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The limit cycle bifurcations of a Z2 equivariant planar Hamiltonian vector field of degree 7
under Z2 equivariant degree 7 perturbation is studied. We prove that the given system can have
at least 53 limit cycles. This is an improved lower bound for the weak formulation of Hilbert’s
16th problem for degree 7, i.e. on the possible number of limit cycles that can bifurcate from a
degree 7 planar Hamiltonian system under degree 7 perturbation.
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1. Introduction

Determining the number and location of (isolated)
limit cycles for planar polynomial ordinary differ-
ential equations was posed as a grand challenge
in Hilbert’s seminal address to the International
Congress of Mathematicians in 1900. Of the 23
problems presented by Hilbert, this (the 16th)
turned out to be one of the most persistent:
despite more than a century of intense research,
not even the quadratic case has been resolved. For
an overview of the progress that has been made to
solve this problem we refer to [Ilyashenko, 2002].
Partial results for the quadratic case, and a gene-
ral introduction to the bifurcation theory of planar
polynomial vector fields can be found in [Roussarie,
1998]. What is known, is that any given poly-
nomial vector field can have only a finite num-
ber of limit cycles; this is proved in [Écalle, 1992;
Ilyashenko, 1991].

A restricted version of Hilbert’s 16th prob-
lem introduced by Arnol’d, see e.g. [Arnold, 1990],

known as the weak or tangential Hilbert’s 16th
problem, asks for the number of limit cycles that
can bifurcate from a Hamiltonian system, see e.g.
[Christopher & Li, 2007]. The weak Hilbert’s 16th
problem has been solved for the quadratic case, see
[Chen et al., 2006].

In order to find Hamiltonian systems such that
their perturbations have a maximum number of
limit cycles, it is common to study symmetric
Hamiltonians with a maximal number of centres,
see e.g. [Li et al., 2002a, 2002b; Zhou et al., 2007a;
Zhou et al., 2007b]. The specific perturbations are
often constructed using the so-called detection func-
tion method, see [Li & Huang, 1987]. In [Li &
Zhang, 2004] a degree 7 perturbation of a Z8

equivariant system, with 49 limit cycles is con-
structed. As far as we know, this is the largest
previously known lower bound on the number of
limit cycles that can bifurcate through perturba-
tion of a Hamiltonian vector field in the degree 7
case.
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The aim of the present paper is to study a Z2

equivariant system with maximal number of cen-
tres, and prove that at least 53 limit cycles can
bifurcate from it. We locate a suitable perturba-
tion by conducting a similar study as in [Johnson &
Tucker, 2009, 2010]; this is described in detail in
Sec. 3.2. We stress that our approach is completely
rigorous, seeing that all numerics is done in interval
arithmetic with directed rounding.

1.1. Abelian integrals

A classical method to prove the existence of limit
cycles bifurcating from a continuous family of level
curves of a Hamiltonian, γh ⊂ H−1(h), depend-
ing continuously on h, is to study Abelian inte-
grals, or, more generally, the Melnikov function,
see e.g. [Christopher & Li, 2007; Guckenheimer &
Holmes, 1983]. The closed level-curves of a poly-
nomial Hamiltonian are called ovals. We denote the
interior of an oval Dh, i.e. ∂Dh = γh. Given a Hamil-
tonian system and a perturbation,{

ẋ = −Hy(x, y) + εf(x, y)
ẏ = Hx(x, y) + εg(x, y),

(1)

the Abelian integral, in general multivalued, is
defined as

I(h) =
∫

γh

f(x, y) dy − g(x, y) dx. (2)

We denote the integrand ω, and call it the 1-form
associated with the perturbation. In this paper, all
perturbations are polynomial.
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Fig. 1. Phase portrait of the unperturbed Hamiltonian system.

The most important property of Abelian inte-
grals is described by the Poincaré–Pontryagin
theorem.

Theorem 1.1 [Poincaré–Pontryagin]. Let P be the
return map defined on some section transversal to
the ovals of H, parametrised by the values h of H,
where h is taken from some bounded interval (a, b).
Let d(h) = P (h) − h be the displacement function.
Then, d(h) = ε(I(h) + εφ(h, ε)), as ε → 0, where
φ(h, ε) is analytic and uniformly bounded on a com-
pact neighborhood of ε = 0, h ∈ (a, b).

Proof. See e.g. [Christopher & Li, 2007]. �

As a consequence of the above theorem, one can
prove that a simple zero of I(h) corresponds to a
unique limit cycle bifurcating from the Hamiltonian
system as ε → 0. In fact, to prove the existence of
a limit cycle, it suffices to have a zero of odd order.

1.2. The Hamiltonian

We study Hamiltonian vector fields with a maxi-
mum number of centres. To generate such symmet-
ric systems for vector fields of odd degree, 2k + 1,
one can study:{

ẋ = −y(y2 − 1)(y2 − 2) · · · (y2 − k)

ẏ = x(x2 − 1)(x2 − 2) · · · (x2 − k)
(3)

We study Z2 symmetric perturbations, and sev-
eral of the monomial terms of the Abelian integral
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Fig. 2. The periodic annuli, (a) Γ1–Γ8 and (b) Γ9–Γ14.

for such perturbations of (3) are equal. To con-
struct perturbations with a maximum number of
limit cycles it is desirable to break this symmetry.
We therefore study the following system:{

ẋ = −y(y2 − 1)(y2 − 2)(y2 − 3)
ẏ = x(x2 − 1.1)(x2 − 2.3)(x2 − 3.6)

, (4)

whose Hamiltonian function is given by:

H(x, y) =
x8

8
− 7x6

6
+

1477x4

400
− 2277x2

500

+
y8

8
− y6 +

11y4

4
− 3y2. (5)

The system has 49 equilibrium points and 42
periodic annuli, appearing in 14 classes, see Fig. 1.
We label the classes of periodic annuli Γ1–Γ14,
where the annuli Γ1–Γ8, are those with multiplicity
4, labeled in decreasing order under inclusion, see
Fig. 2 and Table 1. The annuli Γ9–Γ14 are labeled
in increasing order under inclusion, see Fig. 2 and
Table 1.

We are interested in limit cycles bifurcating
from the periodic solutions of (4), corresponding to
integral curves of (5).

We study the following Z2 equivariant pertur-
bation of the Hamiltonian system (4),

p(x, y) :=
α00

2
+

α20

4
x2 +

α02

4
y2 +

α40

6
x4

+
α22

6
x2y2 +

α04

6
y4 +

α60

8
x6

+
α42

8
x4y2 +

α24

8
x2y4 +

α06

8
y6

f(x, y) := xp(x, y)
g(x, y) := yp(x, y)

(6)

Thus, the Abelian integral (2) reads,

I(h) =
∫

γh

f dy − g dx

=
∫

γh

xp dy − yp dx

=
∫

Dh

(
2p + x

∂p

∂x
+ y

∂p

∂y

)
dx ∧ dy

=
∫

Dh

(α00 + α20x
2 + α02y

2 + α40x
4

+ α22x
2y2 + α04y

4 + α60x
6 + α42x

4y2

+ α24x
2y4 + α06y

6)dx ∧ dy.

Table 1. The domains of the periodic annuli. The labels
contract and expand refer to the behavior of the ovals in
an annulus as h increases.

Periodic Annulus hmin hmax Expand/Contract

1 −2.7626 −1.9764 expand

2 −2.9112 −2.7626 expand

3 −2.9764 −2.7626 expand

4 −3.0362 −2.9112 expand

5 −3.1014 −2.9764 expand

6 −3.0362 −2.9112 expand

7 −3.1014 −2.9764 expand

8 −2.7626 −2.6377 contract

9 −1.125 0 contract

10 −1.9112 1.6377 contract

11 −1.125 −1 contract

12 −1.9676 −1.9113 expand

13 −1.9112 −1.125 expand

14 −1.125 ∞ expand
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Fig. 3. The ovals, from which the limit cycles bifurcate.

2. Results

Theorem 2.1. Consider the Hamiltonian vector
field (4), perturbed as in (6). Then one can choose
αij , such that, as ε → 0, at least 53 limit cycles
appear in the configuration,

(Γ3
2)

4(Γ2
3)

4(Γ4)4(Γ2
5)

4(Γ3
6)

4(Γ7)4(Γ8)4(Γ14),

see Fig. 3.

We use Z(n + 1,m) to denote the maximum
number of limit cycles that can bifurcate from a
Hamiltonian vector field of degree n, under a pertur-
bation of order m. Obviously, Z(n) := Z(n+1, n) ≤
H(n), where H(n) denotes the maximum num-
ber of limit cycles that a nth degree planar poly-
nomial system can have. Some known results are
Z(2) = 2 [Chen et al., 2006], Z(3) ≥ 13 [Li et al.,
2009], Z(4) ≥ 15 [Zhang et al., 2004], Z(5) ≥ 27
[Johnson & Tucker, 2010], Z(6) ≥ 35 [Wang & Yu,
2005], Z(7) ≥ 49 [Li & Zhang, 2004], Z(9) ≥ 80
[Wang et al., 2006], and Z(11) ≥ 121 [Wang & Yu,
2006].

Corollary 2.1. Z(7) ≥ 53.

3. Method

3.1. Computer-aided proofs

Seeing that our proof relies on a great deal of
numerical computations, we have been very careful
in validating the computational results. A numeri-
cal algorithm is said to be auto-validating if it

produces a mathematically correct result, incor-
porating not only the discretization errors of the
numerical method, but also the computer’s inter-
nal representation of the floating point numbers
and its rounding procedures. The basic object in
any such algorithm is an interval, whose endpoints
are computer-representable floating points. All
mathematical operations are performed in inter-
val arithmetic with directed rounding to ensure
the correctness of the result. For a thorough intro-
duction to this topic we refer to [Moore, 1966;
Neumaier, 1990].

3.2. Computer-aided computation
of Abelian integrals

We use the method developed in [Johnson & Tucker,
2008] to enclose the values of all Abelian integrals
I(h) appearing in our proof. This enables us to rig-
orously sample their values, i.e. for some discrete
values of h, we can determine intervals such that
I(h) ∈ [I−(h), I+(h)]. If we can find two ovals γh1 ,
and γh2, such that all elements of [I−(h1), I+(h1)]
have the opposite sign as those of [I−(h2), I+(h2)]
then, by the intermediate value theorem, there
exists h∗ ∈ (h1, h2), such that I(h∗) = 0, and a
neighborhood of γh∗ that is either attracting or
repelling for the perturbed vector field. Since Pε,
the return map of the perturbed vector field, is ana-
lytic and non-constant, it has isolated fixed points.
Thus, a zero of I implies the existence of (at least)
one limit cycle bifurcating from γh∗ .
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We recall that, in general, the Abelian integral
is multivalued, and the abovementioned computa-
tions are done for each continuous family of ovals
separately. In the equivariant case at hand, I(h) is
identically the same on each of the different annuli
within one annulus-class. Thus, one can trivially
split the set of ovals corresponding to H = h into
natural subsets. This is crucial for the success of our
approach, since for each limit cycle we find bifur-
cating from the annuli Γ1–Γ8, there will be three
additional cycles that can be found by reflecting in
the x and y axes.

In order to construct a perturbation such that
the associated Abelian integral has a given number
of zeros, the perturbation has to be chosen in a care-
ful manner. We use the same heuristic procedure as
in [Johnson & Tucker, 2009, 2010] to generate the
coefficients of a suitable candidate form ω. The first
part of our approach is to integrate monomial forms
at some points, h1, . . . , hN , and then to specify the
coefficients of

dω = (α00 + α20x
2 + α02y

2 + α40x
4 + α22x

2y2

+ α04y
4 + α60x

6 + α42x
4y2 + α24x

2y4

+ α06y
6) dx ∧ dy, (7)

such that the Abelian integrals vanish:

I(h�) =
∫

γh�

ω = 0, � = 1, . . . , N. (8)

Therefore, let

Iij(h) =
∫

Dh

xiyj dx ∧ dy, (9)

where ∂Dh = γh. Then we have the following linear
decomposition

I(h) = α00I00(h) + α20I20(h) + α02I02(h)

+ α40I40(h) + α22I22(h) + α04I04(h)

+ α60I60(h) + α42I42(h)

+ α24I24(h) + α06I06(h). (10)

Note, this method can automatically give any
configuration of limit cycles generated by nine zeros,
i.e. up to 36 limit cycles. To find a better set of can-
didate coefficients we note that the system has the
property that the Abelian integral (10) is multival-
ued for some pieces of the domain, see Table 1. This
property indicates that it should be possible, as in
[Johnson & Tucker, 2009], to force those I’s that
have joint domains to oscillate together.

Table 2. The generated coefficients of
the perturbation (6).

α00 0.30961876
α20 1.0000000
α02 −1.7072698
α40 −0.59879205
α22 0.25041556
α04 0.81262742
α60 0.10095772
α42 −0.057802570
α24 0.0051675287
α06 −0.13625345

Given some candidate coefficients of the form
ω, we calculate the Iij(h) at intermediate ovals,
h̃1 < h1 < h̃2 < · · · < hN < h̃N+1. If the linear
combination (10) of the Iij(h̃) has validated sign
changes between the sample points we are done: it
has been proved that the corresponding perturba-
tion yields bifurcations with at least the given num-
ber of limit cycles as ε → 0.

3.3. Computational results

Using the method described above to generate can-
didate coefficients for ω, we get the result listed in
Table 2.

Table 3. The computed enclosures of the Abelian integrals.

Periodic Annulus h I(h)

2 −2.9110 [5.7976, 7.4677] × 10−6

2 −2.8690 [−8.5663, −6.6829] × 10−6

2 −2.7956 [0.8383, 1.0598] × 10−5

2 −2.7630 [−6.1764, −5.9324] × 10−5

3 −2.9764 [1.2772, 1.5956] × 10−5

3 −2.9680 [−1.0051, −6.7627] × 10−5

3 −2.8000 [2.4572, 2.4619] × 10−3

4 −3.0130 [−3.2949, −3.1166] × 10−6

4 −2.9290 [1.3055, 1.3467] × 10−5

5 −3.0840 [−2.2207, −1.6995] × 10−6

5 −3.0040 [1.5658, 1.6910] × 10−5

5 −2.7964 [−2.4966, −2.4959] × 10−3

6 −3.0110 [1.2661, 1.3593] × 10−6

6 −2.9490 [−7.0838, −5.3883] × 10−7

6 −2.9163 [4.7068, 6.6876] × 10−7

6 −2.9113 [−2.8479, −0.8376] × 10−7

7 −3.0630 [−2.1895, −2.0970] × 10−5

7 −2.9820 [3.9247, 4.0927] × 10−5

8 −2.6990 [1.6729, 1.6816] × 10−4

8 −2.7620 [−1.4908, −1.4782] × 10−4

14 −1.1240 [0.1638, 0.1726]

14 −0.5000 [−0.1311,−0.1225]
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Fig. 4. The graphs of the Abelian integrals on Γ2–Γ8 and Γ14.
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The next step is to validate that the gener-
ated coefficients yield the expected behavior. There-
fore, we enclose the value of the corresponding
Abelian integrals at intermediate ovals. As is shown
in Table 3, the generated coefficients correspond
to a perturbation for which the claimed number
of limit cycles bifurcate from the given Hamilto-
nian as ε → 0. The graphs of the Abelian integrals
for Γ2,Γ3,Γ4,Γ5,Γ6,Γ7,Γ8, and Γ14, from which it
bifurcates limit cycles, are shown in Fig. 4.

All computations were performed on a Quad-
Core AMD Opteron Processor 8354 2.2 GHz, 64 bit
processor with 32 Gb of RAM. The program was
compiled with gcc, version 4.1.2. The software for
interval arithmetic was provided by the CXS-C pack-
age, version 2.2.3, see [CXSC, 2008; Hammer et al.,
1995]. The total run-time of the validated pro-
gram [Johnson & Tucker, 2008], to calculate the
22 Abelian integrals necessary for the proof, was
33.57 h.

4. Some Concluding Remarks

We have continued the study of lower bounds for
the weak Hilbert 16th problem for odd degrees from
[Johnson & Tucker, 2009], where we obtained a new
lower bound for the degree five case, and studied
the degree seven case. This is probably, however,
the limit of our heuristic approach based on Z2

symmetric perturbations. The reason is that even
though our procedure is mostly automated it still
requires human input, and the next case, degree 9,
would have 15 parameters to be controlled by hand.
A future project is therefore to develop an auto-
mated method to pick parameters for Z2 symmetric
perturbations of the symmetric centres of a Hamil-
tonian vector field of odd degree and with maximal
number of centres.

For vector fields of even order no such simple
symmetries as the restriction to the study of even
Hamiltonians and perturbations exist. Our method
is therefore not directly applicable in this situation.
We believe, however, that it should be possible to
improve the bound for the degree 4 case using our
integrator [Johnson & Tucker, 2008].
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