EXAMENSARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Short Proofs of Finite Instances

of Valid Sentences

av
Marko Djordjevic
No 4 — 1995

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Stockholms universitet
Reproenheten 1995

Acknowledgements

I wish to thank my supervisor Gunnar Stlmarck from whom I got the idea of writing this paper and who has
given me much support and advice. I also thank Dag Prawitz and Filip Widebick for valuable comments at a
seminar, and Per-Erik Malmnis for putting me into contact with G. StAlmarck.

Introduction

The study of proof lengths of logical calculi, or proof systems as we will call them, is related to the subject of
computational complexity by the following result of Cook and Reckhow [4]:

NP is closed under complementation if and only if there is a proof system and a polynomial p such that every

classical tautology is provable in this proof system with a proof which size is bounded by p, as a function of

the length of the tautology.
A proof system that satisfies the above condition is said to be polynomially bounded.
It is conjectured that the answer is negative, that is, NP is not closed under complementation or equivalently there
is no polynomially bounded proof system. Although this (or the converse) has not yet been proved some progress
has been made. With respect to the notion of p-simulation a hiearchy of proof systems has appeared. We say that
a proof system S, p-simulates a proof system S if any proof of a tautology A in the system Sy can be
transformed within polynomial time into a proof of A in the system S9. See [4], 5] or [13] for formal
definitions. From the definition it follows that if a proof system S7 p-simulates a polynomially bounded proof
system Sy then also S5 is polynomially bounded. Also, if § is a proof system which is not polynomially
bounded then no proof system that is p-simulated by S can be polynomially bounded. Hence, two proof systems
that p-simulate each other can be regarded as equivalent with respect to the property of being polynomially
bounded. A number of results comparing different proof systems have been obtained (see [10], [13]). For example,
we know that G4 4 , (Cut-free Gentzen systems with proofs represented as directed asyclic graphs) p-simulates
Gyyep (Cut-free Gentzen systems with proofs represented as trees) but not the other way around. We also know
that Resolution and G4 4, p-simulates each other. Moreover, it is known that Gy, cannot be p-simulated by
truth tables and truth tables cannot be p-simulated by G,,.,, , hence truth tables and G, are incomparable. All

these proof systems have been proved not to be polynomially bounded. The truth table method is easily seen to
be exponential. It was proved by Haken [6] that the size of minimal Resolution refutations of the formulas
—PHP,,~PHP3,~PHPy,... grows exponentially with respect to the length of PHP;,. The formulas PHP,, are
translations into propositional logic of the assertion (the pigeonhole principle) that there is no one-one map from
the set {1,2,...,n} into the set {1,2,....n-1}. It follows by p-simulation that the formulas PHP,, have exponential

proofs also in Gy, and G4, g, - With Frege systems and Natural Deduction systems we mean systems that can

be fit into the definitions of Cook and Reckhow {41, so Frege systems correspond to what are usually called
Hilbert systems, and in Natral deduction systems (in the sense of {4]) proofs are not presented as ordinary trees
(as in Prawitz [9]) but rather as some structure where we need not derive the same formula several times in a
proof. Frege systems and Natural Deduction systems p-simulate each other and p-simulate all the above named
proof systems. We do not yet know if Frege systems and Natural Deduction systems are polynomially bounded.
Ajtai [1] has shown that for a restricted form of Frege systems, called bounded depth Frege systems, where a
restriction on the formulas occuring in proofs is placed there are no short (polynomially bounded) proofs of the
formulas PHP;,. On the other hand the PHPy; formulas have short proofs in Frege systems without this

restriction, as was shown by Buss [2]. In this paper we will show that for a certain Natural Deduction proof
system, called Reductio, all finite instances of valid first order sentences (in a language with the quantifier V only)
have polynomially bounded proofs. If D is a finite domain and A is a first order sentence then the finite instance
of A with respect to D is a propositional formula expressing A when it's variables range over D. Formal
definitions, which essentially involve replacing occurences of V by finite conjunctions, are given later. What will
actually be proved is that any finite instance B of a valid sentence A has a Reductio proof which does not involve .
more than k assumptions simultaneously where k depends only on A. Then by a result of StAlmarck [11] it will
follow that there is a polynomial p of degree k+1 such that the length of this proof is bounded by p(IBl), where |Bl
is the length of B. This will imply that for all proof systems which p-simulate Reductio, such as Frege systems,
bounded depth Frege systems and Natural Deduction systems, finite instances of valid first order sentences have
short proofs. Hence, if one wishes to prove that a Frege system, bounded depth Frege system or Natural
Deduction system is not polynomially bounded then one cannot hope to find a sequence Ay,A9,A3,... of

witnesses by letting A, (n=1,2,3,...) be finite instances of a valid first order sentence. Before stating our main
result rigorously we introduce our first order language and the Reductio proof system.

The Reductio proof system
The first order language that we will use consists of the following symbols:

One propositional constant: 1.

A set of propositional symbols.

For every k=1,23,... a set of k-place predicate symbols.

Individual constants: °1,2,3.4,...

An infinite set of parameters, denoted by t,t's,s' with or without indexes.
An infinite set of variables, denoted by x with or without indexes.
Logical connectives —,&,v,—.

One quantifier V.

Parantheses: (,).

Constants and parameters are also called terms. Terms are often denoted by tt's,s' with or without indexes.

Formulas are defined by:

1 is an atomic formula and all propositional symbols are atomic formulas.

If A is a k-place predicate symbol and ty,....t are terms then At;...ty is an atomic formula.

Atomic formulas are formulas.

If A and B are formulas then —A, (A&B), (AvB), (A—B) and (A©B) are formulas.

If A is a formula and t is a term then VxA[t/x] is a formula (where A[t/x] is the expression obtained by
substituting every occurence of tin A by x).

Parantheses will often be omitted, so that we write A&B,AvB,A—B instead of (A&B),(AvB),(A—B).
We will also use the abbreviation A &...&Ay for (A1&(...&(Ag.1 &AY)-..))-

The set of all formulas is denoted by F. If A c F then we call A a formula set.

If tj,....tp are different terms and sy.,....Sp are terms then A[ty/s1,....tm/Sm] is the expression obtained by
substituting every occurence of t; in A by s; for i=1,...,m.

If a parameter/variable/findividual constant occurs in a formula A then we say that A has a
parameter/variable/findividual constant. If no parameters/variables/individual constants occur in a formula A we say
that A has no parameters/variablesfindividual constants,

If A is a formula set then the phrases 'A has a parameter/variable/individual constant’ and 'A has no
parameters/variablesfindividual constants' are to be understood in the obvious way.

A formula that has no parameters is called a closed formula.

A formula that has no parameters and no variables is called a propositional formula. (Hence V cannot occur in a
propositional formula)

A formula that has no individual parameters and no individual constants is called a sentence.

The length |Al of a formula is the number of occurences in A of —, V and logical connectives.

Subformulas are defined by:

A is a subformula of A.

If B is a subformula of A then B is a subformula of —A.

If C is a subformula of A or B then C is a subformula of A&B,AvB and A—B.
If A is a subformula of B and t is a term then A is a subformula of VxB[t/x].

For every n>1 a function Dy: F — F is defined inductively on the definition of a formula:
Dp(A) = Aif A is atomic.

Dp(—A) =—Dp(A).

Dp(A*B) = Dy (A)*Dy(B) where * is a connective.

D (VxA[t/x]) = Dy(A) if t does not occur in A.

Dy (VxA[t/x]) = Dp(A)[/11&Dy(A)[t/2]&...&Dp(A)[t/n] if t occurs in A.

We say that D (A) is the finite instance of A with respect to the domain {1,2,....n}.
It is not difficult to prove by induction on the complexity of A that if t and t' are terms and t€ {1,...,n} then
Dp(ATtAT) = Dy(A)HL].

We now present the Reductio proof system for first order logic which we will be working with. The propositional
fragment of this system is due to StAlmarck and is studied in {11] and [12]. The rules of the Reductio proof
system are divided into simple rules where no assumption is discharged, and the Reductio rule where assumptions
are dicharged.

Simple rules

A B A - B A B
i 8 asYl as V2 U asp B

introduction rules:

A =A A
T 1 Sam

‘W1 with respect to t, where t is a parameter.

A&B &E1 A&B &E2 AvB A vE1 AvB —B v

A B B A E2

elimination rules:

A->B A A-B —B VxA .
B —El A —E2 -—-——A[</t VE where tis a term.

Let A be a finite formula set.
Al-Ax . . AL
If Aj,....Ax€ A (k=1,2) and ——— isaninstance of a simple rule then we say that 20(A] is an instance

Ay...Ax | . .
T — is an instance of VI with respect to t then we say that

A
depends on t. If AU{A]} = A then we say that A0(A)
A

simple rule, otherwise we call m a proper instance (or proper application) of a simple rule.

.. . A
(or application) of a simple rule. If AU(A]

is an improper instance (or improper application) of a

Now we simultaneously give the definition of Reductio derivations and of the Reductio rule.

(i) Every finite formula set A is a Reductio derivation with premise set A and conclusion set A.

%l

AU[A)
is a Reductio derivation with premise set

(i) If I'T is a Reductio derivation with premise set A and conclusion set A'and and

II
A'U{A)

is a simple rule

which does not depend on a parameter that occurs in A then
A and conclusion set A'U{A]}.

(iii) If IT;, 1o, IT3 are Reductio derivations with premise sets A, AjU{A}, AjU{—A} respectively and
_Ih
2 3 I, IIj 2 3
conclusion sets A1, Ap, Ag respectively and L € Aj (i=f ori=2) then YV (=YorjsZ j#) isa
J

Reductio derivation with premise set A and conclusion set A;.

_Ih
Iy II3
4
conclude Aj which is now free from the assumptions A and —A.

I1 is a Reductio derivation only if it can be obtained by succesive applications of (i),(ii) and (iii). From now on
we will often just say derivation instead of Reductio derivation.

We also say that is an instance of the Reductio rule, that is, from the given premises we may

A
If a Reductio derivation [T has premise set A and conclusion set A' then we may write 1 (instead of IT) to
Al

A
= A
emphasize this. (Observe that for example % and I] are different derivations). In this notation the above
A :

Reductio derivation (and instance of the reductio rule) becomes

A A
IT I
41 A
AjUfA} AU{-A]) Aju{A)} Aju{-A}
I I3 I I3
& A3 4 43
A3 ifle Ay or A ifLe As.
If A = Ag (or Aj=Ag) then we say that the instance of the Reductio rule above is improper, otherwise it is said to
be proper.
Let IT be a derivation.

A
If T has premise set A and conclusion set A’ and Le A’ then we say that [T is a refutation of A and we write II .
L

We say that I is a proof of A if [] is a refutation of {—A}.

We say that a formula A is in [T (or that A is a formula of I]) if A€ A for some formuia set A that occurs inI1.
If every formula in I] is a propositional formula then we say that I1 is a propositional derivation , and if in
addition IT is a proof (of some formula A) then we say that [1 is a propositional proof. If 11 is a propositional
proof of A then of course A must be propositional formula.

We define F(T) to be the set of formulas in 1.

For every formula A we define sub(A) by Be sub(A) if and only if (1) B is a subformula of A or (2) B=—C and C
is a subformula of A or (3) B = L.

If IT is a proof of A and F(IT) < sub(A) then we say that [T has the subformula property or that[1 is a
subformula proof of A. :

The depth d(IT) of a derivation [] is defined inductively by:
d(A)=0.

a3l = aq.
IT
I, 11
&« 2733—) = max(@([Ly), d(TTpy+1, d0Tg)+1).

The length I[1| of a derivation IT is defined to be the number of occurences of formula sets in I1.

It is easy to verify soundness of Reductio. Completeness is proved in the last section of this paper. To prove it
we use the relationship between Reductio and the system KEQ of Mondadori and D'Agostino (see [5], [7], [8]) and
show that for any KEQ-proof T of a formula A there is a Reductio proof [T of A such that every formula in [T is
a subformula of a formula in T. KEQ is complete, and remains complete also when we impose the restriction that
a proof of a formula A may only contain formulas that belong to sub(A). Hence, the same is true for Reductio, or
in other words, for every valid sentence A there is a Reductio proof IT of A with the subformuia property.

Short Reductio proofs of finite instances of valid sentences
Now we state the main result.

Theorem. If A is a valid sentence then there is a polynomial p and subformula proofs ITy, I, I13, ... of
D1(A), D2(A), D3(A), ... respectively so that Iyl < p(IDp(A))) for n=1.2,3,....

The theorem will follow from the these two propositions:

Proposition 1. If I] is a subformula proof of a sentence A then there are propositional subformula proofs Iy,
Iy, I3, ... of D1(A), D3(A), D3(A), ... such that d(Tly) = d(I]) for n=1.2,3,....

Proposition 2.(StAlmarck) For every n21 there is a polynomial py, of degree n such that:

If I1 is a propositional subformula proof of a formula A and d(IT) < n (n21) and only proper applications of rules
occur in [T then T < pp, .1 (1AD.

Indeed, if A is a valid sentence then by the argument in the previous section there is a subformula proof I of A
and by proposition 1 there are propositional subformula proofs 1y, Ilp, I3, ... of D1(A), D2(A), D3(A), ...
such that d([T,) = d(IT) for n=1,2,3,... . Since applications of improper rules can always be removed without
increasing the depth we may assume that only applications of proper rules occur in [Ty, I, I13,
Proposition 2 now implies that there is a polynomial p of degree d(IT}+1 such that 1yl < p(ID,(A)I) for
n=1,2,3,... .

We ’fizrst give the proof of the second proposition.

Proof of proposition 2. We will prove the following assertion which implies the proposition.

For every n21 there is a polynomial p;, of degree n such that:

If I1 is a propositional derivation with d(I) < n and only proper applications of rules occur in [T and F(I) <
sub(A) for some propositional formula A, then [Tl < pp, .1 (1AD).

The proof is by induction on n. First let n=0.

Let I be a propositional derivation in which only proper applications of rules occur and assume d(ID) = 0, F(IT)
< sub(A). Then IT must look like

Aq

Ay

Ag.1

Ag

It is easy to see that sub(A) contains at most 3IAH1formulas (remember that A is a propositional formula). Since -
A4 contains one more formula than A; and Ay contains at most 3IAk-1 formulas we must have k < 31Ak-1

which implies I[Tl < 31Ak1. Set py(x)=3x+1.

Now suppose that the assertion is true for m < n-1 and let I] be a propositional derivation in which only proper
applications of rules occur and assume d(IT) = n, F(IT) < sub(A). Then IT looks like

'y m
Iz

I’y ",
Iy

e "k
Hik+1

where d(T1;) < n-1, d(IT') < n-1, d(IT";) < n-1, i=l,...k and d(IIx,1) Sn-1.

Since the derivations IT;, IT;, ITj .i=1,...k and [, satisfy the conditions of the assertion the induction
hypothesis gives ITI;t < pp_1(AD, IITj < py.1(AD, HT"jl < py-1 (A i=1,...k and M4+ 1! < pp-1(Al) where
Pp-1 is a polynomial of degree n-1. Since the instances of the reductio rule are proper we must also have k <
3iAk1. Hence we get I[T1 < (31AH-1)-3-py.1 (1AD + pp.1(AD. Set pp(x) = (9%+3)-pp.1(x) + Pp-1(x). This
completes the induction step.

We now aim at proving proposition 1. In order to avoid dealing with some uninteresting details an extension of
the reductio proof system will be introduced in the following maner:

Extended rules are defined by:
(1) All simple rules are extended rules.

2 For k> Ay ... Ag A1&..&Ay
(2) For k=3 A& &Ax and A i=1,....k are extended rules. 7
If A < A' are finite formula sets and for every Ac A’ either A€ A or we can find formulas Aj....,Ax€ A such

Ar...A
t -‘I—'X‘—L is an instance of an extended rule then we say that ﬁ—. is an instance of an extended rule.

Al .. A

If ——T—i(- is V1 with respect to t for some Ae A’ then we say that -ﬁ-; depends on t.

tha

Extended derivations are defined exactly as reductio derivations but with 'simple rule' replaced by ‘extended rule'.
All notions (except length of proof) that where introduced for derivations carry over to extended derivations in the -
obvious way. As with derivations we may denote an extended derivation I] with premise set A and conclusion set

A {(—A)
A'by II.Inparticular,if II is an extended derivation then we say that [T is an extended proof of A. If Il is
A L

an extended derivation in which an instance of an extended rule depending on a parameter t occurs then we say that
Ildependsont
It is clear that every derivation is also an extended derivation.

Every instance of an extended rule ﬁ; can be replaced by a finite sequence

A

A2

Bk-1 a . . .

——— where A=A, A'=A and -—— is an instance of a simple rule for i=1,...k.
Ak Bis1

A ' A

This means that every extended derivation IT can be transformed into a derivation I’ with depth preserved
A’ Al

(ddT) = d(IT))-and where every formula in IT is a subformuia of a formula in 1.

We now need some definitions and lemmas concemning properties of formulas and extended rules.

If A is a formula then par(A) is the set of parameters that occur in A and con(A) is the set of individnal constants
that occur in A. If A is a formula set then we define par(A) = {Jpar(A) and con(d)= |J con(A). If[Tisa

‘ AeA AeA
derivation then con(ID = |Jcon(A) where Ae]I means that A is a formula of Il

Aell

A function from a finite set of parameters into the set of (individual) constants {1,2,3, ... } is called a substitution
instance. If & is a substitution instance with domain {t;.....5} then A{c] abbreviates A[t/o(ty),....li/O(t)]-

Let ¢ be a substitution instance,
If A is a formula then we define D:(A) = Dy(A)(c], (by an earlier comment we have Dy(A){c]= Dy(AleD).

If A is a finite formula set then we define:
Alo]l= {Alo]: AeA).
Dy(A) = { Dp(A): AcA).

D(8)= (D (A): AcA).
Dy(8)=D Y8 U ..U D () where },...0 are all substitaton instances from par(A) into {1,...n).

The first lemma states that under certain conditions D; preserves extended rules.
Lemma 1. For any n=1,2.3,... the following holds:

E 3
D &
n
If -Aé: is an instance of an extended rule and con(A) ¢ {1,...n} then — is an instance of an extended rule.
D,(&)
Proof. Fix some n21.
- * x Ay Ag .
We want to show that for every A € Dn(A') there are formulas Ay,...,Ax€ Dn(A) so that i an

instance of an extended rule.
Let A€ D (A).

Then A= D:(B) for some B € A' and some substitution instance o:par(A”) — {1,....,n}. Since A is an instance

A'
By...Bg .
of an extended rule there are formulas By.....By € A such that ——F7—= isan instance of an extended rule.
‘We now get three cases.
By..B

1) Suppose ——-B'—E is not VIor VE.

The fact that Dp(—C) = —Dp(C) and Dy(C+C) = Dn(C)*. n(C) if C and C' are formulas and * isa connective
D ..D D {c]1..D (o]
By nBi) is an instsance of an extended rule. But then n(B1) 0B

Dy(B) Dy(B)lc]
is an instance of an extended rule and since par(A) c par(A?) (because A ¢ A) we also have

Dy(B DI6},..Dy@Byfc] € D (A). Since A= D (B) = Dy(B)(o] we are finished with case 1.

then implies that

By..Bg .
2) Suppose —p I V1.

Then k=1 and B = VxB [t/x] for some parameter t.

10

If t does not occur in B then A = D(B) = Dy(B)io] = Dy(VxB1 [Ux]))(c] = Dy(By)lc] = DBy € Dy (4).

If t occurs in By then A = D (B) = Dy(B){c] = Dy(VxB; [Yx)ic] = @p(BW1] & ... & Dy(By)ltn])(o] =

Dp(BpvVi]io] & ... & Dy@Bpivn]lc] and DyB)¥1)[c].....Dy(B)(tn]c] € D;(A)-

Dy(Bp)W1)(o] ... DyBy)it/nllc]
Dy(B)[¥1]f0] & ... & Dy(Bp){t/nlo]

Since is an instance of an extended rule we are finished with case 2.

21--Bx = Bk i vE.

Then k=1 and By = VxC[t/x] for some formula C and parameter t and B = C[t/t'] where t' is a parameter or
t'e {1.....n} (because con(A’) < {1....,n} by assumption).

If t does ot occur in C then B = C 50 A = DS (B) = Dy(B){o] = Dy(O)lis] = DyBy)lo] = Dy(B1) € Dy (A).

3) Suppose

Now suppose t occurs in C.
If ¢’ is a parameter then o(t)=i for some i€ {1,...,n} and DL (CltA o] = Dy(O)it][c] = Dy (O)Hillo]. If
t'e (1.....n} then Dy(C[tA]) = Dy (C)[t1] = Dy(O){¥/i] for some i€ {1.....n}. In both cases

D (O)¥/1]{6] & ... & Dy(C)/nl[o]
n(C) Dn(c[w])[c]n() is an instance of an extended rule. Since A = Dg(B) =Dy B)io] =

Dy(Clt'tDicl and Dyp(C)1)[6] & ... & Dy(C)lt/nllo] = Op(O)/1] & ... & Dy(O){t/n]){c] = Dp(VxClyx])(c]
= Dp(By)lo] = DI(B1) € DY (A) we are finished with case 3.

The following lemma tells that under certain conditions the property of being a subformula of another formula is
preserved by Dg.

Lemma 2. For every n=123,... the following holds:
Let 6: P — {1.....n} be a substitution instance (P is a finite set of parameters).

If A is a subformula of B, par(A) < P, con(A) < {1,....n} and par(B) = & then D: (A) is a subformula of Dy(B).

Proof. Fix some n21. For the given n we will prove the lemma by induction on the complexity of B.
If B is atomic then A=B and so A has no parameters and Dg(A) = Dp(A) = Dy(B).

If B is not atomic and A=B then A has no parameters so Dg(A) =Dp(A) = Dy(B).

Now suppose that B is not atomic and A#B.
If B = B1*B, where * is a connective then A is a subformula of By or By. Since par(B1) = @ and par(Bo) =< the

induction hypothesis gives that D:(A) is a subformula of Dy(B1) or D,(B7) which means that DS(A) isa

subformula of Dy,(B1)*D(By) = Dy(B1*B2) = Dyy(B). If B = —C we can reason similarly.

Suppose B = VxC[t/x] where t is a term. Since A is a subformula of VxC[t/x] there is a term t' such that A is a
subformula of Cy = C[/t'] and since t is the only parameter of C (because par(VxC[t/x]) = &) we also have B =

VxCjlt/x]. Since con(A) < (1.....n}, either t' is a parameter or te {1,....n}.
Ift'e {1,..,n} then Cq has no parameters (because otherwise B would have parameters) and by the induction

hypothesis D:(A) is a subformula of Dy, (Cy) and since Dy(C1) = Dp(Cp(t'/t] is a subformula of D(Cy)(t/1] &
... & Dp(CIt'/n] = Dp(VxCy[t/x]) = Dy(B) we have that D:(A) is a subformula of Dy(B).

If t is a parameter and t does not occur in A then A is a subformula of Cy[t/1] (for instance) and par(C1[V1]) =
@ so by the induction hypothesis Dg(A) is a subformula of Dp(C1[t/1]) = Dy(Cy){t/1] which is a subformula of
Dp(CIt/1]1 & ... & Dy(CpIt/n] = Dp(VxCy[t/x]) = Dyp(B).

11

Now suppose that t' is a parameter that occurs in A. Then t'eP by assumption so A[t/o(t)] is a subformula of
C1[t/o(t)]. We also have par(A[t/ot)]) < P, con(Alt/o(t)]) < {1.....n} and par(Cy[t/a(t)]) = &. Hence by the

induction hypothesis D:(A[t'/c(t')]) is a subformula of Dy(C; [t/c(t)]). We also have D::(A) =Dp(A)cl=

Dp(A)t/o(t)]lo] = Dy(Alt/ot))Dic] = D:(A[t'ld(t')]) and D(Cy [t/o(t))) = Dp(Cp[t/o(t)]. Since
Dpy(Cy)It/o(t)] is a subformula of Dp(Cp){t/1} & ... & Dy(Cp){t/n] = Dy(VxCyt/x]) = Dy(B) we conclude that

DO(A) is a subformula of Dy(B).

If I] is an extended derivation and ¢ a substitution instance then [[o] is defined to be the result of replacing
every formula set A of I1 by Alc].

Lemma 3. For every n=1,2,3,... the following holds:
Let ﬁ be an extended derivation which does not depend on any of the parameters ty ,...,ty and assume con(I]) <
{1,.31} and F(T) < sub(C) for some sentence C. Then for every substitution instance 6:{tj,....tg} = {1....,n},
§['[[z]]] is an extended derivation and con(I1{6]) < {1,....n}, FI1lo1) < sub(C) and d(I1(c]) = (D).

.

Proof. By induction on the complexity of derivations.

A
Let 1 bea derivation and A a formula set.
A'
AUy
If IT is the result of replacing every formula set A of I by AuAq then clearly II' isa derivation and we say
AUl
A
that it is an imitation of IT .
Al

Now we are ready for the main lemma from which proposition 2 will easily follow.

Lemma 4. For every n=1,2,3.... the following holds:
A

If I is an extended derivation such that F(IT) < sub(C) for some sentence C and con(ID) ¢ {1.....n} then there
A’

D_(4)
n
exists a propositional extended derivation JI' such that F(IT) < sub(Dp(C)), con(Il’) < {1.....n} and d(IT") = ‘
D49
d{an.

Proof. We first fix some n=1 and then prove the result for this n by induction on the complexity of extended
derivations. Let [be a derivation such that F(TI) < sub(C) for a sentence C and con(I]) < {1.....n}.
Basis: [1 = A.

Let[T'= D;(A). Then IT' is a propositional extended derivation and d(IT') = d(I]). If A is a formula of IT' then A
= D:(B) for some formula Be A and substitution instance 6: par(A) — {1,...,n}. Since Be sub(C) lemma 2 gives

that A€ sub(Dy(C)). By the definition of D we also have con(IT) < {1....n}.

12

Induction step:
A D, (@)
I :
1) Suppose 1= All . By the induction hypothesis there exists a propositional extended derivation IT'y such

—— *
A D (Ap

A
that F(IT'1) © sub(Dy(C), con(T) € (1,...n) and d(IT'p) = d(T;). Since — must be an instance of an

*
D (a1
extended rule and con(A) < (1....,n} lemma 1 gives that — is an instance of an extended rule.
D (&)
n
*
D, @)
T .
Hence [T = o @ap is a propositional extended derivation and clearly d(IT') = d(IT). If A € D (A) then A =
n
D*
(A)

D:(B) for some formula Be A’ and substitution instance 6: par(A") — {1,...,n}. But Be sub(C) so lemma 2 gives

that Ae sub(Dp(C)). Hence D;(A') < sub(Dy(C)) and since we already have F(IT'1) < sub(Dp(C)) we get F(II')

sub(Dp(C)). By the definition of D; we also have con(IT") c {1.....n}.

A
1351
41
AufA}l Aju{=-A}
2 I3
) a3
2) Suppose [I= ™ where 1 € Aj.

AIU{A} Alu{-ﬂA}
Let ©1,....0p be all substitution instances from par(A) into {1,....n}. Since Il and I13 do not

Ay A3
Aylo;l v {Als;l) Aqlojl v {—Alojl}
depend on any parameter in par(A) lemma 3 gives that IIhloj] and II3lo3] are
Arlaj] Agloj]

extended derivations for i=1,...,m and d(l'[z[ci]) =d{I1y, d(13 {ci]) =d([13) and F(I'Iz[oi]) < sub(C), F(I13 [O'i])
c sub(C) and con(Hz[ci]) < {1,..n}, con(l'I3[o'i]) c {1,....n}. By the induction hypothesis there are
propositional extended derivations
D;(A) D;(Al[ci]) v {Dy(Aloi))} D;(A1[0'i]) v {=Dy(AloiD)
II'y and o and I3 ;
D (A1) D (&lo;)) D’ (Alo;)

such that d(IT'y) = d([Ty), d(@Tp ;) = d(T1p). d(TT3 ;) = d([13) and FIT'}) < sub(Dy(C)), K3 5) < sub(Dy(C)).
F(H3,i) < sub(Dy(C)) and con(I1 j) < {1,....n}, con(II3 1) < (1,...n} fori=1,...m. Since L € D;(Az[oi]) we
can form the extended derivations

D, (A1loy)
D> (A1(03) U {Dp(Aloi)) D ' (440i)) U (~Dy(AloiD)
Iz i I3
D, (Aglo;) D, (As[o;])
2= " for i=1,...,m.
D, (Asfoy)
D, @)
ITy
*
D AD
21
* *
Let II'= D,(A1)uD,(Asloy])
29
D (A1) U D (A3lo1)) U D (Asloa))
'3
Zm
m

D:;(Al) U U D;(A3 [o;D where X; are the appropriate imitations of X;.
i=1

m
- - - * * . 13 *
IT is an extended derivation becaunse D (A= U D (Ajloj]) and the premise set of 3; is D_(A1[o3]).
i=1
m

We also have U D:‘(A3[ci]) = D;(A3) , because G1,...,0p, are all substitution instances from par(A) into

i=1

m

* * * * * ..

(1....n}, and D_(A) < D (A3), because Ay < A3. Hence D_(Ap) U U D_(Asfoi) =D_(A3) soIT'isa

i=1

13

14
propositional extended derivation with premise set D;(A) and conclusion set D;(A3). By the construction of [T

m m
we see that d([T') = d(TD). Since FqT) = FATp U | JF{lz,) v | JFlsp and

i=1 i=1

m m
con(I1) = con(IT')) L U con(llp 7)) U U con(TI3;) (by the construction of IT) we also have F(IT')

i=1 1=1

< sub(Dp(O)) and con(IT) ¢ (1,....n}.

Now proposition 1 is an easy consequence of lemma 4.

Proposition 1. If [] is a subformula proof of a sentence A then there are propositional subformula proofs Iy,
I3, I13,... of D1(A), D2(A), D3(A),... such that d(I1p) = d(IT) for n=123,.... '

Proof. Since [is a proof of a sentence A we can, without loss of generality, assume that no individual constants
occur in any formula of [T, with other words we may assume con(JT) = @. Since I] is a subformula proof of A
we also have F(IT) < sub(A). Let A be the conclusion set of 1, (the premise set of [] is {—A}). Then by
lemma 4 (because a derivation is also an extended derivation) there are extended derivations

DY((-A]) D (A} D3(-AD
my , Iy , II's ,.. suchthatd(Il'y) =d(D) and F(T'y) < sub(Dy(A)) for n=1,23,... .
D& D@ Dy®

Since no parameters occur in A we have D;({—‘A}) = [Dy(—A) } = { =Dp(A) } and since Le A we also have le

D;(A). Hence IT'1, IT', 1'['3,___ are extended proofs of D(A), D(A), D3(A),... with the subformula property

and d(IT',) = d(T]) for all n. As was pointed out earlier these can be transformed into proofs I1j, [Ty, II3,... of
D1(A), D2(A), D3(A),... with the subformula property and with d(ITy) = d(I]) for n=1,2.3,... .

Completeness of Reductio

To prove completeness of Reductio we will use its relationship with the proof system KEQ. We will give the
system KEQ in a slightly different form than it appears in [5], {7], [8]. In [5], [7], (8] KEQ-refutations are
presented as trees of signed formulas, here we will present them as trees of formula sets. The rules of KEQ
include all the elimination rules of Reductio and, in addition, the following rules:

- - -

=A&VB) gy XA2B) g 2A0B) e, A g
—B A ~ B A

—VxA
—AxA]

~--VE introducing t, where t is a parameter.

KEQ as presented in [5], [7], [8] operates on a language which contains the symbol 3 and has an elimination rule
for 3 (JE) and one elimination rule for —3 (—3JE). But the fact that KEQ is complete also when we impose the
restriction that only formulas in sub(A) may occur in a KEQ-proof of A implies that for a language without the
symbol 3 (as our language) the fragment of KEQ without the rules 3E and —3E is complete (also with the
restriction that a proof of A may contain only formulas in sub(A)).

15

Ay .. A
If A s a finite formula set and there are Af,....Ay € A such thai——= is an instance of a rule of KEQ then

AUA{ 47 is aninstance (or an application) of a rule. KEQ-reftarions are defined by:
(i) If A is a finite formula set such that Be A and —~Be A for some formula B then A is a KEQ-refutation of A.
(i) If T is a refutation of AU{A} and

we say that

A
AU(A) is an instance of a rule, but not —VE introducing t if t€ A, then
% is a refutation of A.

(iii) If Ty is a refutation of AU{A) and T is a refutation of Au{—A) then T—I-ATE is a refutation of A.

If T is a KEQ-refutation of A then we may denote T by % . A KEQ-proof of a formula A is a KEQ-refutation of

{—A}. As it was already pointed out, our variant of KEQ is complete for our language and if A is a valid sentence
then there is a KEQ-refutation of {—A} in which only formulas of sub(A) occur. Hence, if we want to prove that
for every valid sentence A there is a subformula Reductio-proof of A, it is sufficient to prove the following
lemma.

A

Lemma. If T is a KEQ-refutation of A then there is a Reductio-refutation IT of A such that every formula in I
L

that is different from L is a subformula of a formula in T.

Proof. By induction on the complexity of T.
(i) If T is A then some formula A both A and —A belong to A. Hence
satisfies the claim of the lemma.

A
Ao(L] is a reductio-refutation of A which

A AU{A}
(ii) Suppose that T = A%{A} . By induction there is a Reductio-refutation I1; of AU{A} such that every
1 L
AU{A}
formulain Il1 thatis different from L is a subformula of a formula in T;. We now get different cases
1 .

. A A . . e .
depending on AU(A] If AU(A) is an instance of one of the elimination rules of reductio

(&E1,&E2,vE1,vE2,»E1,—E2,VE) then II= is a Reductio-refutation of A such that every formula in

A
AU{A)
1§5]

L
I1I that is different from L is a subformula of a formula in T. .
Now suppose KQATA—} is an instance of one of the rules ~&E1,~&E2,~VvE1l,~VE2,~—E1l,——E2,—E. We will

only do the case ~&E1, the others are handled similarly. If AU‘? 5

formulas B and C such that «(B&C),Be A and A=—C so if we put

is an instance of —&E1 then there are

A

AU{C,B&C]}
AU{C,B&C,1}

AU{—lC}
I3
1

then I is a Reductio-refutation of A such that every formula in [T that is different from L is a subformula of a
formula in T.
A

The last case to consider is if AU(A) is an instance of —VE. Then there is a formula —VxBe A such that A =
—B[x/t] where t is a parameter and te par(A). If we put

A

1=
AU{B[x/t]} AU{-B[x/t]}
II;
L

Au {B[x/t]}
AU{B[x/t],VxB}

AU{B[x/t],VxB,l}

then] is a Reductio-refutation of A such that every formula in J] that is different from L is a subformula of a
formula in T.

AU{A} Au{—A}

A
Aol ACSAT By induction there are Reductio-refutations 1:11-1 and I:ILz

T Ty
of AU{A} and AU{—A} respectively, such that every formula in [1; (Ilp) different from L is a subformula of a
formula in Ty (T9). If we put

(iii) Suppose that T =

A
I =
AU{A} AU{—A}
I Iz
1 1
L

then I is a Reductio-refutation of A such that every formula in [T that is different from 1 is a subformula of a
formula in T.

16

References

[1] M. Ajtai, The complexity of the pigeonhole principle, Proceedings of the 29th Annual Symposium on the
Foundations of Computer Science, 1988.

[2] S.R.Buss, Polynomial size proofs of the propositional pigeonhole principle, The Journal of Symbolic
Logic, vol. 52, 916-927, 1987.

[3] S.A. Cook, The complexity of theorem proving procedures, Proceedings of the Third Annual ACM
Symposium on the Theory of Computing, 151-158, 1971.

[4] S.A.Cook and R.A. Reckhow, The relative efficiency of propositional proof systems, The Journal of
Symbolic Logic, vol. 44, 36-50, 1979.

[5] M. D"Agostino, Investigations into the complexity of some propositional calculi, Ph.d. thesis, Oxford
University Computing Laboratory, Oxford University, 1990.

[6] A. Haken, The intractability of resolution, Theoretical Computer Science, vol. 39, 297-308, 1985.

[7]1 M. Mondador, Classical analytical deduction, Annali dell Universita di Ferrara, Discussion paper
n.1,Universita di Ferrara, 1988.

[8] M. Mondadori, Classical analytical deduction, part I, Annali dell Universita di Ferrara, Discussion paper
n.5,Universita di Ferrara, 1988.

[9] D. Prawitz, Natural deduction. A proof theoretical study, Almqvist & Wiksell, Uppsala, 1965.

[10] R.A. Reckhow, On the lengths of proofs in the propositional calculus, Ph.D. thesis, Department of

Computer Science, University of Toronto, 1976.
{11] G. StAlmarck, A proof theoretic concept of tautological hardness, unpublished manuscript, 1994.
[12] G. Stalmarck and M. Siflund, Modelling and verifying systems and software in propositional logic, Safety
of Computer Control Systems, 31-36, 1990.

[13] A. Urquhart, Complexity of proofs in classical propositional logic, Logic from computer science,

Proceedings Workshop, Berkeley/CA 1989, Publ., Math. Sci. Res. Inst. 21, 597-608, 1992.

17

