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Abstract

The limit cycle bifurcations of a Z2 equivariant quintic planar Hamil-

tonian vector field under Z2 equivariant quintic perturbation is studied.

We prove that the given system can have at least 27 limit cycles. This

is an improved lower bound on the possible number of limit cycles that

can bifurcate from a quintic planar Hamiltonian system under quintic

perturbation.
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1 Introduction

Determining the number and location of (isolated) limit cycles for planar polyno-
mial ordinary differential equations was posed as a grand challenge in Hilbert’s
seminal address to the International Congress of Mathematicians in 1900. Of
the 23 problems presented by Hilbert, this (the 16th) turned out to be one of the
most persistent: despite more than a century of intense research, not even the
quadratic case has been resolved. For an overview of the progress that has been
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made to solve this problem we refer to (Ilyashenko 2002). Partial results for the
quadratic case, and a general introduction to the bifurcation theory of planar
polynomial vector fields can be found in (Roussarie 1998). What is known, is
that any given polynomial vector field can have only a finite number of limit
cycles; this is proved in (Écalle 1992, Ilyashenko 1991).

A restricted version of Hilbert’s 16th problem introduced by Arnol’d, see
e.g. (Arnold 1990), known as the weak or tangential Hilbert’s 16th problem,
asks for the number of limit cycles that can bifurcate from a perturbation of a
Hamiltonian system, see e.g. (Christopher & Li 2007). The weak Hilbert’s 16th
problem has been solved for the quadratic case, see (Chen et al. 2006).

In order to find Hamiltonian systems such that their perturbations have
a maximum number of zeros, it is common to study symmetric Hamiltonians
with a maximal number of centres, see (Chan et al. 2002, Li et al. 2002, Zhou
et al. 2007, Zhou et al. 2007b). The specific perturbations are often constructed
using the so-called detection function method, see (Li & Huang 1987). In (Li
et al. 2002) a quintic perturbation of a Z6 equivariant system, with 24 limit
cycles is constructed. As far as we know, this is the largest previously known
lower bound on the number of limit cycles that can bifurcate through quintic
perturbation of a quintic Hamiltonian vector field.

The aim of the present paper is to study the Z2 equivariant system from
(Zhou et al. 2007b), and prove that at least 27 limit cycles can bifurcate from it.
We locate a suitable perturbation by conducting a similar study as in (Johnson
& Tucker 2009); this is described in detail in Section 4.2. We stress that our
approach is completely rigorous, seeing that all numerics is done in interval
arithmetic with directed rounding.

2 Abelian integrals

A classical method to prove the existence of limit cycles bifurcating from a
continuous family of level curves of a Hamiltonian, γh ⊂ H−1(h), depending
continuously on h, is to study Abelian integrals, or, more generally, the Melnikov
function, see e.g. (Christopher & Li 2007, Guckenheimer & Holmes 1983). The
closed level-curves of a polynomial Hamiltonian are called ovals. We denote
the interior of an oval Dh, i.e. ∂Dh = γh. Given a Hamiltonian system and a
perturbation,

{

ẋ = −Hy(x, y) + ǫf(x, y)
ẏ = Hx(x, y) + ǫg(x, y),

(1)

the Abelian integral, in general multi-valued, is defined as

I(h) =

∫

γh

f(x, y) dy − g(x, y) dx. (2)

We denote the integrand ω, and call it the 1-form associated with the pertur-
bation. In this paper all perturbations are polynomial.

The most important property of Abelian integrals is described by the Poincaré-
Pontryagin theorem.

Theorem 2.1 (Poincaré-Pontryagin). Let P be the return map defined on some
section transversal to the ovals of H, parametrised by the values h of H, where
h is taken from some bounded interval (a, b). Let d(h) = P (h) − h be the
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displacement function. Then, d(h) = ǫ(I(h) + ǫφ(h, ǫ)), as ǫ → 0, where
φ(h, ǫ) is analytic and uniformly bounded on a compact neighbourhood of ǫ =
0, h ∈ (a, b).

Proof. see e.g. (Christopher & Li 2007).

As a consequence of the above theorem, one can prove that a simple zero
of I(h) corresponds to a unique limit cycle bifurcating from the Hamiltonian
system as ǫ → 0. In fact, to prove existence of a limit cycle, it suffices to have
a zero of odd order.

2.1 Computer-aided proofs

Seeing that our proof relies upon a great deal of numerical computations, we
have been very careful in validating the computational results. A numerical
algorithm is said to be auto-validating if it produces a mathematically correct
result, incorporating not only the discretisation errors of the numerical method,
but also the computer’s internal representation of the floating point numbers and
its rounding procedures. The basic object in any such algorithm is an interval,
whose endpoints are computer-representable floating points. All mathematical
operations are performed in interval arithmetic with directed rounding to ensure
the correctness of the result. For a thorough introduction to this topic we refer to
(Alefeld & Herzberger 1983, Moore 1966, Moore 1979, Neumaier 1990, Petkocić
& Petkocić 1998).

2.2 Computer-aided computation of Abelian integrals

We use the method developed in (Johnson & Tucker 2008) to enclose the val-
ues of all Abelian integrals I(h) appearing in our proof. This enables us to
rigorously sample their values, i.e., for some discrete values of h, we can de-
termine intervals such that I(h) ∈ [I−(h), I+(h)]. If we can find two ovals γh1

,
and γh2

, such that all elements of [I−(h1), I
+(h1)] have the opposite sign as

those of [I−(h2), I
+(h2)] then, by the intermediate value theorem, there exists

h∗ ∈ (h1, h2), such that I(h∗) = 0, and a neighbourhood of γh∗ that is either
attracting or repelling for the perturbed vector field.

Since Pǫ, the return map of the perturbed vector field, is analytic and non-
constant, it has isolated fixed points. Thus, a zero of I implies the existence of
(at least) one limit cycle bifurcating from γh∗ .

In order to construct a perturbation such that the associated Abelian integral
has a given number of zeros, the perturbation has to be chosen in a careful
manner. The heuristic approach we have used to construct such a perturbation
is described in Section 4.1.

3 The Hamiltonian

We study the Hamiltonian, described in (Zhou et al. 2007b) :

H(x, y) =
x2

2
−

9x4

8
+

x6

3
+

y2

2
−

73y4

144
+

2y6

27
(3)
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corresponding to the differential system,






ẋ = −y
(

1 − 16y2

9

)(

1 − y2

4

)

ẏ = x
(

1 − 4x2
)

(

1 − x2

2

)

.
(4)

The system has 25 equilibrium points and 19 periodic annuli, appearing in 9
classes, see Figure 1. We label the classes of periodic annuli Γ1 – Γ9, in the
order of increasing h, see Figure 2 and Table 1.
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3

Figure 1: Phase portrait of the unperturbed Hamiltonian system.

We are interested in limit cycles bifurcating from the periodic solutions of
(4), corresponding to integral curves of (3).

We follow (Zhou et al. 2007b), and study the following Z2 equivariant per-
turbation of the Hamiltonian system (4),

p(x, y) := α00

2
+ α20

4
x2 + α02

4
y2 + α40

6
x4 + α22

6
x2y2 + α04

6
y4

f(x, y) := xp(x, y)
g(x, y) := yp(x, y)

(5)

Thus, the Abelian integral (2) reads,

I(h) =
∫

γh

f dy − g dx =
∫

γh

xp dy − yp dx =
∫

Dh

(

2p + x ∂p
∂x

+ y ∂p
∂y

)

dx ∧ dy

=
∫

Dh

(

α00 + α20x
2 + α02y

2 + α40x
4 + α22x

2y2 + α04y
4
)

dx ∧ dy.
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Figure 2: The periodic annuli, Γ1 − Γ9.
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Periodic annulus hmin hmax Expand/Contract
1 -2.2037 -1.3105 expand

2 -1.3704 -1.3105 expand

3 -1.3105 -0.6993 expand

4 -0.8333 -0.6993 expand

5 -0.6693 ∞ expand

6 -0.6693 0.0599 contract

7 0.0000 0.0599 expand

8 0.0599 0.1340 contract

9 0.1340 0.1939 contract

Table 1: The domains of the periodic annuli. The labels contract and expand

refer to the behaviour of the ovals in an annulus as h increases.

4 Results

Theorem 4.1. Consider the Hamiltonian vector field (4), perturbed as in (5).
Then one can choose αij , such that, as ǫ → 0, at least 27 limit cycles appear in
the configuration,

(Γ2
1)

4(Γ2)
2(Γ3)

2(Γ6)(Γ8)
2(Γ3

9)
4,

see Figure 3.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

Figure 3: The ovals, from which the limit cycles bifurcate.

We use Z(n + 1, m) to denote the maximum number of limit cycles that
can bifurcate from a Hamiltonian vector field of degree n, under a perturbation
of order m. Obviously, Z(n) := Z(n + 1, n) ≤ H(n), where H(n) denotes the
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maximum number of limit cycles that a nth degree planar polynomial system
can have. Some known results are Z(2) = 2 (Chen et al. 2006), Z(3) ≥ 12 (Yu
& Han 2005), Z(4) ≥ 15 (Zhang et al. 2004), Z(5) ≥ 24 (Chan et al. 2002),
Z(6) ≥ 35 (Wang & Yu 2005), Z(7) ≥ 49 (Li & Zhang 2004), Z(9) ≥ 80 (Wang
et al. 2006), and Z(11) ≥ 121 (Wang & Yu 2006).

Corollary 4.2. Z(5) ≥ 27.

4.1 Strategy

In this section we apply the methods developed in (Johnson & Tucker 2008) to
the Hamiltonian system described above. The first part of our approach is to
integrate monomial forms at some points, h1, . . . , hN , and then to specify the
coefficients of

dω =
(

α00 + α20x
2 + α02y

2 + α40x
4 + α22x

2y2 + α04y
4
)

dx ∧ dy, (6)

such that the Abelian integrals vanish:

I(hℓ) =

∫

γh
ℓ

ω = 0, ℓ = 1, . . . , N. (7)

Therefore, let

Iij(h) =

∫

Dh

xiyj dx ∧ dy, (8)

where ∂Dh = γh. Then we have the following linear decomposition

I(h) = α00I00(h)+α20I20(h)+α02I02(h)+α40I40(h)+α22I22(h)+α04I04(h). (9)

Given some candidate coefficients of the form ω, we calculate the Iij(h) at
intermediate ovals, h̃1 < h1 < h̃2 < · · · < hN < h̃N+1. If the linear combination
(9) of the Iij(h̃) has validated sign changes between the sample points we are
done: it has been proved that the corresponding perturbation yields bifurcations
with at least the given number of limit cycles as ǫ → 0.

We recall that, in general, the Abelian integral is multi-valued, and the
abovementioned computations are done for each continuous family of ovals sep-
arately. In the equivariant case at hand, I(h) is identically the same on each
of the different annuli within one annulus-class. Thus, one can trivially split
the set of ovals corresponding to H = h into natural subsets. This is crucial
for the success of our approach, since for each limit cycle we find there will be
one [three] additional cycles that can be found be rotating the first cycle by an
angle π [π

2
] for the annuli Γ2, Γ3, Γ4, and Γ8 [Γ1, and Γ9].

4.2 Generating candidate coefficients

Using the tools developed in (Johnson & Tucker 2008), the computation of
verified sign changes of the Abelian integral is automatic, once we have a set
of proper coefficients. To choose such candidate coefficients, however, is non-
trivial. The reason is that the regions in the parameter space yielding a large
number of zeros is, typically, small. We sample each of the monomials Ik

ij ,
where k ∈ {1, ..., 9} denotes in which annulus the integral is computed, at 100
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uniformly distributed points in the respective domains. Generically, it is ex-
pected that the space of Abelian integrals on one branch should be Chebyshev,
see e.g. (Horozov & Iliev 1998), i.e. the number of zeros of a function in the
space is one less than the dimension of the space.

The first step is to choose some ovals where we force the Abelian integral
to be zero, by solving the corresponding linear system for the coefficients of
ω. Note, this method can automatically give any configuration of limit cycles
generated by 5 zeros. We see from Figure 1 that it is desirable to maximise
the number of zeros on Γ1 and Γ9, since such limit cycles have multiplicity
four. If this procedure is done arbitrarily, only up to 20 limit cycles would
be guaranteed. To find a better set of candidate coefficients we note that the
system has the following properties: (i) the domains of I1(h) and I2(h) overlap,
see Table 1; (ii) the annuli Γ2

1 and Γ2 are surrounded by the annulus Γ3, and the
annuli Γ2

9 are surrounded by the annulus Γ8, see Figure 1. Property (i) indicates
that it should be possible, as in (Johnson & Tucker 2009), to force I1(h) and
I2(h) to oscillate together, see Figure 4. Property (ii) indicates that it should
be possible, as in the figure eight case in (Johnson & Tucker 2008), to get two
extra cycles surrounding the annuli Γ2

1 and Γ2, and Γ2
9, respectively. By taking

property (i), and (ii) into account, we can locate a suitable candidate form ω.

−1.38 −1.36 −1.34 −1.32 −1.3
−0.02

0

0.02

0.04

0.06

Figure 4: The Abelian integrals on ovals 1 (solid) and 2 (dashed), oscillating
together.

4.3 Computational results

Using the method described above to generate candidate coefficients for ω, we
get the result listed in Table 2.

The next step is to validate that the generated coefficients yield the expected
behaviour. Therefore, we enclose the value of the corresponding Abelian inte-
grals at intermediate ovals. As is shown in Table 3, the generated coefficients
correspond to a perturbation for which the claimed number of limit cycles bi-
furcate from the given Hamiltonian. The graphs of the Abelian integrals for
Γ1, Γ2, Γ3, Γ6, Γ8, and Γ9, from which it bifurcates limit cycles, are shown in
Figure 5.
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α00 2.176832745375219
α20 0.203687169951339
α02 -4.663680776344302
α40 -8.410822908376025
α22 4.313536179874701
α04 1.000000000000000

Table 2: The generated coefficients of the perturbation (5).

Periodic annulus h I(h)
1 -1.840000 [6.88,7.11]×10−2

1 -1.380000 -[1.55,1.19]×10−2

1 -1.310500 [2.43,2.83]×10−2

2 -1.345600 -[1.18,1.12]×10−2

2 -1.310500 [4.16,4.31]×10−2

3 -1.267300 [2.17,2.27]×10−1

3 -0.700000 -[7.88,7.85]×100

6 -0.600000 -[1.66,1.65]×101

6 0.058000 [1.33,1.34]×100

8 0.060000 [1.86,1.87]×10−1

8 0.131500 -[1.38,1.04]×10−3

9 0.134100 -[3.22,3.06]×10−4

9 0.141300 [9.56,11.0]×10−5

9 0.163700 -[3.36,2.36]×10−5

9 0.186100 [2.04,2.53]×10−5

Table 3: The computed enclosures of the Abelian integrals.

All computations were performed on a AMD Opteron 848 2.2GHz, 64bit
processor with 16Gb of RAM. The program was compiled with gcc, version
3.4.6. The software for interval arithmetic was provided by the CXS-C package,
version 2.2.3, see (CXSC 2008, Hammer et al. 1995). The total run-time of
the validated program (Johnson & Tucker 2008), to calculate the 15 Abelian
integrals necessary for the proof, was 50 minutes.

5 Conclusions

We have applied the method developed in (Johnson & Tucker 2008) to study an
equivariant quintic Hamiltonian vector field under quintic perturbation, previ-
ously studied in (Zhou et al. 2007b). Our approach differs from the one utilised
in (Zhou et al. 2007b) in two ways. First, we vary all parameters together,
whereas in (Zhou et al. 2007b) the detection function method, developed in (Li
& Huang 1987), is used, which means that the parameters are determined in
two steps; in the first step all parameters except one are determined, and in
the final search only one parameter is varied. Our approach to variation of the
coefficients yields a perturbation with a larger number of limit cycles than was
previously established for the quintic case. The new bound Z(5) ≥ 27, improves
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Figure 5: The graphs of the Abelian integrals.

the result Z(5) ≥ 24 in (Chan et al. 2002). Second, after determining candidate
coefficients, we validate that they have the desired properties. The second step
makes our result mathematically rigorous.
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