well ordering
< on

⋃
A. Define f : A→

⋃
A by f(a) = the least element in a. �

1.5 Cardinals

Theorem 1.14 (Cantor-Bernstein) Let A and B be two sets. If there are
an injective function from A into B , and an injective function from B into
A then there is a bijective function from A onto B.

Proof. Suppose that f : A→ B and g : B → A are injective functions. Let
C = g(B) and D = g(f(A)). Then D ⊆ C ⊆ A. We will show that there is
an injective function F from A onto C. Then it will follow that (g�B)−1F
is an injective function from A onto B (where g�B is the restriction of g to
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B). Let h = gf . Then h is an injective function from A onto D. For every
n < ω we define An and A∗n inductively by

A0 = A , An+1 = h(An) A∗0 = C , A∗n+1 = h(A∗n)

Observe that for every n < ω , A∗n ⊆ An. Define F by

F (x) =

{
h(x) if x ∈ An −A∗n for some n < ω

x otherwise

We will now show that F is an injective function from A onto C. Suppose
that F (a0) = F (a1). We have four cases which can occur:
(1) There exist n < ω such that a0 ∈ An − A∗n but for all m < ω ,
a1 /∈ Am −A∗m.
(2) There exist n < ω such that a1 ∈ An − A∗n but for all m < ω ,
a0 /∈ Am −A∗m.
(3) There are n < ω and m < ω such that a0 ∈ An−A∗n and a1 ∈ Am−A∗m.
(4) For all n < ω , a0 /∈ An −A∗n and a1 /∈ An −A∗n.

Suppose that (1) holds. Then a1 = F (a1) = F (a0) = h(a0) , so a1 ∈
h(An) = An+1. By (1), a1 /∈ An+1 − A∗n+1 so we get a1 ∈ A∗n+1 = h(A∗n).
Then there exists a2 ∈ A∗n such that h(a2) = a1 , and since a0 /∈ A∗n we have
a0 6= a2. But then h(a0) = h(a2) and a0 6= a2 which contradicts that h is
injective. Since the case (2) is symmetric to (1), we also get a contradiction
from (2).

Hence the only cases that can really occur are (3) or (4). If (3) holds
then h(a0) = F (a0) = F (a1) = h(a1) so a0 = a1 by the injectivity of h ,
and if (4) holds then a0 = F (a0) = F (a1) = a1. So we conclude that F is
injective.

Now we show that F is onto C. Let c ∈ C. If for all n < ω , c /∈ An−A∗n
then F (c) = c. Suppose that for some n < ω , c ∈ An − A∗n. We can not
have n = 0 because A∗0 = C , so c ∈ Am+1 − A∗m+1 for some m < ω. Then
c ∈ Am+1 − A∗m+1 = h(Am) − h(A∗m) so c = h(a) for some a ∈ Am − A∗m ,
and by definition of F we get F (a) = c. Now we have proved that F is a
bijective function from A onto C. �

For every ordinal α there exists a least ordinal β for which there exists
an injective function from α into β. By definition, a cardinal number (or
just cardinal) is an ordinal α such that for every ordinal β < α there is no
injective function from α into β.

Lemma 1.15 If κ and λ are cardinals then κ ≤ λ if and only if there exists
an injective function from κ into λ.
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Proof. If κ ≤ λ then κ ⊆ λ and clearly the identity function on κ is an
injective function from κ into λ. If there exists an injective function from κ
into λ then we can not have λ < κ because then κ would not be a cardinal.
Hence κ ≤ λ. �

Proposition 1.16 For every set A, there exists a unique cardinal κ such
that there exists a bijective function from A onto κ.

Proof By the axiom of choice and Theorem 1.13 there exists a binary rela-
tion, <, on A which is a well ordering, and by Theorem 1.11 there exists an
isomorphism f from (A,<) onto an ordinal α. Since f is an isomorphism,
it is a bijective function from A onto α. Let κ be the least ordinal for which
there exists an injective function from α into κ. By the definition of cardi-
nals, κ must be a cardinal. Since κ ⊆ α, there is an injective function from κ
into α. By Theorem 1.14, there exists a bijective function g : α→ κ. Since
both f : A → α and g : α → κ are bijective, it follows that if h = gf , then
h : A→ κ is bijective.

If λ 6= κ is another cardinal such that there exists a bijective function,
say h0, from A onto λ then hh−10 is a bijective function from λ onto κ, which
contradicts Lemma 1.15. �

If A is a set then the cardinality of A, denoted by |A|, is the the unique
cardinal κ for which there exists an injective function fromA onto κ. Observe
that it follows that for any cardinal κ , |κ| = κ , and if α < κ is an ordinal
then |α| < κ. Also |α| ≤ α for every ordinal α.

Lemma 1.17 If A and B are sets then :
(i) |A| ≤ |B| if and only if there exists an injective function from A into
B.
(ii) |A| = |B| if and only if there exists an bijective function from A onto
B.
(iii) |A| = |B| if and only if |A| ≤ |B| and |B| ≤ |A|.
(iv) |A×B| = ||A| × |B||.

Proof. Exercise. (To prove (ii), use (i) and Theorem 1.14.) �

Theorem 1.18 (Cantor) For every set A , there does not exist a function
from A onto P(A).

Proof. Let f be any function from A into P(A). Let B = {x ∈ A : x /∈
f(x)}. If for some a ∈ A , f(a) = B , then

a ∈ B ⇔ a /∈ f(a)⇔ a /∈ B,
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a contradiction. Hence f is not onto P(A). �

Proposition 1.19 For every ordinal α there is a cardinal κ such that α <
κ.

Proof. Let κ = |P(α)|. If κ ≤ α then κ ⊆ α so there is a function from α
onto κ and then there is also a function from α onto P(α) which contradicts
Theorem 1.18. Hence we must have α < κ. �

If κ is a cardinal then κ+ denotes the least cardinal λ such that κ < λ.

Lemma 1.20 If A is a set of cardinals then
⋃
A is a cardinal.

Proof. By Lemma 1.6
⋃
A is an ordinal. Let α =

⋃
A. Suppose that α is not

a cardinal. Then there exists an injective function f from α into an ordinal
β < α. But β < α means β ∈ α and since α =

⋃
A there exists a cardinal

κ ∈ A such that β ∈ κ. By transitivity we get β ⊂ κ ⊆ α so f�κ (the
restriction of f to κ) is an injective function from κ onto f�κ(κ) and hence
κ = |κ| = |f�κ(κ)| But f�κ(κ) ⊆ β so there is an injective function from
f�κ(κ) into β (the identity function on f�κ(κ)) and hence |f�κ(κ)| ≤ |β| ≤ β
, so we get |f�κ(κ)| ⊆ β and therefore κ ⊆ β. But we also have β ∈ κ so
we get β ∈ β, a contradiction. Therefore α must be a cardinal. �

Proposition 1.21 ω is a cardinal and every α < ω is a cardinal.

Proof. Exercise. �

By definition, a finite cardinal is a cardinal which is finite as an ordinal,
otherwise we call it an infinite cardinal. Let A be a set. We say that A is
finite if |A| is finite, otherwise we say that A is infinite. We say that A is
countable (or enumerable) if |A| ≤ ω, otherwise we say that A is uncountable.

For any sets A and B , let the disjoint union of A and B, denoted A⊕B,
be the set

{(0, a) : a ∈ A} ∪ {(1, b) : b ∈ B}

and let the set of functions from A into B be denoted by AB. If κ and λ are
cardinals then we define κ+λ = |κ⊕λ| , and κ ·λ = |κ×λ| , and κλ = |λκ|.

Lemma 1.22 (a) + and · are associative, commutative, and distributive.
(b) If κ1 ≤ κ2 and λ1 ≤ λ2 then κ1 + λ1 ≤ κ2 + λ2 and κ1 · λ1 ≤ κ2 · λ2.
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(c) (κ · λ)µ = κµ · λµ.
(d) κλ+µ = κλ · κµ.
(e) (κλ)µ = κλ·µ.
(f) If κ ≤ λ then κµ ≤ λµ.
(g) If 0 < λ ≤ µ then κλ ≤ κµ.
(h) κ0 = 1 and 1κ = 1.
(i) If κ > 0 then 0κ = 0.

Proof. One only needs to find the appropriate injective functions. �

In what follows we will identify the natural numbers with ω. If we de-
fine a function s from ω into ω by s(n) = n+ 1 then one can show that the
structure (ω, 0, s,+, ·,=) satisfies the axioms of arithmetic. Moreover, if we
define a relation <∗ on ω by, n <∗ m ⇔ ∃x(x 6= 0 ∧ n + x = m) then <∗

coincides with the ordering < on ω.

Theorem 1.23 For every set A , |P(A)| = 2|A|.

Proof. We will show that there exists an injective function from P(A) onto
A2. Then it is not difficult to see that there also exists an injective function
from |P(A)| onto 2|A|, and therefore (by Lemma 1.17 (ii)) |P(A)| = 2|A|.
For every B ∈ P(A) let fB be the function from A into 2 which is defined
by

fB(x) =

{
0 if x ∈ B
1 if x /∈ B

Now define a function g from P(A) into A2 by g(B) = fB. Then it is easy
to see that g is injective and onto A2. �

Theorem 1.24 If λ and κ are cardinals and κ ≥ 2 , then λ < κλ.

Proof. By the proof of Proposition 1.19 λ < |P(λ)| and by Theorem 1.23
|P(λ)| = 2λ , so we get λ < 2λ. By Lemma 1.22 (f) we get λ < κλ for all
κ ≥ 2. �

Proposition 1.25 Let R be the set of real numbers. Then |R| = 2ω.

Proof. (Sketch) Integers, rational numbers and real numbers can be defined
from the natural numbers (= elements of ω) and one can show that for every
r ∈ R there exist a unique function fr ∈ ω 2 and a unique nr ∈ ω such that

r = (−1)fr(0) ·
nr∑
n=0

fr(2 · (n+ 1)) · 2n +
∞∑
n=0

fr(2 · n+ 1)

2n+1
.
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It follows that if s, r ∈ R and s 6= r then fs 6= fr. Define a function
F : R → ω 2 by F (r) = fr where fr is the unique function given above.
Then F will be injective. Define a function G : ω 2→ R by

G(f) =
∞∑
n=0

f(n)

2n+1
(observe that this infinite sum is convergent for any f)

Then G is injective. By Theorem 1.14 it follows that there exists an injective
function from R onto ω2 and therefore |R| = |ω2| = 2ω. �

Theorem 1.26 If κ > 0 and λ > 0 are cardinals where at least one of κ
and λ is infinite then : κ+ λ = κ · λ = sup{κ, λ}.

Proof. First note that for any cardinals µ1, µ2 we have µ1 ≤ µ1 + µ2 and
µ1 ≤ µ1 · µ2. Then by Lemma 1.22 (b) it is sufficient to prove that for
any infinite cardinal κ , κ + κ = κ · κ = κ. But κ + κ = κ follows from
κ · λ = sup{κ, λ} and the fact that κ+ κ = |2× κ| = 2 · κ, so it is sufficient
to prove that κ · κ = κ. Since κ ≤ κ · κ we will only prove κ · κ ≤ κ. We will
prove this by showing that ω · ω ≤ ω and that if κ is and infinite cardinal
and λ · λ ≤ λ for all infinite cardinals λ < κ then κ · κ ≤ κ. Then, by
Proposition 1.8, it follows that κ · κ ≤ κ for all infinite cardinals κ.

First we show that ω · ω ≤ ω. We define a well ordering ≺ on ω × ω by,
(α, β) ≺ (γ, δ) if and only if

sup{α, β} < sup{γ, δ}
or sup{α, β} = sup{γ, δ} and α < γ

or sup{α, β} = sup{γ, δ} and α = γ and β < δ

The reader can check that ≺ is a linear ordering (and we write � for “≺ or
=”). We will show that ≺ is a well ordering. Suppose that A is a nonempty
subset of ω × ω. Let α1 be the least element of {sup{α, β} : (α, β) ∈ A} ,
and let

A1 = {(α, β) ∈ A : sup{α, β} = α1}

Let α2 be the least element of {α ∈ ω : ∃β, (α, β) ∈ A1} , and let

A2 = {(α, β) ∈ A1 : α = α2}

Let β1 be the least element of {β ∈ ω : (α2, β) ∈ A2}. Then it follows
from the definition of ≺ and the choice of α2 and β1 that (α2, β1) is the least
element of A.
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Now we will show that every proper initial segment of (ω × ω,≺) is
isomorphic to an ordinal α < ω. Then it will follow from the proof of
Lemma 1.10 that (ω × ω,≺) is isomorphic to an ordinal β ≤ ω, and hence
we will have |ω × ω| ≤ ω.

Suppose that some proper initial segment of (ω×ω,≺) is not isomorphic
to any ordinal α < ω. By Lemma 1.1 every proper initial segment can be
written as

{(α, β) ∈ ω × ω : (α, β) ≺ (γ, δ)}

for some (γ, δ) ∈ ω × ω. Let (γ, δ) be the least element in ω × ω such that

A = {(α, β) ∈ ω × ω : (α, β) ≺ (γ, δ)}

is not isomorphic to any ordinal α < ω. If γ = δ = 0 then A = ∅ and is
isomorphic to 0, a contradiction, so γ 6= 0 or δ 6= 0. We will show that both
γ 6= 0 and δ 6= 0 leads to contradictions and then we can conclude that every
proper initial segment is isomorphic to an ordinal α < ω.

Suppose that δ 6= 0. Since δ < ω it follows that δ is a successor ordinal
and hence δ = δ0 + 1. Then (γ, δ0) ≺ (γ, δ) and there does not exist (α, β) ∈
ω × ω such that (γ, δ0) ≺ (α, β) ≺ (γ, δ). By the choice of (γ, δ) it follows
that

B = {(α, β) ∈ ω × ω : (α, β) ≺ (γ, δ0)}

is isomorphic to an ordinal α0 < ω. Let f be the isomorphism from B onto
α0. Define g by g((α, β)) = f((α, β)) for all (α, β) ∈ B and g((γ, δ0)) = α0.
Then g is an isomorphism from A onto the ordinal α0 + 1 < ω , and this
contradicts the choice of (γ, δ).

Now suppose that δ = 0 but γ 6= 0. Since γ < ω it follows that γ is a
successor ordinal and hence γ = γ0 + 1. Then (γ0, δ) ≺ (γ, δ) and there does
not exist (α, β) ∈ ω × ω such that (γ0, δ) ≺ (α, β) ≺ (γ, δ). By the choice of
(γ, δ) it follows that

C = {(α, β) ∈ ω × ω : (α, β) ≺ (γ0, δ)}

is isomorphic to an ordinal α0 < ω. As in the previous case we can find an
isomorphism from C onto α0 + 1 < ω, which contradicts the choice of (γ, δ).

Now assume that λ · λ ≤ λ for every cardinal λ < κ. We will show that
κ · κ ≤ κ. Define a well ordering ≺ on κ× κ by, (α, β) ≺ (γ, δ) if and only if

sup{α, β} < sup{γ, δ}
or sup{α, β} = sup{γ, δ} and α < γ

or sup{α, β} = sup{γ, δ} and α = γ and β < δ
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In the same way as before it can be proved that ≺ is a well ordering. Let α
be the unique ordinal to which (κ× κ,≺) is isomorphic. We will show that
α ≤ κ. Then it will easily follow that κ · κ ≤ κ.

Suppose on the contrary that κ < α. Let f be an isomorphism from α
onto (κ× κ,≺). Since κ ∈ α there is (β, γ) ∈ κ× κ such that f(κ) = (β, γ).
Let

B = {(α1, β1) ∈ κ× κ : (α1, β1) ≺ (β, γ)}

Then f�κ (the restriction of f to κ) is an injective function from κ onto B.
Let δ = sup{β, γ}. Then δ < κ and since |δ| ≤ δ we have

|δ| < κ

By the induction hypothesis we have

|δ| · |δ| ≤ |δ|

By the choice of δ and the fact that B is an initial segment of (κ× κ,≺) it
follows that B ⊆ δ × δ and hence

|B| ≤ |δ · δ| ≤ |δ| · |δ|

If we now put the above inequalities together we get |B| ≤ |δ · δ| ≤ |δ| · |δ| ≤
|δ| < κ which contradicts that f�κ is an injective function from κ onto |B|.
�

Corollary 1.27 If A and B are nonempty sets and at least one of them is
infinite then |A ∪B| = |A×B| = sup{|A|, |B|}.

Proof. Exercise. �

Corollary 1.28 If B is an infinite set and A ⊂ B such that |A| < |B| ,
then |B −A| = |B|.

Proof. If |B−A| < |B| then |B| = |A∪ (B−A)| = sup{|A|, |B−A|} < |B|
, a contradiction. Hence |B −A| = |B|. �

Theorem 1.29 If A is a nonempty set of sets and at least one a ∈ A is
infinite then

| ∪A| ≤ sup{|A|, sup{|a| : a ∈ A}}
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Proof. Let κ = sup{|A|, sup{|a| : a ∈ A}}. For every x ∈
⋃
A let

Bx = {a ∈ A : x ∈ a} and let B = {Bx : x ∈
⋃
A}. Clearly, Bx is

nonempty for every x ∈
⋃
A so by the axiom of choice the exists a choice

function f1 from B into
⋃
B = A. Define a function g1 from

⋃
A into A by

g1(x) = f1(Bx). For every a ∈ A let

Ca = {h : h is an injective function from a into κ}

and let C = {Ca : a ∈ A}. Since |a| ≤ κ for every a ∈ A, it follows that Ca
is nonempty for every a ∈ A. By the axiom of choice there exists a choice
function f2 from C into

⋃
C. Define a function g2 from A into

⋃
C , by

g2(a) = f2(Ca). Then, for every a ∈ A, g2(a) will be an injective function
from a into κ. Since |A| ≤ κ there exists an injective function g0 from A
into κ. Now define a function G from

⋃
A into κ× κ by,

G(x) = (g0(g1(x)), g2(g1(x))(x))

We show that G is injective. Suppose that G(x) = G(y). Then

g0(g1(x)) = g0(g1(y)) and g2(g1(x))(x) = g2(g1(y))(y).

Since g0 is injective we get g1(x) = g1(y) so g2(g1(x)) = g2(g1(y)), and
therefore g2(g1(x))(x) = g2(g1(x))(y). But g2(g1(x)) is also injective so we
get x = y. Now we have proved that |

⋃
A| ≤ κ× κ and since κ is infinite it

follows from Theorem 1.26 κ× κ = κ, so we get |
⋃
A| ≤ κ. �

Corollary 1.30 If A is a countable set of countable sets then
⋃
A is count-

able.

Proof. Follows immediately from Theorem 1.29. �

We say that a cardinal κ is regular if the following holds:

if A ⊂ κ and |A| < κ then supA < κ

Otherwise we say that κ is singular.

Proposition 1.31 For every cardinal κ , κ+ is regular. (Hence there are
arbitrarily large regular cardinals.)

Proof. Suppose that A ⊂ κ+ and |A| < κ+. Then |A| ≤ κ, and for every
α ∈ A, |α| < κ+ , so |α| ≤ κ. Hence

sup{|α| : α ∈ A} ≤ κ
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and sup{|A|, sup{|α| : α ∈ A}} ≤ κ

and by Theorem 1.29 supA ≤ sup{|A|, sup{|α| : α ∈ A}} , so we get
supA ≤ κ < κ+. �

To every ordinal α we can associate a unique infinite cardinal, denoted ℵα
, in the following way. Let ℵ0 be ω. If ℵα is defined then define ℵα+1 to
be (ℵα)+. If α is a limit ordinal and ℵβ is defined for every β < α then
define ℵα to be sup{ℵβ : β < α} (by Lemma 1.20 sup{ℵβ : β < α} is a
cardinal). This assignment from ordinals to cardinals is injective and onto,
i.e. ℵα = ℵβ if and only if α = β and for every cardinal κ there exists α
such that κ = ℵα. We also have ℵα < ℵβ if and only if α < β.

As an example of a singular cardinal we can now take ℵω. It is singular
because if A = {ℵα : α < ω} then A ⊂ ℵω and |A| = ω = ℵ0 < ℵω and
supA = ℵω.

We have proved that for any cardinal ℵα , ℵα < 2ℵα so we must have
ℵα+1 ≤ 2ℵα . For α = 0 this gives ℵ1 ≤ 2ℵ0 . The continuum hypothesis,
abbreviated CH, is the statement ℵ1 = 2ℵ0 . The generalized continuum
hypothesis, abbreviated GCH, is the statement

for any ordinal α, ℵα+1 = 2ℵα

It was proved by K. Gödel that if ZF is consistent then so is ZFC + GCH.
Later it was proved by P. Cohen that if ZFC is consistent then neither CH
nor its negation can be proved from ZFC.

The material in this chapter comes mainly from the following three
books:

• R. Cori, D. Lascar, Logique mathématique II, Masson, 1993.
• T. Jech, Set Theory, Academic Press, 1978.
• P. Halmos, Naive Set Theory, D. Van Nostrand, 1960.
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2 Model theory

2.1 Basics

Let L be a first order language and let V be the vocabulary of L. If
ϕ(x1, . . . , xn) denotes an L-formula then we mean that no other variables
than those among x1, . . . , xn occur free in that formula. By an L-theory we
mean a set of L-sentences (where L-sentence means a closed L-formula). If
T is an L-theory and ϕ an L-formula then T ` ϕ means that ϕ is formally
provable from T . We say that an L-theory T is complete if for every L-
sentence ϕ, T ` ϕ or T ` ¬ϕ. An L-structure (or L-model) , is an object M
consisting of a set M , called the universe or domain of the structure, and
for every symbol S in V an interpretation in M , denoted SM, in such a way
that:
• If c ∈ V is a constant symbol then cM is an element of M .
• If R ∈ V is an n-ary relation symbol then RM is an n-ary relation on M ,
i.e. RM ⊆Mn.
• If f ∈ V is an n-ary function symbol then fM is a function from Mn into
M .
We will always assume that the equality symbol is in the vocabulary of L
and that the equality symbol is interpreted as the identity relation on M
(i.e. =M is {(a, a) : a ∈ M}). Usually we will notationally identify the
model M with its universe M , so when we say that M is an L-structure
then we mean that M is a set (the universe of the structure) together with
an interpretation in M of every symbol in the vocabulary of L. Often, when
the particular properties of the language L does not affect the discussion,
we will just say that M is a structure (or model) without specifying the
language.

Let ϕ be an L-sentence and let T be an L-theory and let M be an L-
structure. By the notation M |= ϕ we mean that ϕ is true in M (I assume
that the reader knows the definition of a sentence being true in a model).
We say that M is a model of T , written M |= T , if for every ϕ ∈ T , M |= ϕ.
Let T and Γ be L-theories. We write T |= Γ if for every L-structure M ,
if M |= T then M |= Γ. If Γ = {ϕ1, . . . , ϕn} then we will sometimes write
T |= ϕ1, . . . , ϕn instead of T |= Γ.

Recall the completeness theorem for first order logic.

Theorem 2.1 (Gödel’s completeness theorem) If T is a theory and ϕ is a
sentence (in the same language), then T ` ϕ if and only if T |= ϕ.

¿From the completeness theorem it is easy to derive the model existence
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theorem.

Theorem 2.2 (Model existence) A theory is consistent if and only if it has
a model.

Proof. Suppose that T has a model M . If T would be inconsistent then
there would be a sentence ϕ such that T ` ϕ and T ` ¬ϕ. Then by the com-
pleteness theorem we would get M |= ϕ and M |= ¬ϕ which is impossible.
Hence T must be consistent. Now suppose that T has no model. Then for
any sentence ψ we have T |= ψ and by the completeness theorem it follows
that for every sentence ψ , T ` ψ, which means that T is inconsistent. �

It is also easy to see that the completeness theorem follows from the model
existence theorem. In fact, it is usually the case that one first proves the
model existence theorem and then derives the completeness theorem from
it. A fundamental tool in model theory is the compactness theorem.

Theorem 2.3 (Compactness theorem) If T is a theory then :
(i) T is consistent if and only if every finite subset of T is consistent,
(ii) T is inconsistent if and only if some finite subset of T is inconsistent.

Proof. It is easy to see that (i) and (ii) are equivalent so we will only prove
(ii). If some finite subset of T is inconsistent then clearly T is inconsistent.
Conversely, suppose that T is inconsistent. Then there exists a sentence ϕ
such that T ` ϕ and T ` ¬ϕ. Since proofs are finite there are θ1, . . . , θn ∈ T
and σ1, . . . , σm ∈ T such that θ1, . . . , θn ` ϕ and σ1, . . . , σm ` ¬ϕ. Let
∆ = {θ1, . . . , θn, σ1, . . . , σm}. Then ∆ ⊆ T is finite and ∆ ` ϕ and ∆ ` ¬ϕ,
so ∆ is inconsistent. �

Let L ⊆ L′ be two languages (so the vocabulary of L is included in the
vocabulary of L′), and let M be an L-structure and let N be an L′-structure.
We say that N is an expansion of M if N and M have the same universe and
for every symbol S in the vocabulary of L , SM = SN. If N is an expansion
of M then we say that M is the reduct of N to L (or the L-reduct of N).
Observe that every L′-structure has a unique reduct to L (if L ⊆ L′). If N
is an L′-structure and L ⊆ L′ then the L-reduct of N will be denoted by
N�L.

If M is an L-structure with universeM and a1, . . . , an ∈M and ϕ(x1, . . . , xn) ∈
L then by M |= ϕ(a1, . . . , an) we mean that if c1, . . . , cn are constant sym-
bols which do not occur in the vocabulary of L and N is an expansion of M
such that cNi = ai, for 1 ≤ i ≤ n, then N |= ϕ(c1, . . . , cn).
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We say that a model is finite if it’s universe is finite and infinite if it’s
universe is infinite. We say that a model M has cardinality κ if it’s universe
has cardinality κ and in that case we write |M| = κ.

Example 2.4 If T is a theory with arbitrarily large finite models then T
has an infinite model.

Proof. Assume that T is an L-theory which has arbitrarily large finite
models, and let V be the vocabulary of L. Let C = {ci : i < ω} be a set
of constant symbols which are not in V , and let L′ be the language with
vocabulary V ∪ C (so L ⊂ L′). Let T ′ = T ∪ {ci 6= cj : i, j < ω, i 6= j}.
If T ′ has a model then the L-reduct of this model will be an infinite model
of T . We will show that T ′ has a model by showing that T ′ is consistent
(and using the Model existence theorem). By the compactness theorem it
is sufficient to show that every finite subset of T ′ is consistent. Let ∆ ⊆ T ′

be finite. Then, for some n < ω, ∆ ⊆ T ∪ {ci 6= cj : i ≤ n}. Since T
has arbitrarily large finite models there exists a model M of T such that
the universe M of M has at least n distinct elements. Let a1, . . . , an ∈ M
be distinct elements, and let N be an expansion of M in which cNi = ai for
every i ≤ n. Then N is a model of ∆ so ∆ is consistent. �

If M is an L-structure then Th(M) is the set of all L-sentences that are true
in M . It follows that Th(M) is a complete L-theory. Let M and N be two
L-structures. We say that M and N are elementarily equivalent, written
M ≡ N , if Th(M) = Th(N). By definition, an embedding from M into N
is a function f from M into N such that:
(i) If c is a constant symbol in the vocabulary of L then f(cM ) = cN .
(ii) If R is an n-ary relation symbol in the vocabulary of L then for all
a1, . . . , an ∈M ,

(a1, . . . , an) ∈ RM if and only if (f(a1), . . . , f(an)) ∈ RN

(iii) If g is an n-ary function symbol in the vocabulary of L then for all
a1, . . . , an ∈M ,

f(gM (a1, . . . , an)) = gN (f(a1), . . . , f(an))

Since we always assume that the equality symbol = is in the vocabulary of L
and since we always assume that = is interpreted as identity on the elements
in the universe of a model it follows that an embedding is always injective.
If an embedding f from M into N is surjective (onto) then we say that F
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is an isomorphism from M onto N . It follows that if f is an isomorphism
from M onto N then the inverse of f is an isomorphism from N onto M .
We say that M and N are isomorphic, written M ∼= N , if there exists an
isomorphism from M onto N .

Lemma 2.5 If M ∼= N then M ≡ N .

Proof. Suppose that f is an isomorphism from M onto N . By induction
on the complexity of formulas we will show that for every n < ω and all
a1, . . . , an ∈M and every formula ϕ(x1, . . . , xn) ,

M |= ϕ(a1, . . . , an) ⇔ N |= ϕ(f(a1), . . . , f(an)). (∗)

Then it follows that for every sentence ψ , M |= ψ ⇔ N |= ψ , so M ≡ N .
We may assume that ϕ(x1, . . . , xn) contains only the connectives ¬ and
∧ and the quantifier ∃ since ∨, ←, ↔, ∀ are definable in terms of these.
If ϕ(x1, . . . , xn) is an atomic formula then (∗) follows from the definition
of isomorphism. If ϕ(x1, . . . , xn) has the form ¬ψ(x1, . . . , xn) then by the
induction hypothesis we have

M |= ψ(a1, . . . , an) ⇔ N |= ψ(f(a1), . . . , f(an))

and then (∗) easily follows.
If ϕ(x1, . . . , xn) has the form ψ(x1, . . . , xn) ∧ θ(x1, . . . , xn) then by the

induction hypothesis

M |= ψ(a1, . . . , an) ⇔ N |= ψ(f(a1), . . . , f(an))

and M |= θ(a1, . . . , an) ⇔ N |= θ(f(a1), . . . , f(an))

so (∗) easily follows.
Suppose that ϕ(x1, . . . , xn) has the form ∃yψ(x1, . . . , xn, y). Then by

the induction hypothesis

for every b ∈M, M |= ψ(a1, . . . , an, b) ⇔ N |= ψ(f(a1), . . . , f(an), f(b))

If there exists b ∈M such that M |= ψ(a1, . . . , an, b) then

N |= ψ(f(a1), . . . , f(an), f(b))

and if there exists c ∈ N such that N |= ψ(f(a1), . . . , f(an), c) then (since
f is onto N) there is b ∈M such that f(b) = c and we get

M |= ψ(a1, . . . , an, b).

Hence we have (∗). �
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2.2 Elementary substructures and extensions

Let M and N be L-structures. We say that M is a substructure (or submodel
) of N if M ⊆ N and
(i) if c is a constant symbol in the vocabulary of L then cN = cM , and
(ii) if R is an n-ary relation symbol in the vocabulary of L then RN ∩Mn =
RM , and
(iii) if f is an n-ary function symbol in the vocabulary of L then for all
a1, . . . , an ∈M , fN (a1, . . . , an) = fM (a1, . . . , an).
We say that M is an elementary substructure (or elementary submodel), of
N , abbreviated M 4 N , if M is a substructure of N and the following holds:
For every n < ω and all a1, . . . , an ∈ M and every L-formula ϕ(x1, . . . , xn)
we have

M |= ϕ(a1, . . . , an) if and only if N |= ϕ(a1, . . . , an)

When n = 0 we mean that for every sentence ϕ , M |= ϕ if and only if
N |= ϕ, so it follows that if M 4 N then M ≡ N . If M 4 N then we say
that N is an elementary extension of M .

Proposition 2.6 (Tarski-Vaught test) Let M be a substructure of N . Then
M is an elementary substructure if and only if for every n < ω and every
formula ϕ(x1, . . . xn, y) and all a1, . . . , an ∈M ,

if N |= ∃yϕ(a1, . . . an, y) then there is b ∈M such that N |= ϕ(a1, . . . an, b)

Proof. If M 4 N and N |= ∃yϕ(a1, . . . an, y), where a1, . . . an ∈ M then
M |= ∃yϕ(a1, . . . an, y) so there is b ∈M such that M |= ϕ(a1, . . . an, b) and
(since M 4 N) we get N |= ϕ(a1, . . . an, b).

Now suppose that for every n < ω and every formula ϕ(x1, . . . xn, y) and
all a1, . . . , an ∈M ,

if N |= ∃yϕ(a1, . . . an, y) then there is b ∈M such that N |= ϕ(a1, . . . an, b)

We will show by induction on the complexity of formulas that for every
n < ω and every formula ϕ(x1, . . . xn) and all a1, . . . an ∈M ,

M |= ϕ(a1, . . . an)⇔ N |= ϕ(a1, . . . an) (∗)

If ϕ(x1, . . . xn) is an atomic formula then (∗) follows from the definition of
elementary substructure. If ϕ(x1, . . . xn) has the form ¬ψ(x1, . . . xn) then
by the induction hypothesis that for all a1, . . . an ∈M ,

M |= ψ(a1, . . . an)⇔ N |= ψ(a1, . . . an)
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so it it is easy to see that (∗) holds.
If ϕ(x1, . . . xn) has the form ψ(x1, . . . xn) ∧ θ(x1, . . . xn) then by the in-

duction hypothesis, for all a1, . . . an ∈M ,

M |= ψ(a1, . . . an)⇔ N |= ψ(a1, . . . an)

and M |= ψ(a1, . . . an)⇔ N |= ψ(a1, . . . an)

so it is easy to see that (∗) holds.
Suppose that ϕ(x1, . . . xn) has the form ∃yψ(x1, . . . xn, y). Then by the

induction hypothesis , for all a1 . . . an, b ∈M ,

M |= ψ(a1, . . . an, b)⇔ N |= ψ(a1, . . . an, b) (∗∗)

If M |= ∃yψ(a1, . . . an, y) where a1 . . . an ∈M then there exists b ∈M such
that M |= ψ(a1, . . . an, b) so by (∗∗) we get N |= ψ(a1, . . . an, b) and there-
fore N |= ∃yψ(a1, . . . an, y). If N |= ∃yψ(a1, . . . an, y) where a1 . . . an ∈ M
then by the assumption there exists b ∈ M such that N |= ψ(a1, . . . an, b)
and by (∗∗) we get M |= ψ(a1, . . . an, b) , and hence M |= ∃yψ(a1, . . . an, y).
�

Lemma 2.7 Let N be an L-structure and suppose that A ⊆ N . Then there
exists a substructure M of N such that A ⊆M and |M | ≤ sup{|A|, |L|}.

Proof Let κ = sup{|A|, |L|} and let

C = {cN : c is a constant symbol in the vocabulary of L}

Note that κ ≥ ℵ0 because |L| ≥ ℵ0. We will inductively define a sequence
Ai, i < ω of subsets of N such that for every i < ω, A ⊆ Ai ⊆ Ai+1,
|Ai| ≤ κ and for every n < ω and n-ary function symbol f , if a1, . . . an ∈ Ai,
then fN (a1, . . . an) ∈ Ai+1. Let A0 = A ∪ C. Then |A0| ≤ κ. Suppose that
Aj has been defined for every j ≤ i, |Aj | ≤ κ for j ≤ i and A ⊆ Aj ⊆ Aj+1

for j < i. Let X be the set of all pairs (f, ā) such that f is a function symbol
from the vocabulary of L and ā is a sequence of elements from Ai such
that|ā| = the arity of f, where |ā| is the length of ā. Then |X| ≤ κ, and if we
let Y = {fN (ā) : (f, ā) ∈ X} then |Y | ≤ κ. If we now define Ai+1 = Ai ∪ Y
then it is easy to see that |Aj | ≤ κ for j ≤ i + 1 and A ⊆ Aj ⊆ Aj+1 for
j < i+ 1.

Now let M be the L-structure with universe M =
⋃
i<ω Ai and in which

the symbols of the vocabulary of L are interpreted as follows. For every
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constant symbol c let cM = cN , and for every n-ary relation symbol R let
RM = RN ∩Mn and for every n-ary function symbol f and all a1, . . . an ∈
,let fM (a1, . . . an) = fN (a1, . . . an). Then M is well defined because for every
constant symbol c, cN ∈ A0 ⊆ M and for every function symbol f and
elements a1, . . . an ∈ M we have a1, . . . an ∈ Ai for some i < ω and hence
fN (a1, . . . an) ∈ Ai+1 ⊆M . Now it follows from the definition of M that M
is a substructure of N and that A ⊆M . Since κ ≥ ω and M =

⋃
i<ω Ai and

|Ai| ≤ κ for all i < ω it follows that |M | ≤ κ. �

Remark 2.8 In fact, the substructure M which is obtained in the proof
of Lemma 2.7 is the smallest substructure which satisfies the same lemma
(smallest in the sense that if M ′ also satisfies Lemma 2.7 then M ⊆M ′). We
will call this smallest substructure that satifies Lemma 2.7 the substructure
generated by A, and it will be denoted by 〈A〉.

Theorem 2.9 (Downward Löwenheim-Skolem theorem) Let N be an L-
structure such that |N | ≥ |L| and suppose that A ⊆ N . Then there exists an
elementary substructure M 4 N such that A ⊆M and |M | = sup{|A|, |L|}.

Proof Let κ = sup{|A|, |L|}. If |A| < κ then let A′ be a subset of N such
that A ⊆ A′ and |A′| = κ, otherwise let A′ = A.

We will inductively define a sequence Ai, i < ω of substructures of N
such that A′ ⊆ Ai ⊆ Ai+1 and |Ai| ≤ κ. Let A0 = A′. Now suppose that Aj
is defined for every j ≤ i, |Aj | ≤ κ for j ≤ i and A′ ⊆ Aj ⊆ Aj+1 for every
j < i. Let X be the set of all pairs

(ϕ(x1, . . . , xn, y), (a1, . . . , an))

where n < ω and ϕ(x1, . . . , xn, y) is a formula and a1, . . . , an ∈ Ai and

N |= ∃yϕ(a1, . . . , an, y).

Then |X| ≤ κ. For every

(ϕ(x1, . . . , xn, y), (a1, . . . , an)) ∈ X

let a(ϕ,(a1,...,an)) ∈ N be an element such that

N |= ϕ(a1, . . . , an, a(ϕ,(a1,...,an))).

Let
B = Ai ∪ {a(ϕ,(a1,...,an)) : (ϕ, (a1, . . . , an)) ∈ X}.
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Then |B| ≤ κ so by Lemma 2.7 we can define Ai+1 to be a substructure
of N such that B ⊆ Ai+1 and |Ai+1| ≤ κ. Then we have |Aj | ≤ κ, for
j ≤ i + 1, and A′ ⊆ Aj ⊆ Aj+1 for j < i + 1. Let M be the structure with
universe M =

⋃
i<ω Ai and where every symbol in the vocabulary of L is

interpreted as it is in N . Then it is easy to see that M is a substructure of
N , and we also have |M | = κ. Now we show that M 4 N by applying the
Tarski-Vaught test (Proposition 2.6).

Let ϕ(x1, . . . , xn, y) be a formula and suppose thatN |= ∃yϕ(a1, . . . , an, y)
where a1, . . . , an ∈ M . Then a1, . . . , an ∈ Ai for some i so by the defini-
tion of Ai+1 it follows that there exists b ∈ Ai+1 ⊆ M such that N |=
ϕ(a1, . . . , an, b). �

Corollary 2.10 If T is a consistent L-theory then T has a model of cardi-
nality less or equal to |L|.

Proof. If T is consistent then T has model say M . If |M | > |L| then we can
use the downward Löwenhwim-Skolem theorem to get (by letting A = ∅)
N 4M with |N | = sup{|∅|, |L|} = |L|. �

Corollary 2.11 If the language L is countable and T is a consistent L-
theory then T has a countable model.

Proof. Follows immediately from corollary 2.10 �

Let M be an L-structure with vocabulary V and let A ⊆M . Then L(A) is
the language over the vocabulary V (A) = V ∪ {â : a ∈ A} where for every
a ∈ A , â is a new constant symbol which does not occur in V and â = b̂ if
and only if a = b. By (M,A) (or (M,a)a∈A) we mean the L(A)-structure
which is obtained from M by interpreting every â as a, i.e. â(M,A) = a for
every a ∈ A. We will call the theory Th((M,a)a∈M ) the elementary dia-
gram of M , and it will also be denoted by D(M). We say that a function f
from an L-structure M into an L-structure N is an elementary embedding
if for any n, where 1 ≤ n < ω, and any L-formula ϕ(x1, . . . , xn) and any
a1, . . . an ∈M we have

M |= ϕ(a1, . . . , an) if and only if N |= ϕ(f(a1), . . . , f(an)).

Observe that every elementary embedding is injective. If there exists an
elementary embedding from M into N the we say that M is elementarily
embeddable in N , abbreviated M - N . Observe that if M - N then M ≡ N
(because if ϕ is a sentence and f : M → N is an elementary embedding then

28



let ψ(x) be ϕ ∧ x = x ; then for any a ∈ M , M |= ϕ ⇔ M |= ψ(a) ⇔
N |= ψ(f(a)) ⇔ N |= ϕ.)

Proposition 2.12 If M and N are L-structures then the following are
equivalent :
(i) There exists an elementary embedding from M into N .
(ii) M is isomorphic to an elementary substructure of N .
(iii) N can be expanded to an L(M)-structure which is a model of the ele-
mentary diagram of M .

Proof. (i) ⇒ (ii) If f : M → N is an elementary embedding then f is an
isomorphism from M onto f(M) and f(M) 4 N (where f(M) denotes the
image of M under f).

(ii) ⇒ (iii) Suppose that f is an isomorphism from M onto M0 where
M0 4 N . Let N be the expansion of N to L(M) where, for every a ∈ M ,
âN = f(a). We need to show that N |= D(M). Let ϕ ∈ D(M). Then ϕ has
the form ψ(â1, . . . , ân) where ψ(x1, . . . , xn) is an L-formula and a1, . . . , an ∈
M , and M |= ψ(a1, . . . an). It follows from the proof of Lemma 2.5 that
M0 |= ψ(f(a1), . . . f(an)) and since M0 4 N we get N |= ψ(f(a1), . . . f(an)),
and since âNi = f(ai), for 1 ≤ i ≤ n, we get N |= ψ(â1, . . . ân), so N |= ϕ.

(iii) ⇒ (i) Suppose that N is an expansion of N and that N |= D(M).
Define a function f : M → N by f(a) = âN. We need to show that for any
L-formula ϕ(x1, . . . , xn) and any a1, . . . , an ∈M we have

M |= ϕ(a1, . . . , an) ⇔ N |= ϕ(f(a1), . . . , f(an))

Let ϕ(x1, . . . , xn) be an L-formula and let a1, . . . , an ∈M . IfM |= ϕ(a1, . . . , an)
then ϕ(â1, . . . , ân) ∈ D(M) so N |= ϕ(â1, . . . , ân) and since f(ai) = âNi for
1 ≤ i ≤ n we get N |= ϕ(f(a1), . . . , f(an)) and henceN |= ϕ(f(a1), . . . , f(an)).
Suppose that M 6|= ϕ(a1, . . . , an). Then M |= ¬ϕ(a1, . . . , an) and in the
same way as above we get N |= ¬ϕ(f(a1), . . . , f(an)) and hence we get
N 6|= ϕ(f(a1), . . . f(an)) �

Lemma 2.13 For any structure M there exists a structure N such that
N ∼= M and N ∩M = ∅.

Proof. Let N be a set such that N ∩M = ∅ and |N | = |M |. Let f be an
injective function from M onto N . Make N into a structure (in the same
language as M) by interpreting symbols in the following way: (i) for every
constant symbol c , cN = f(cM )
(ii) for every n-ary relation symbol R and all a1, . . . an ∈ N ,

(a1, . . . , an) ∈ RN if and only if (f−1(a1), . . . , f
−1(an)) ∈ RM
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(iii) for every n-ary function symbol h and all a1, . . . an ∈ N ,

hN (a1, . . . , an) = f(hM (f−1(a1), . . . , f
−1(an)))

Then f is an isomorphism from M onto N . �

Lemma 2.14 If M - N then there exists N∗ <M such that N∗ ∼= N .

Proof. Let f be an elementary embedding from M into N . By Lemma 2.13
there exists a structure N0 such that N0∩M = ∅ and N0

∼= N . Let f0 be an
isomorphism from N onto N0. Then F = f0f is an elementary embedding
from M into N0, so in particular F is an injective function from M onto
F (M). Define a function g : N0 →M ∪ (N0 − F (M)) , by

g(a) =

{
F−1(a) if a ∈ F (M)

a if a ∈ N0 − F (M)

Define N∗ by N∗ = M ∪ (N0 − F (M)) and ,
(i) for every constant symbol c , cN

∗
= g(cN0)

(ii) for every n-ary relation symbol R and all a1, . . . an ∈ N∗ ,

(a1, . . . , an) ∈ RN∗ if and only if (g−1(a1), . . . , g
−1(an)) ∈ RN0

(iii) for every n-ary function symbol h and all a1, . . . an ∈ N∗ ,

hN
∗
(a1, . . . , an) = g(hN0(g−1(a1), . . . , g

−1(an)))

Then gf0 is an isomorphism from N onto N∗ and M 4 N∗. �

Theorem 2.15 (Upward Löwenheim-Skolem theorem) Let M be an L-structure
with |M | = κ ≥ |L|. Then for every cardinal λ > κ there exists an elemen-
tary extension N <M such that |N | = λ.

Proof. Suppose that M is an L-structure with |M | = κ ≥ |L|. Let C =
{ci : i < λ} be a set of distinct constant symbols which do not occur in the
vocabulary of L(M). Let T = D(M) ∪ {ci 6= cj : i < j < λ}.

First we will show that if T has a model then there exists N such that
N < M and |N | = λ. Suppose that N0 is a model of T . Then |N0| ≥ λ
and by Proposition 2.12 there exists an elementary embedding from M into
N0�L. By Lemma 2.14 there exists a structure N∗ such that N∗ ∼= N0

and M 4 N∗. Let A be a subset of N∗ such that M ⊆ A and |A| = λ.

30



Since |N∗| = |N0| ≥ λ ≥ κ ≥ |L|, it follows by the downward Löwenheim-
Skolem theorem that there exists N 4 N∗ such that M ⊆ A ⊆ N and
|N | = sup{|A|, |L|}, and since |A| ≥ |M | = κ ≥ |L| we get |N | = |A| = λ. It
follows from M 4 N∗ and M ⊆ N 4 N∗ that M 4 N .

Now it remains to show that T is consistent. By the model existence
theorem and the compactness theorem it is sufficient to show that every
finite subset of T has a model. Let ∆ be a finite subset of T . Then, for
some n < ω ,

∆ ⊂ D(M) ∪ {ci 6= cj : i < j ≤ n}

and (M,a)a∈M is a model of D(M). Since M is infinite (because |L| ≥ ℵ0
and |M | ≥ |L|) there are a1, . . . , an ∈M such that ai 6= aj for all i < j ≤ n.
It follows that if we expand (M,a)a∈M by interpreting ci as ai for every i ≤ n
then the resulting structure is a model of D(M)∪{ci 6= cj : i < j ≤ n} and
hence also a model of ∆. �

Corollary 2.16 If T is a consistent L-theory which has an infinite model
then T has a model of cardinality κ for every κ ≥ |L|. So in particular, if L
is countable then T has a model of cardinality κ for every infinite cardinal
κ.

Proof. If T has an infinite model then by a compactness argument it follows
that T has a model of cardinality ≥ |L|, so by the downward Löwenheim-
Skolem theorem T has a model M of cardinality |L|. By the upward
Löwenheim-Skolem theorem, for every cardinal λ ≥ |L| there exists an ele-
mentary extension N of M with |N | = λ, and N is a model of T . �

Let (N, <,+, ·, s, 0) be the structure with universe N (the natural numbers)
and where the symbols =, <,+, ·, s, 0 are interpreted as identity, the usual
order on N, addition, multiplication and the successor function on N, and 0
is interpreted as the number 0. This structure is called the standard model
of arithmetic. Any other model of the axioms of arithmetic is called a non-
standard model of arithmetic. By the previous corollary there are (many)
nonstandard models of arithmetic (at least one in every uncountable cardi-
nality).

Exercise 2.17 Show that there exists a countable nonstandard model of
arithmetic.

If κ is a cardinal then we say that a theory T is κ-categorical if T has a
model of cardinality κ and all models of cardinality κ are isomorphic. (This
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can be rephrased by saying that T has exactly one model of cardinality κ
up to isomorphism.) If a theory is ℵ0-categorical then we also say that it is
countably categorical.

Theorem 2.18 (Vaught’s theorem) If T is an L-theory which has no finite
models and is κ-categorical where κ ≥ |L|, then T is complete.

Proof. Suppose that T is κ-categorical but not complete where κ ≥ |L|.
Then there is a sentence ϕ ∈ L such that T 0 ϕ and T 0 ¬ϕ. Hence
there exists a model M of T ∪ {ϕ}, because if for every model M , M |=
T ⇒ M |= ¬ϕ then by the completeness theorem we get T ` ¬ϕ, which
contradicts our assumption. By a similar argument there exists a model
N of T ∪ {¬ϕ}. Since we assume that T has no finite models M and N
are infinite, and by Corollary 2.16 we may assume that |M | ≥ |L| and
|N | ≥ |L|. If |M | ≥ κ then by the downward Löwenheim-Skolem theorem
there exists M0 4 M with |M0| = κ, and if |M | < κ then by the upward
Löwenheim-Skolem theorem there exists M0 < M with |M0| = κ. In both
cases there exists M0 ≡ M with |M0| = κ. By a similar argument there
exists N0 ≡ N with |N0| = κ. But then, since M0 |= T and N0 |= T and T
is κ-categorical it follows that M0

∼= N0 which implies M0 ≡ N0. Then we
have M ≡ M0 ≡ N0 ≡ N , so M ≡ N which contradicts that M |= ϕ and
N |= ¬ϕ. �

Lemma 2.19 Let T be an L-theory and let c1, . . . , cn be a sequence of dis-
tinct constants which do not occur in L and let ϕ(x1, . . . , xn) be a formula
in L. If T |= ϕ(c1, . . . , cn) then

T |= ∀x1, . . . xnϕ(x1, . . . , xn).

Proof. Suppose that
T |= ϕ(c1, . . . , cn). (*)

Let M be any L-structure which is a model of T . Let a1, . . . , an be any
elements from M and let M be the expansion of M which is obtained by
interpreting ci as ai for all 1 ≤ i ≤ n. Then M |= T so by (∗) we get
M |= ϕ(c1, . . . , cn), and therefore M |= ϕ(a1, . . . , an). Since a1, . . . , an where
arbitrary we get

M |= ∀x1, . . . xnϕ(x1, . . . , xn)

and since M was an arbitrary model of T we get

T |= ∀x1, . . . xnϕ(x1, . . . , xn).

�
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Theorem 2.20 If M1 and M2 are two L-structures and M1 ≡ M2 then
there exists an L-structure N such that M1 4 N and M2 - N .

Proof. Let M ′2
∼= M2 be such that M ′2 ∩M1 = ∅. Let Γ = D(M1)∪D(M ′2).

If we can show that Γ has a model N ′ then by Proposition 2.12 we will have
M1 - N ′�L and M ′2 - N ′�L. By Lemma 2.14 there exists N ∼= N ′�L such
that M1 4 N . From M2

∼= M ′2 - N
′�L ∼= N it follows that M2 - N . Hence

it is sufficient to show that Γ is consistent.
Let ∆ ⊆ Γ be finite, and Then ∆ = ∆1 ∪ ∆2 where ∆1 ⊂ D(M1)

and ∆2 ⊂ D(M ′2). The conjuction of all formulas in ∆1 has the form
ϕ(â1, . . . , ân) for some ϕ(x1, . . . , xn) ∈ L and some distinct elements a1,
. . ., an ∈M1. It is sufficient to prove that

∆2 ∪ {ϕ(â1, . . . , ân)}

is consistent. Suppose on the contrary that it is not consistent. Then
(by the model existence theorem) every model of ∆2 must be a model of
¬ϕ(â1, . . . , ân), so

∆2 |= ¬ϕ(â1, . . . , ân)

Since M ′2 ∩M1 = ∅ it follows that â1, . . . , ân do not occur in LM ′2 and since
∆2 is an LM ′2-theory it follows from Lemma 2.19 that

∆2 |= ∀x1, . . . , xn¬ϕ(x1, . . . , xn)

Then, since (M ′2, b)b∈M ′2 |= D(M ′2) ⊇ ∆2 it follows that

(M ′2, b)b∈M ′2 |= ∀x1, . . . , xn¬ϕ(x1, . . . , xn)

and hence
M ′2 |= ∀x1, . . . , xn¬ϕ(x1, . . . , xn)

Since (M1, a)a∈M1 |= D(M1) 3 ϕ(â1, . . . , ân) it follows that

M1 |= ∃x1, . . . , xnϕ(x1, . . . , xn)

but this contradicts that M1 ≡M ′2. Hence ∆ must be consistent. �

2.3 Decidability

In this section suppose that the language L is countable, so in particlular the
vocabulary V of L is countable and all variables can be listed as xi, i < ω.
Let

W = V ∪ {¬,∧,∨,→,↔,∃,∀, (, )} ∪ {xi : i < ω}
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and let W ∗ be the set of all finite sequences of symbols from W . There exists
an injective function δ : W ∗ → ω (i.e. a coding, also called Gdel numbering)
such that
(1) if w1 ∈W ∗ is a subsequence of w2 ∈W ∗ then δ(w1) ≤ δ(w2),
(2) δ(L) is a recursive set, and
(3) there are recursive functions µ0(x, y), µ1(x, y, z), µ2(x, y, z), µ3(x, y, z)
which, for any L-formulas ϕ, ψ and L-term t, satisfy:
µ0(δ(¬), δ(ϕ)) = δ(¬ϕ),
µ1(δ(ϕ), δ(S), δ(ψ)) = δ(ϕSψ) if S ∈ {∧,∨,→,↔},
µ2(δ(S), δ(xi), δ(ϕ)) = δ(Sxiϕ) if S ∈ {∃,∀},
µ3(δ(t), δ(xi), δ(ϕ)) = δ(ϕ[t/xi]), where ϕ[t/xi] is the result of substituting
t for every free occurence of xi in ϕ.

¿From (1), (2) and the above given property of µ3 it follows that the
set {δ(ϕ) : ϕ ∈ L is a sentence} is recursive. We say that an L-theory T is
recursive if the set {δ(ϕ) : ϕ ∈ T} is recursive. We say that an L-theory T
is decidable if the set {δ(ϕ) : ϕ is an L-sentence and T |= ϕ} is recursive.

Lemma 2.21 If T is a recursive L-theory then {δ(ϕ) : ϕ ∈ L and T ` ϕ}
and
{δ(ϕ) : ϕ ∈ L and T ` ¬ϕ} are recursively enumerable.

Proof. By elementary computability theory there is an injective function
λ :

⋃
k<ω ω

k → ω and recursive functions π : ω2 → ω, a : ω → ω such that
the image of λ is a recursive set and if n0, . . . , nk−1 < ω, i < k < ω then
a(λ((n0, . . . , nk−1)) = k and π(i, λ((n0, . . . , nk−1)))
= ni. Now we describe an algorithm which given n halts if and only if
n = δ(ϕ) for some sentence ϕ ∈ L such that T ` ϕ; then it follows that

{δ(ϕ) : ϕ ∈ L is a sentence and T ` ϕ}

is recursively enumerable.
Algorithm: Let n be given. Set j := 0.

(∗) Check whether j ∈ im(λ). If j /∈ im(λ) then set j := j + 1 and go
back to (∗). Otherwise set k := a(j) and check if it is the case that for all
l < k, π(l, j) ∈ δ(L). If it is not the case then set j := j + 1 and go back
to (∗). Otherwise check if it is the case that n = δ(ϕ) for some sentence
ϕ ∈ L and δ−1(π(0, j)), . . . , δ−1(π(k − 1, j)) is a proof of ϕ from T . To
check the later part it is enough to check that π(k − 1, j) = n and that, for
l < k, δ−1(π(l, j)) belongs to T or follows from some δ−1(π(l′, j)) with l′ < l
by a logical rule; here we use the assumption that T is recursive and the
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properties of the recursive functions µi. If the answer is positive then halt;
otherwise set j := j + 1 an go back to (∗).

In a similar way one shows that {δ(ϕ) : ϕ ∈ L is a sentence and T ` ¬ϕ}
is recursively enumerable. �

Theorem 2.22 If T is a recursive complete L-theory then T is decidable.

Proof. Recall that by the completeness theorem T |= ϕ if and only if T ` ϕ.
If T is inconsistent then T ` ϕ for every sentence ϕ so the theorem follows
from the fact (following from (1), (2) and the properties of the recursive
functions µi) that {δ(ϕ) : ϕ ∈ L is a sentence} is recursive. Suppose that
T is consistent. Then Φ = {δ(ϕ) : ϕ ∈ L is a sentence and T ` ϕ} and
Ψ = {δ(ϕ) : ϕ ∈ L is a sentence and T ` ¬ϕ} are disjoint. Since T is
complete Φ ∪ Ψ = {δ(ϕ) : ϕ ∈ L is a sentence}. By Lemma 2.21 Φ and Ψ
are recursively enumerable. Since {δ(ϕ) : ϕ ∈ L is a sentence} is recursive
it follows that Φ and Ψ are recursive which proves the theorem. �

2.4 Axiomatisability

We say that a class C of L-structures is axiomatised by an L-theory T if for
any L-structure M , M |= T if and only if M ∈ C. If there exists a theory T
such that C is axiomatised by T then we say that C is axiomatisable. If C is
axiomatisable by a finite theory then we say that C is finitely axiomatisable.

If T and T ′ are L-theories then we say that T is axiomatized by T ′ if for
any L-structure M , M |= T if and only if M |= T ′. A theory T is said to be
finitely axiomatisable if it is axiomatized by a finite theory. It follows from
the definitions that if T is a theory and C is the class of models of T then C
is finitely axiomatisable if and only if T is finitely axiomatisable.

Lemma 2.23 Suppose C is a class of L-structures which is axiomatised by
the L-theory T and that C is finitely axiomatisable. Then C is axiomatised
by a finite subset of T .

Proof. Suppose that C is axiomatised by the theory T and by the finite
theory ∆. Let ϕ be the conjunction of all sentences in ∆. Then M |= T ⇔
M ∈ C ⇔ M |= ϕ for any L-structure M , so we get T |= ϕ and ϕ |= ψ
for every ψ ∈ T . By the completeness theorem we get T ` ϕ, so (since
proofs are finite) there are θ1, . . . , θn ∈ T such that {θ1, . . . , θn} ` ϕ. By the
completeness theorem we get {θ1, . . . , θn} |= ϕ and since ϕ |= ψ for every
ψ ∈ T , we also have ϕ |= {θ1, . . . , θn}. Now we have M ∈ C ⇔ M |= ϕ ⇔
M |= {θ1, . . . , θn}, so T is axiomatised by {θ1, . . . , θn}. �
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Theorem 2.24 A class C of L-structures is finitely axiomatisable if and
only if both C and the complement of C are axiomatisable (where the com-
plement of C is the class of all L-structures which are not in C.)

Proof. First suppose that C is axiomatised by the finite L-theory {θ1, . . . , θn}.
Then it is easy to see that the complement of C is axiomatised by {¬(θ1 ∧
. . . ∧ θn)}.

Conversely, suppose that C is axiomatised by T1 and that the complement
is axiomatised by T2. If T1 ∪ T2 would be consistent then there would be
a model M of T1 ∪ T2 and this would imply that M belongs to C because
M |= T1 and that M belong to the complement of C because M |= T2, but
this is impossible so T1 ∪ T2 is inconsistent. By the compactness theorem
it follows that a finite subset ∆ of T1 ∪ T2 is inconsistent. Then ∆ has the
form

∆ = {ϕ1, . . . , ϕn} ∪ {ψ1, . . . , ψm}

where {ϕ1, . . . , ϕn} ⊆ T1 and {ψ1, . . . , ψm} ⊆ T2. Then we must have

{ϕ1, . . . , ϕn} |= ¬ψ1 ∨ . . . ∨ ¬ψm

Hence we get M |= {ϕ1, . . . , ϕn} ⇒ M |= ¬ψ1 ∨ . . . ∨ ¬ψm ⇒ M is not
in the complement of C ⇒ M ∈ C , and we get M ∈ C ⇒ M |= T1 ⇒
M |= {ϕ1, . . . , ϕn}. Therefore C is axiomatised by {ϕ1, . . . , ϕn}. �

Example 2.25 Let VF be the vocabulary {=,+, ·, 0, 1} (where 0, 1 are con-
stant symbols and +, · are binary function symbols) and let LF be the lan-
guage over VF . The usual axioms of fields can be expressed by a finite
number of LF -sentences. Hence the class F of of fields is finitely axiomati-
sable, by a finite LF -theory, say TF . The class F0 of fields of characteristic
0 is axiomatized by TF and the following sentences

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

6= 0

for every n > 0. so F0 is axiomatisable. Let n · 1 6= 0 be an abbreviation
of the above given sentence. If F0 would be finitely axiomatisable then by
Lemma 2.23 F0 would be axiomatisable by

T = TF ∪ {ni · 1 6= 0 : 0 < i < m}

for some m < ω. But if p is a prime that is bigger than all ni for 0 < i < m,
then the Z/(p) is a model of T and Z/(p) does not have characteristic 0, a
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contradiction. Hence F0 is not finitely axiomatisable. If the class of fields of
positive characteristic, call it F+, would be axiomatizable then it is easy to
see (because F is finitely axiomatizable) that the complement of F0 would be
axiomatizable and then by Theorem 2.24 it would follow that F0 is finitely
axiomatizable, a contradiction. Hence F+ is not axiomatizable.

Example 2.26 Let ACF be the class of algebraically closed fields. ACF is
axiomatised by the LF -theory ACF = TF ∪ {ϕn : 0 < n < ω} where

ϕn = ∀y0 . . . yn∃x(y0 + y1 · x+ y2 · x2 + · · ·+ yn · xn = 0)

and xn is an abbreviation for

x · . . . · x︸ ︷︷ ︸
n times

If ACF would be finitely axiomatisable then by Lemma 2.23 ACF would be
axiomatised by a finite subset of ACF , but for every finite ∆ ⊂ ACF one
can find a model M of ∆ such that some polynomial over M has no roots
in M , so M /∈ ACF . Hence ACF is not finitely axiomatisable.

Let ACF0 be the class of algebraically closed fields of characteristic 0.
ACF0 is axiomatised by

ACF0 = ACF ∪ {n · 1 6= 0 : 0 < n < ω}.

The field Q can be embedded into any field of characteristic 0. A tran-
scendence basis in a field is a maximal set A such that for any finite tuple
(a1, . . . , an)of elements from A there does not exist a nonzero polynomial
over Q in n variables such that a1, . . . , an is a root of this polynomial. Clas-
sical results from field theory are that,
(i) every algebraically closed field of characteristic 0 has a transcendence
basis, and that
(ii) any two transcendence bases have the same cardinality, called the tran-
scendence rank, and that
(iii) for every cardinal κ there exists a unique algebraically closed field of
characteristic 0 (up to isomorphism) of transcendence rank κ and the car-
dinality of this field is ℵ0 + κ.
It follows that if M |= ACF0 and N |= ACF0 and |M | = |N | = κ > ℵ0
then M and N have the same transcendence rank which is κ, and by (iii) M
and N are isomorphic. Hence ACF0 is κ-categorical for every uncountable
cardinal κ. By Vaught’s theorem (theorem 2.18) it follows that ACF0 is a
complete theory.
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Exercise 2.27 Let V= be {=} and let L= be the language over V=. Show
that the class of all infinite L=-structures is axiomatisable but not finitely
axiomatisable.

2.5 Interpolation and definability theorems

Theorem 2.28 (Craig interpolation theorem) Let ϕ and ψ be sentences of
some first order language such that ϕ |= ψ. Then there is a sentence θ
(called interpolant) such that ϕ |= θ and θ |= ψ and every constant, relation
or function symbol which occurs in θ occurs in both ϕ and ψ.

Proof. Suppose that ϕ and ψ are sentences such that ϕ |= ψ. Let V1 be
the set of all constant, relation and function symbols which occur in ϕ and
let V2 be the set of all constant, relation and function symbols which occur
in ψ. Let V0 = V1 ∩ V2 and V3 = V1 ∪ V2. For i = 0, 1, 2, 3 let Li be the
language over Vi (i.e. the set of first order formulas over Vi).

We want to show that there exists a sentence θ ∈ L0 such that ϕ |= θ
and θ |= ψ. Suppose that that no such interpolant θ exists. We will derive
a contradiction by showing that then ϕ ∧ ¬ψ has a model.

Let C be an infinite and countable set of constant symbols which do not
occur in V3 and, for i = 0, 1, 2, 3, let L′i be the language over Vi∪C. Observe
that |L′i| ≤ ω. Suppose that T is an L′1-theory and that Γ is an L′2-theory.
We say that a sentence θ ∈ L′0 separates T and Γ if T |= θ and Γ |= ¬θ. We
say that T and Γ are inseparable if no sentence θ ∈ L′0 separates them.

Claim 1. {ϕ} and {¬ψ} are inseparable.
Suppose for a contradiction that a sentence θ ∈ L′0 separates {ϕ} and

{¬ψ}. We may assume that θ has the form θ′(c1, . . . , cn) where θ′(x1, . . . , xn) ∈
L0 and c1, . . . , cn) ∈ C. Let θ′′ be the sentence ∀x1, . . . , xnθ′(x1, . . . , xn).
Since ϕ |= θ′(c1, . . . , cn) and ¬ψ |= ¬θ′(c1, . . . , cn) we get (by Lemma 2.19)
ϕ |= θ′′ and θ′′ |= ψ, which contradicts the assumption that no interpolant
exists.

Let ϕi, i < ω be an enumeration of all sentences in L′1 and let ψi, i < ω
be an enumeration of all sentences in L′2. For i < ω we can inductively
construct finite theories Ti ⊆ L′1 and Γi ⊆ L′2 such that, for all i < ω:

(1) {ϕ} ⊆ Ti ⊆ Ti+1 and {¬ψ} ⊆ Γi ⊆ Γi+1.

(2) Ti and Γi are inseparable.

38



(3) If Ti ∪ {ϕi} and Γi are inseparable then ϕi ∈ Ti+1, and
if Ti+1 and Γi ∪ {ψi} are inseparable then ψi ∈ Γi+1.

(4) If ϕi has the form ∃xσ(x) and ϕi ∈ Ti+1 then σ(c) ∈ Ti+1 for some
c ∈ C, and
if ψi has the form ∃xσ(x) and ψi ∈ Γi+1 then σ(d) ∈ Γi+1 for some
d ∈ C.

It is left to the reader to do carry out the construction (start by letting
T0 = {ϕ} and Γ0 = {¬ψ}; by Claim 1 T0 and Γ0 are insepareble). It should
be clear how to take care of cases (3) and (4). By choosing c and d (in
(4)) such that c and d do not occur in Ti, Γi, ϕi or ψi the inseparability is
preserved.

Let T =
⋃
i<ω Ti and Γ =

⋃
i<ω Γi. Then, by the Compactness theorem,

it follows that T and Γ are inseparable, and therefore T and Γ are consistent.

Claim 2. For every sentence σ ∈ L′1, either σ ∈ T or ¬σ ∈ T , and for every
sentence σ ∈ L′2, either σ ∈ Γ or ¬σ ∈ Γ.

Suppose for a contradiction that σ ∈ L′1 is a sentence such that σ /∈ T
and ¬σ /∈ T . Then, for some i < ω, σ = ϕi. It follows that Ti ∪ {ϕi} and
Γi are not inseparable (because if they where inseparable then ϕi ∈ T ) so
there exists θ ∈ L′0 such that

T |= ϕi → θ and Γ |= ¬θ.

By a similar argument there is θ′ ∈ L′0 such that

T |= ¬ϕi → θ′ and Γ |= ¬θ′.

Then it follows that T |= θ ∨ θ′ and Γ |= ¬(θ ∨ θ′) which contradicts that
T and Γ are inseparable. In a similar way we get a contradiction from the
assumption there exists σ ∈ L′2 such that σ /∈ Γ and ¬σ /∈ Γ.

Claim 3. For every sentence σ ∈ L′0, either σ ∈ T ∩ Γ or ¬σ ∈ T ∩ Γ.
Let σ ∈ L′0 be a sentence. By Claim 2, σ ∈ T or ¬σ ∈ T , and σ ∈ Γ or

¬σ ∈ Γ. Since T and Γ are inseparable we can not have T |= σ and Γ |= ¬σ,
or vice versa. Hence, either σ ∈ T ∩ Γ or ¬σ ∈ T ∩ Γ.

Let M1 |= T (where M1 is an L′1-structure). Observe that for any constant
symbol e ∈ V1, any n-ary function symbol f and any c1, . . . , cn ∈ C, M1 |=
∃x f(c1, . . . , cn) = x and M1 |= ∃x(e = x), so by Claim 2 ∃x f(c1, . . . , cn) =
x ∈ T and ∃x(e = x) ∈ T . This together with (4) implies that we can define
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a substructure N1 of M1 by letting N1 = {cM1 : c ∈ C}, eN1 = eM1 for
every constant symbol e ∈ V1∪C, RN1 = RM1 ∩Nn

1 for every n-ary relation
symbol R ∈ V1 and fN1(a1, . . . an) = fM1(a1, . . . an) for any n-ary function
symbol f ∈ V1 and any a1, . . . an ∈ N1.

If ∃yϕ(x1, . . . , xn, y) ∈ L′1 and M1 |= ∃yϕ(c1, . . . , cn, y) where c1, . . . cn ∈
C then, by Claim 2, ∃yϕ(c1, . . . , cn, y) ∈ T and, by (4), there exists c ∈ C
such that ϕ(c1, . . . , cn, c) ∈ T from which it follows thatM1 |= ϕ(c1, . . . , cn, c).
Therefore, by the Tarski-Vaught test (Proposition 2.6), it follows that N1 4
M1, so in particular N1 |= T .

Let M2 |= Γ. In the same way as above we can show that there exists
N2 4 M2 with N2 = {cM2 : c ∈ C}. In particular N2 |= Γ. We now have
N1�L′0 |= T ∩ Γ and N2�L′0 |= T ∩ Γ. For every ϕ(x1, . . . , xn) ∈ L′0 and
c1, . . . cn ∈ C, if N1�L′0 |= ϕ(c1, . . . , cn) then, by Claim 3, ϕ(c1, . . . , cn) ∈
T ∩ Γ so N2�L′0 |= ϕ(c1, . . . , cn), and vice versa. Therefore N1�L′0 ∼= N2�L′0,
where an isomorphism is given by cN1 7→ cN2 (remember that cN1 = cM1

and cN2 = cM2). Then there is an expansion N2 of N2�L2 to the language
L3 = L1 ∪ L2, such that N2 |= T . But N2�L2 |= Γ and hence N2 |= Γ, and
since ϕ ∈ T and ¬ψ ∈ Γ we get N2 |= ϕ ∧ ¬ψ, the contradiction we are
looking for. �

Remark 2.29 By the completeness theorem we can replace |= by ` in the
Craig interpolation theorem. Then the statement of the theorem is proof
theoretical, and in fact, there is also an entirely proof theoretic proof of this
theorem.

Let L be the language over a vocabulary V and suppose that P and P ′ be
two n-ary relation symbols which are not in V . Let L(P ) and L(P ′) be the
languages over the vocabularies V ∪ {P} and V ∪ {P ′}, respectively. If T
is an L(P )-theory then let T ′ be the theory obtained from T by replacing
every occurence of P in T by P ′. We say that T defines P implicitly if

T ∪ T ′ |= ∀x1, . . . , xn[P (x1, . . . , xn)↔ P ′(x1, . . . , xn)].

We say that T defines P explicitly if there exists a formula ϕ(x1, . . . , xn) ∈ L
such that

T |= ∀x1, . . . , xn[P (x1, . . . , xn)↔ ϕ(x1, . . . , xn)].

Theorem 2.30 (Beth’s definability theorem) T defines P implicitly if and
only if T defines P explicitly.
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Proof. It is easy to see that if T defines P explicitly then T defines P
implicitly, so we prove only the other direction. Suppose that T defines
P implicitly. Let c1, . . . , cn be constant symbols which are not in V (the
vocabulary of L). Then

T ∪ T ′ |= P (c1, . . . , cn)→ P ′(c1, . . . , cn).

By the compactness theorem, there are finite subsets ∆ ⊆ T and ∆′ ⊆ T ′

such that
∆ ∪∆′ |= P (c1, . . . , cn)→ P ′(c1, . . . , cn).

For any θ ∈ L(P ) let θ[P/P ′] denote the formula obtained by replacing every
occurence of P in θ by P ′. Let ψ be the conjunction of all θ ∈ T such that
θ ∈ ∆ or θ[P/P ′] ∈ ∆′. Then

ψ ∧ ψ[P/P ′] |= P (c1, . . . , cn)→ P ′(c1, . . . , cn)

which implies

ψ ∧ P (c1, . . . , cn) |= ψ[P/P ′]→ P ′(c1, . . . , cn).

By the Craig interpolation theorem (Theorem 2.28) there is a formula

ϕ(x1, . . . , xn) ∈ L

such that
ψ ∧ P (c1, . . . , cn) |= ϕ(c1, . . . , cn) (1)

and
ϕ(c1, . . . , cn) |= ψ[P/P ′]→ P ′(c1, . . . , cn). (2)

Clearly, (2) implies

ϕ(c1, . . . , cn) |= ψ → P (c1, . . . , cn), (3)

and now (1) and (3) gives

ψ |= P (c1, . . . , cn)↔ ϕ(c1, . . . , cn).

Since c1, . . . , cn do not occur in ψ, it follows (from Lemma 2.19) that

ψ |= ∀x1, . . . , xn[P (x1, . . . , xn)↔ ϕ(x1, . . . , xn)],

and since ψ ∈ T it follows that T defines P explicitly. �
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Theorem 2.31 (Robinson’s consistency theorem)
Let L1 and L2 be two languages and let L = L1 ∩ L2. If T is a complete
L-theory and T1 ⊆ L1 and T2 ⊆ L2 are consistent theories such that T ⊆
T1 ∩ T2, then T1 ∪ T2 is consistent.

Proof. Suppose for a contradiction that T1 ∪T2 is inconsistent. Then there
are finite subsets ∆1 and ∆2 of T1 and T2, respectively, such that ∆1 ∪∆2

is inconsistent. Let ϕ1 be the conjuction of all formulas in ∆1 and let ϕ2 be
the conjunction of all formulas in ∆2. Then ϕ1 |= ¬ϕ2 and, by the Craig
interpolation theorem, there exists a sentence θ ∈ L such that ϕ1 |= θ and
θ |= ¬ϕ2. Then T1 |= θ and T2 |= ¬θ and since T1 and T2 are consistent
we get T1 6|= ¬θ and T2 6|= θ. This implies that T 6|= ¬θ and T 6|= θ, which
contradicts the assumption that T is a complete L-theory. �

2.6 Back and forth equivalence

We define the quantifier rank of formulas, abbreviated qr( ), in the following
way:
(i) qr(ϕ) = 0 if ϕ is atomic.
(ii) qr(¬ϕ) = qr(ϕ) and qr(ϕ � ψ) = max{qr(ϕ), qr(ψ)} if � is one of
∨,∧,→,↔.
(iii) qr(∃xϕ) = qr(ϕ) + 1 and qr(∀xϕ) = qr(ϕ) + 1.
Now we introduce some notation. Finite sequences (of variables, or elements
of some structure) will be denoted by x̄, ȳ, z̄, ā, b̄, c̄ etc. and the length of
a sequence ā is denoted by |ā| (so if ā = a1, . . . , an then |ā| = n). We will
also consider the empty sequence, denoted () which contains no elements at
all, and we have |()| = 0. If ā = a1, . . . , an then āa denotes the sequence
ā = a1, . . . , an, a, and if k ≤ n then ā�k denotes the sequence a1, . . . , ak; if
k = 0 then ā�k denotes (). If A is a set, then by ā ∈ A we mean that every
element in the sequence ā is in A, so in particular this convention implies
that () ∈ A for any set A. Let ā ∈ M (where M is a structure) and let
x̄ be a sequence of distinct variables. If ā = a1, . . . , an and x̄ = x1, . . . , xn
and ϕ(x1, . . . , xn) is a formula then ϕ(x1, . . . , xn) will also be denoted by
ϕ(x̄), and by ϕ(ā) we mean ϕ(a1, . . . , an). In case we write ϕ(x̄) or ϕ(ā)
and x̄ = () and ā = () then we mean that ϕ is a sentence (i.e. has no free
variables) in the language we are considering.

Let M and N be two L-structures. We say that two sequences ā ∈ M
and b̄ ∈ N such that |ā| = |b̄| are r-equivalent if for every L-formula ϕ(x̄)
(where x̄ is a sequence of distinct variables such that |x̄| = |ā| = |b̄|) with
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qr(ϕ) ≤ r , we have

M |= ϕ(ā) if and only if N |= ϕ(b̄)

Note that it follows that () is r-equivalent to itself (with respect to M and
N) if for every L-sentence ϕ with qr(ϕ) ≤ r , M |= ϕ if and only if N |= ϕ.
A back and forth system for M and N is a set I of pairs (ā, b̄) of sequences
ā ∈M , b̄ ∈ N such that |ā| = |b̄| and :
(i) I is nonempty.
(ii) For all (ā, b̄) ∈ I , ā and b̄ are 0-equivalent.
(iii) For all (ā, b̄) ∈ I and every a ∈ M and every b ∈ N there are c ∈ M
and d ∈ N such that

(āa, b̄d), (āc, b̄b) ∈ I.

If there exists a back and forth system for M and N then we say that M
and N are back and forth equivalent, denoted M ∼ N .

Theorem 2.32 If M and N are infinite countable structures (in the same
language) and M ∼ N then M ∼= N .

Proof. Suppose that M and N are countable and let I be a back and
forth system for M and N . Pick (ā, b̄) ∈ I and let n = |ā| (= |b̄|). Let
{ak : n ≤ k < ω} = M−{a : a occurs in the sequence ā} and let {bk : n ≤
k < ω} = N − {b : b occurs in the sequence b̄}, where we may assume that
these enumerations contain no repetitions. We will define two sequences
(a∗i )i<ω and (b∗i )i<ω of elements in M and N respectively, such that for all
i ≥ |ā|

(a∗0, . . . , a
∗
i , b
∗
0, . . . , b

∗
i ) ∈ I.

If ā = b̄ = () then define a∗0 = a0 and define b∗0 = bk where k is the least num-
ber such that (a0, bk) ∈ I. If |ā| = |b̄| = n > 0 then there are a0, . . . , an−1
and b0, . . . , bn−1 such that ā = a0, . . . , an−1 and b̄ = b0, . . . , bn−1. Define
a∗i = ai and b∗i = bi for 0 ≤ i ≤ n − 1. Suppose that a∗j and b∗j are defined
for all j ≤ i and that i is even. Let k be the least number such that ak 6= a∗j
for all j ≤ i and let d ∈ N be such that

(a∗0, . . . , a
∗
i ak, b

∗
0, . . . , b

∗
i , d) ∈ I.

Define a∗i+1 = ak and define b∗i+1 = d. Now suppose that a∗j and b∗j are
defined for all j ≤ i and that i is odd. Let k be the least number such that
bk 6= b∗j for all j ≤ i and let c ∈M be such that

(a∗0, . . . , a
∗
i c, b

∗
0, . . . , b

∗
i , bk) ∈ I.

43



Define a∗i+1 = c and b∗i+1 = bk. Observe that for every a ∈M there is i such
that a = a∗i and for every b ∈ N there is i such that b = b∗i . Moreover, for
every i the sequences a∗1, . . . , a

∗
i and b∗1, . . . , b

∗
i are 0-equivalent. Therefore

the function f : M → N defined by f(a∗i ) = b∗i is an isomorphism from M
onto N . �

Example 2.33 Let T be the theory (in the language with vocabulary {=
, <}) of dense linear order without endpoints, i.e T consists of the following
sentences:

∀x(x ≮ x)

∀x, y(x < y ∨ x = y ∨ y < x)

∀x, y, z(x < y ∧ y < z → x < z)

∀x∃y, z(y < x ∧ x < z)

∀x, y[x < y → ∃z(x < z ∧ z < y)].

Then T is countably categorical and hence complete (by Vaught’s theo-
rem 2.18) and decidable (by Theorem 2.22).
Proof. Let M and N be two countable models of T . By Theorem 2.32 it
is enough to show that there exists a back and forth system for M and N .
Let I be the set of all pairs (a1, . . . , an, b1, . . . , bn) such that a1, . . . , an ∈M
and b1, . . . , bn ∈ N are 0-equivalent. We will show that I is a back and forth
system for M and N . Clearly, for any a ∈ M and and any b ∈ N , a and
b are 0-equivalent, so I is nonempty. Let (a1, . . . , an, b1, . . . , bn) ∈ I and let
a ∈M . If a = ai for some i then

a1, . . . , an, a and b1, . . . , bn, bi

are 0-equivalent and hence (a1, . . . , an, a, b1, . . . , bn, bi) ∈ I. If a < ai for all
i then since N is a linear order without endpoints there exists b ∈ N such
that b < bi for all i, and then

a1, . . . , an, a and b1, . . . , bn, b

are 0-equivalent and hence (a1, . . . , an, a, b1, . . . , bn, b) ∈ I. We can argue
similarly if a > ai for all i. If none of the above cases hold then there is a
permutation ρ of {1, . . . , n} such that for some 1 ≤ k < n

aρ(1) ≤ . . . ≤ aρ(k) < a < aρ(k+1) ≤ . . . ≤ aρ(n)

Since a1, . . . , an and b1, . . . , bn are 0-equivalent we must have

bρ(1) ≤ . . . ≤ bρ(k) < bρ(k+1) ≤ . . . ≤ bρ(n)
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and since N is a dense linear order there exists b ∈ N such that

bρ(1) ≤ . . . ≤ bρ(k) < b < bρ(k+1) ≤ . . . ≤ bρ(n)

and then
a1, . . . , an, a and b1, . . . , bn, b

are 0-equivalent and hence (a1, . . . , an, a, b1, . . . , bn, b) ∈ I. If

(a1, . . . , an, b1, . . . , bn) ∈ I and b ∈ N,

then in the same way we can show that there exists a ∈M such that

(a1, . . . , an, a, b1, . . . , bn, b) ∈ I.

�

Let M and N be two L-structures. An r-back and forth system for M
and N is a sequence (I0, . . . Ir) where, for every 0 ≤ s ≤ r , Is is a set of
pairs (ā, b̄) of sequences ā ∈M , b̄ ∈ N of the same length, such that,
(i) Ir is nonempty,
(ii) for every 0 ≤ s ≤ r and every (ā, b̄) ∈ Is , ā and b̄ are 0-equivalent,
and
(iii) for every 0 < s ≤ r , (ā, b̄) ∈ Is , a ∈M and b ∈ N there are c ∈M and
d ∈ N such that

(āa, b̄d), (āc, b̄b) ∈ Is−1.

If there exists an r-back and forth system for M and N then we say that M
and N are r-back and forth equivalent, denoted M ∼r N . Observe that if I
is a back and forth system for M and N then for any r

(I, . . . , I︸ ︷︷ ︸
r+1 times

)

is an r-back and forth system for M and N . Hence M ∼ N implies M ∼r N
for every r < ω.

Proposition 2.34 For any r < ω , if (I0, . . . , Ir) in an r-back and forth
system for M and N then for every (ā, b̄) ∈ Ir , ā and b̄ are r-equivalent.

Proof. Since every formula is equivalent to a formula with the same quan-
tifier rank in which ∀ does not occur, it is sufficient to prove the proposition
for formulas in which ∀ does not occur. We will do this by induction on
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r. If r = 0 then the proposition follows directly from the definition of r-
back and forth system. Now suppose that the proposition is true for r and
suppose that (I0, . . . , Ir+1) is an (r + 1)-back and forth system for M and
N . We will show by induction on the complexity of formulas that for every
(ā, b̄) ∈ Ir+1 and every formula ϕ(x̄) with qr(ϕ) ≤ r+ 1 and |x̄| = |ā| where
x̄ is a sequence of distinct variables (which need not necessarily occur in ϕ)

M |= ϕ(ā) ⇔ N |= ϕ(b̄). (∗)

If ϕ(x̄) is quantifier free then (∗) follows from the assumption that (I0, . . . , Ir+1)
is an (r+ 1)-back and forth system. If ϕ(x̄) has the form ¬ψ(x̄) then by the
induction hypothesis we have

M |= ψ(ā) ⇔ N |= ψ(b̄)

and from this (∗) follows. If ϕ(x̄) has the form ψ(x̄) � θ(x̄) where � is one
of ∧,∨,→,↔ then, by using the induction hypothesis it is also easy to see
that (∗) holds.

Now suppose that ϕ(x̄) has the form ∃yψ(x̄, y). If M |= ∃yψ(ā, y) then
M |= ψ(ā, a) for some b ∈ M and, since (I0, . . . , Ir+1) is an (r + 1)-back
and forth system, there exists b ∈ N such that (ā, a, b̄, b) ∈ Ir , and since
(I0, . . . , Ir) is an r-back and forth system and qr(ψ) ≤ r, the induction hy-
pothesis on r gives N |= ψ(b̄, b) , and hence N |= ∃yψ(b̄, y). In the same
way one shows that if N |= ∃yψ(b̄, y) then M |= ∃yψ(ā, y), so it follows that
(∗) holds. This completes the induction step. �

Let M and N be L-structures. We say that M and N are r-elementarily
equivalent (or elementarily equivalent up to r) if for all L-sentences ϕ with
qr(ϕ) ≤ r , M |= ϕ if and only if N |= ϕ.

Theorem 2.35 (i) If M ∼r N then M ≡r N .
(ii) If M ∼ N then M ≡ N .

Proof. (i) Suppose that M ∼r N . Then there exists an r-back and forth
system (I0, . . . , Ir) for M and N . Then Ir is nonempty so pick (ā, b̄) ∈ Ir.
By Proposition 2.34 we have

M |= ϕ(ā) ⇔ N |= ϕ(b̄)

for every formula ϕ(x̄) with qr(ϕ) ≤ r, so in particular M |= ϕ ⇔ N |= ϕ
for every sentence ϕ with qr(ϕ) ≤ r.
(ii) M ∼ N ⇒ M ∼r N for every r < ω ⇒ M ≡r N for every r < ω ⇒
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M ≡ N . �

We say that two formulas ϕ(x̄) and ψ(x̄) are equivalent if

|= ∀x̄(ϕ(x̄)↔ ψ(x̄))

If Φ is a set of formulas then we say that Φ is finite up to equivalence if
there exists a finite subset ∆ of Φ such that every ϕ ∈ Φ is equivalent to
some ψ ∈ ∆.

Let Φ be a set of formulas. The set of boolean combinations of Φ , denoted
B(Φ), is defined inductively by:
(i) if θ ∈ Φ then θ ∈ B(Φ), and
(ii) if θ, σ ∈ Ψ then ¬θ ∈ B(Φ) and if � is one of ∧,∨,→,↔ then θ�σ ∈ B(Φ).

Lemma 2.36 If Φ is a finite set of formulas then B(Φ) is finite up to
equivalence.

Proof. Exercise. �

Lemma 2.37 If the vocabulary of L is finite and contains no function sym-
bols then for every n ≥ 1 and r ≥ 0, if x̄ is a sequence of length n of distinct
variables then there are only finitely many L-formulas ϕ(x̄) with qr(ϕ) ≤ r
, up to equivalence.

Proof. Since every formula is equivalent to a formula of the same quantifier
rank in which the quantifier ∀ does not occur it is sufficient to prove the
lemma only for formulas in which ∀ does not occur. We do this by induction
on r.

Since the vocabulary is finite and contains no function symbols it follows
that, for any x̄, there are only finitely many atomic formulas in which only
variables from x̄ occur. By Lemma 2.36 there are, up to equivalence, only
finitely many quantifier free formulas in which only variables from x̄ occur.
Hence the case r = 0 is proved.

Now for the induction step, suppose that for any x̄ there are only finitely
many formulas ϕ(x̄) with qr(ϕ) ≤ r, up to equivalence. Fix an arbitrary
x̄. We must show that there are only finitely many formulas ϕ(x̄) with
qr(ϕ) ≤ r + 1, up to equivalence. By the induction hypothesis there are

ϕ1(x̄), . . . , ϕm(x̄)

and ψ1(x̄, x), . . . , ψk(x̄, x)
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(where x does not occur in x̄) such that every ϕ(x̄) with qr(ϕ) ≤ r is
equivalent to ϕi(x̄) for some 1 ≤ i ≤ m and every ψ(x̄, x) with qr(ψ) ≤ r is
equivalent to ψi(x̄, x) for some 1 ≤ i ≤ k. Let

Ψ = {∃xψ1(x̄, x), . . . ,∃xψk(x̄, x)}

and let
∆ = {ϕ1(x̄), . . . , ϕm(x̄)} ∪B(Ψ)

Then every formula in ∆ has quantifier rank ≤ r + 1 , and by Lemma 2.36
∆ is finite up to equivalence. Hence it is sufficient to show that any χ(x̄)
with qr(χ) ≤ r + 1 is equivalent to a formula in ∆. If qr(χ) ≤ r then by
the induction hypothesis χ(x̄) is equivalent to one of the ϕi(x̄) , so assume
that qr(χ) = r + 1. If χ(x̄) has the form ¬χ1(x̄) or χ1(x̄) � χ2(x̄) where �
is one of ∧,∨,→,↔ then it is sufficient to show that, for j = 1, 2 , χj is
equivalent to a formula in ∆. Hence we may assume that χ(x̄) has the form
∃yθ(x̄, y) where y does not occur in x̄ (because x̄ are free in χ). Then (since
x̄, x are distinct) ∃yθ(x̄, y) is equivalent to ∃xθ(x̄, x) , and by the induction
hypothesis, θ(x̄, x) is equivalent to ψi(x̄, x) for some 1 ≤ i ≤ k. It follows
that ∃yθ(x̄, y) is equivalent to ∃xψi(x̄, x) and ∃xψi(x̄, x) ∈ ∆. �

Theorem 2.38 Suppose that the vocabulary of L is finite and contains no
function symbols. For every r < ω , and any L-structures M and N , if
M ≡r N then M ∼r N .

Proof. Let r < ω be arbitrary and suppose that M ≡r N . For every
0 ≤ s ≤ r, let

Is = {(ā, b̄) : ā ∈M and b̄ ∈ N are s-equivalent}

We will show that (I0, . . . , Ir) is an r-back and forth system for M and N .
Since () is r-equivalent to () (becauseM ≡r N) it follows that ((), ()) ∈ Ir

so Ir is nonempty. By the definition of (I0, . . . , Ir) it follows that for every
0 ≤ s ≤ r and every (ā, b̄) ∈ Is , ā and b̄ are 0-equivalent.

Now suppose that (ā, b̄) ∈ Is where 0 < s ≤ r and that a ∈ M and
b ∈ N . By Lemma 2.37 there is a finite set Γ of formulas with quantifier
rank at most s − 1, such that any formula θ(x̄, y) with qr(θ) ≤ s − 1 is
equivalent to a formula in Γ. Let ϕ(x̄, y) be the conjunction of all formulas
ψ(x̄, y) ∈ Γ such that M |= ψ(ā, a). Then M |= ∃yϕ(ā, y) , and since ā
and b̄ are s-equivalent it follows that N |= ∃yϕ(b̄, y) , and hence there exists
d ∈ N such that N |= ϕ(b̄, d). By the choice of ϕ(x̄, y) it follows that ā, a
and b̄, d are s − 1-equivalent so (ā, a, b̄, d) ∈ Is−1. In the same way one can
show that there exists c ∈M such that (ā, c, b̄, b) ∈ Ir. �
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Corollary 2.39 (Fräıssé’s theorem) Suppose that the vocabulary of L is fi-
nite and contains no function symbols.
(i) For every r < ω and any L-structures M and N , M ≡r N if and only
if M ∼r N .
(ii) For any L-structures M and N , M ≡ N if and only if M ∼r N , for
every r < ω.

Proof. (i) follows from theorem 2.38 and Theorem 2.35. (ii) follows from
(i). �

2.7 Ehrenfeucht-Fräıssé games

For any two L-structures M and N and any natural number r, we will define
the Ehrenfeucht-Fräıssé game of length r , denoted EFr(M,N). EFr(M,N)
is played by two players, called Spoiler and Duplicator, in the following way:
If r = 0 then neither Spoiler nor Duplicator has to do anything and Duplica-
tor wins the game if () is 0-equivalent to (), otherwise Spoiler wins the game.
The pair ((), ()) is called a play of EF0(M,N) (this will make sense later).
If r > 0 then each player makes r moves. Spoiler always makes his i:th move
(for 1 ≤ i ≤ r) first and then Duplicator makes his i:th move. Each move
consists of choosing an element from one of the structures M and N . If in
his i:th move Spoiler chooses an element ai from M then Duplicator, in his
i:th move, must choose an element bi from N . If in his i:th move Spoiler
chooses an element bi from N then Duplicator, in his i:th move, must choose
an element ai from M . When both players have made their r moves we will
have two sequences a1, . . . , ar ∈ M and b1, . . . , br ∈ N , such that for every
1 ≤ i ≤ r, either ai is Spoiler’s choice in his i:th move and bi is Duplicators
choice in his i:th move, or bi is Spoiler’s choice in his i:th move and ai is Du-
plicators choice in his i:th move. The pair (a1, . . . , ar, b1, . . . , br) is called a
play of EFr(M,N), and for every 0 ≤ i ≤ r we say that (a1, . . . , ai, b1, . . . , bi)
is a subplay of EFr(M,N). Oberve that since both players are allowed to
choose elements that where chosen in earlier moves, we can have ai = aj or
bi = bj for i 6= j. If a1, . . . , ar and b1, . . . , br are 0-equivalent then Duplicator
wins the game, otherwise Spoiler wins the game.

A strategy for EFr(M,N) is a function

f : {(ā, b̄) : ā ∈M, b̄ ∈ N, |ā| = |b̄| < r} × (M ∪N)→M ∪N

such that we always have f((ā, b̄), c) ∈ N if c ∈ M and f((ā, b̄), d) ∈ M if
d ∈ N ; we may assume that M and N are disjoint. We say that Duplicator
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uses the strategy f when he plays, if in his i:th move he chooses

f((a1, . . . , ai−1, b1, . . . , bi−1), c) if Spoiler chose c ∈M in his i:th move

or f((a1, . . . , ai−1, b1, . . . , bi−1), d) if Spoiler chose d ∈ N in his i:th move,

where a1, . . . , ai−1 ∈M and b1, . . . , bi−1 ∈ N are the elements chosen in the
first i− 1 moves.

If there exists a strategy f such that Duplicator always wins the game
EFr(M,N) when he uses the strategy f then we say that Duplicator has a
winning strategy for EFr(M,N).

Theorem 2.40 For every r < ω , M ∼r N if and only if Duplicator has a
winning strategy for EFr(M,N).

Proof. Suppose that Duplicator has a winning strategy, say f , for the game
EFr(M,N). Let P be the set of all plays of EFr(M,N) where Duplicator
uses f , so in particular all plays in P are won by Duplicator. For every
0 ≤ i ≤ r let Ir−i = {(ā�i, b̄�i) : (ā, b̄) ∈ P} We will show that (I0, . . . , Ir)
is an r-back and forth system for M and N .

Ir is nonempty because ((), ()) ∈ Ir. For every 0 ≤ i ≤ r , and every
(c̄, d̄) ∈ Ii , we have c̄ = ā�i and d̄ = b̄�i , for some (ā, b̄) ∈ P . Then (ā, b̄) is
a play which is won by duplicator so ā and b̄ are 0-equivalent, and therefore
also c̄ and d̄ are 0-equivalent. Now suppose that 0 < i ≤ r , (ā, b̄) ∈ Ii ,
c ∈M and d ∈ N . Then (ā, b̄) is a subplay of EFr(M,N) where Duplicator
uses f and therefore also

(āc, b̄ f((ā, b̄), c)) and (ā f((ā, b̄), d), b̄d)

are subplays of EFr(M,N) where Duplicator uses f and hence

(āc, b̄ f((ā, b̄), c)) ∈ Ii−1 and (ā f((ā, b̄), d), b̄d) ∈ Ii−1.

Now suppose that (I0, . . . , Ir) is an r-back and forth system. For any
c ∈M , d ∈ N and ā ∈M , b̄ ∈ N of length < r, such that for some 0 < i ≤ r,
ā′ ∈ M , b̄′ ∈ N we have (ā′ā, b̄′b̄) ∈ Ii, there exists d′ ∈ N and c′ ∈ M such
that

(ā′āc, b̄′b̄d′) ∈ Ii−1 (1)

and (ā′āc′, b̄′b̄d) ∈ Ii−1 (2)

so we define f((ā, b̄), c) = d′ where d′ ∈ N is an element such that (1) is
satisfied and we define f((ā, b̄), d) = c′ where c′ ∈ M is an element such
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that (2) is satisfied. If there are no 0 < i ≤ r, ā′ ∈ M and b̄′ ∈ N such
that (ā′ā, b̄′b̄) ∈ Ii then let f((ā, b̄), c) be an arbitrary element of N and
f((ā, b̄), d) an arbitrary element of M .

The definition of f implies that if Duplicator uses the strategy f then,
if 0 ≤ i ≤ r and (ā, b̄) is the subplay obtained after i moves, then there are
ā′ ∈M and b̄′ ∈ N such that (ā′ā, b̄′b̄) ∈ Ir−i which means that ā and b̄ are
0-equivalent. By taking i = r it follows that Duplicator wins if he uses the
strategy f . �

Corollary 2.41 If the vocabulary of L is finite and contains no function
symbols then for any L-structures M and N and any r < ω the following
are equivalent :
(i) M ≡r N .
(ii) M ∼r N .
(iii) Duplicator has a winning strategy for EFr(M,N).

Proof. Follows from Theorem 2.40 and Theorem 2.39. �

Corollary 2.42 If the vocabulary of L is finite and contains no function
symbols then for any L-structures M and N and any r < ω the following
are equivalent :
(i) M ≡ N .
(ii) M ∼r N for every r < ω.
(iii) Duplicator has a winning strategy for EFr(M,N), for every r < ω.

Proof. Follows from corollary 2.41. �
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