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Abstract— It is shown that the problem of existence of periodic
orbits can be studied rigorously by means of a symbolic dynamics
approach combined with interval methods. Symbolic dynamics is
used to find approximate initial positions of periodic points and
interval operators are used to prove the existence of periodic
orbits in a neighborhood of the computer generated solution. As
an example the Lorenz system is studied. All 2536 periodic orbits
of the Poincaré map with the period n ≤ 14 are found.

I. INTRODUCTION

Interval arithmetic provides tools to find all short periodic
orbits for discrete and continuous dynamical systems. An
interval operator is used to test the existence of periodic points
in small boxes (interval vectors) and the generalized bisection
allows us to make the full search in the region of interest. This
method has been successfully applied to the Hénon map, Ikeda
map and the Rössler system [1] for which all short periodic
orbits up to a relatively large period have been found.

In [2] this method was used to study the existence of short
cycles for the Lorenz system. All periodic orbits with the
period n ≤ 4 of the Poincaré map associated with the Lorenz
system have been found. For longer periods the method failed
due to very long computation time caused by the necessity of
searching the whole region covering the chaotic attractor.

For a certain class of systems it is possible to use dynamical
information to restrict the search space. In this work, we
present a symbolic dynamics based approach to find initial po-
sitions of periodic points. When combined with interval tools
for testing the existence of periodic orbits this method allows
us to find all short cycles with longer periods. The method
is applicable to systems for which there exists symbolic
dynamics which uniquely characterizes periodic solutions.

II. A SYMBOLIC DYNAMICS BASED METHOD TO FIND ALL
SHORT PERIODIC ORBITS

In this section, we briefly describe a general method which
can be used to find all short periodic orbits for continu-
ous dynamical systems. The first step is a reduction of the
continuous-time system to a discrete system using the concept
of the Poincaré map. The Poincaré map P : Σ 7→ Σ is defined
as P (x) = ϕ(τ(x), x), where Σ = Σ1 ∪ · · · ∪Σm is the union
of hyperplanes and τ(x) is the return time after which the

trajectory ϕ(t, x) returns to Σ. Periodic points of P correspond
to periodic orbits of the continuous system.

In order to study the existence of period–n orbits of P we
construct the map F defined by

[F (z)]k = x(k+1) mod n − P (xk), k = 1, . . . , n, (1)

where z = (x0, . . . , xn−1)T. Zeros of F correspond to period–
n points of P , i.e. F (z)=0 if and only if Pn(x0) = x0.

A. Interval methods

Interval methods provide simple computational tests for
uniqueness, existence, and nonexistence of zeros of a map
within a given interval vector. In order to investigate the
existence of zeros of F in the interval vector z one evaluates
an interval operator over z. In this work we use the Krawczyk
operator [3]:

K(z) = ẑ − CF (ẑ)− (CF ′(z)− I)(z− ẑ), (2)

where ẑ ∈ z and C is an invertible matrix.
If K(z) ⊂ int z, where int z denotes the interior of z, then

F has exactly one zero in z. This property allows us to prove
the existence and uniqueness of zeros. If K(z) ∩ z = ∅, then
there are no zeros of F in z.

In order to evaluate the interval operator for the map F
defined by Eq. (1), we need a method to find an enclosure of
P (x) and an enclosure of the Jacobian P ′(x). These enclo-
sures are found in interval arithmetic by rigorous integration
of the differential equation and its variational equation. For
details see [1].

B. Finding all short cycles

As mentioned before it is possible to combine interval
operators and generalized bisection to find all short periodic
orbits enclosed in a certain region. First, the region of interest
is covered by boxes (interval vectors) and the dynamics of P
is represented in a form of the directed graph. Next, for each
cycle in the graph an interval operator is used to study the
existence of periodic orbits in the interval vector corresponding
to this cycle. For details see [2].

Since usually many cycles correspond to a single periodic
orbit this approach may fail due to very long computation time
needed to check all cycles.



C. Symbolic dynamics approach

For a certain class of systems it is possible to construct sym-
bolic dynamics which uniquely characterizes periodic orbits.
Let us assume that the state space is divided into disjoint sets
N1, N2 . . . , Np. We associate with a trajectory (xk) a sequence
of symbols (sk), in such a way that xk ∈ Nsk

. In the following
we assume that each periodic orbit corresponds to a unique
periodic symbol sequence.

Given a symbol sequence s = (s0, s1, . . . , sn−1) and a long
computer generated trajectory (xi)i=1,...N with the associated
symbol sequence (ti)i=1,...N it is easy to guess an approximate
position of the periodic orbit with the symbol sequence s.
For each sk we find j such that the number {l : tj+i =
si mod n for all i = 0, 1, . . . , l} is maximum and we define
yk = xj . The vector y = (y1, y2, . . . , yn) is used as an initial
guess. Next, we use a Newton iteration to find a periodic orbit
in a neighborhood of y and finally we prove the existence of
a nearby true periodic orbit using the Krawczyk operator.

To verify that a given symbol sequence is not admissible
(there is no periodic orbit with this sequence) we may use
generalized bisection to exclude the possibility of existence of
periodic orbits with this sequence.

Since according to the assumption each periodic orbit has
a unique symbol sequence, it is sufficient to check all symbol
sequences to locate all periodic orbits.

III. SHORT PERIODIC ORBITS FOR THE LORENZ SYSTEM

The Lorenz system is described by the following set of
equations

ẋ1 = sx2 − sx1,

ẋ2 = rx1 − x2 − x1x3, (3)
ẋ3 = x1x2 − qx3.

We consider the Lorenz system with the classical parameter
values: s = 10, r = 28, q = 8/3. An example trajectory of
the Lorenz system is shown in Fig. 1.
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Fig. 1. A trajectory of the Lorenz system

Let us choose the Poincaré map defined by the hyperplane
Σ = {x = (x1, x2, x3) : x3 = 27, ẋ3 < 0}. A trajectory of the
Poincaré map composed of 1000000 points is shown in Fig. 2.
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Fig. 2. A 1000000 points computer generated trajectory of P

Let γ denotes the first intersection of the (two-dimensional)
stable manifold of the origin with the return plane Σ. We will
label each trajectory in the following way: if the trajectory
intersects Σ to the left of γ, then the intersection point is la-
belled with L, otherwise it is labelled with R. In order to study
periodic orbits we consider periodic symbol sequences s =
(s0, s1, . . . , sn−1), where sk ∈ {L,R}, for k = 0, 1, . . . n− 1.
In [4], it was established that the Poincaré map induces a
stable foliation of the forward invariant part of Σ. From this, it
follows that a periodic symbol sequence corresponds to at most
one periodic orbit. Non-rigorous computations indicate that
each periodic symbol sequence with no more than 24 repeating
symbols corresponds to a periodic orbit (compare [5]).

We have applied the method presented in Section II to find
all short periodic orbits for the map P . In the first step,
a trajectory of P composed of 106 points was generated
(compare Fig. 2). The trajectory should be long and should
cover the attractor as densely as possible. If this is the case
then all short admissible symbol sequences can be found in
this trajectory. In Table I the numbers of symbol sequences of
various length realized by a generated trajectory are reported.
The total number lp of admissible symbol sequences of length
p is given for comparison. Two cases are considered. In the
first case the length of the trajectory is 105. One can see that
all symbol sequences up to length 12 are present. Note that
only 16% (9%) of symbol sequences of length 19 (20) are
present. For a longer data set composed of 106 points all
symbol sequences up to length 15 are present and 76% (54%)
of symbol sequences of length 19 (20) are present. It is clear
that the longer data set provides much better approximations
of positions of points with a given sequence of symbols.

In the second step we have considered all periodic symbol
sequences with the principal period n ≤ 14. We have shown
that both symbol sequences with the principal period n = 1,
i.e. s = (L) and s = (R) are not admissible and that every
other sequence corresponds to exactly one periodic orbit of P .



TABLE I
THE TOTAL NUMBER ln OF SYMBOL SEQUENCES OF LENGTH n, THE

NUMBERS l′n AND l′′n OF SYMBOL SEQUENCES OF LENGTH n PRESENT IN

THE DATA FILE CONTAINING 105 AND 106 POINTS

n ln l′n l′′n
1 2 2 2
2 4 4 4
3 8 8 8
4 16 16 16
5 32 32 32
6 64 64 64
7 128 128 128
8 256 256 256
9 512 512 512
10 1024 1024 1024
11 2048 2048 2048
12 4096 4096 4096
13 8192 8185 8192
14 16384 16051 16384
15 32768 29061 32768
16 65536 45880 65521
17 131072 62713 129931
18 262144 76315 242853
19 524288 85920 400018
20 1048576 92002 569806

Let us note that there are exactly 2536 periodic symbol
sequences with no more than 14 repeating symbols, and recall
that each periodic symbol sequence corresponds to at most
one periodic orbit. Hence, we have confirmed that there are
exactly 2536 periodic orbits of P with the period n ≤ 14
(compare [5]).

TABLE II
SHORT PERIODIC ORBITS OF P , n — THE PERIOD OF THE ORBIT, T —
THE LENGTH OF THE CORRESPONDING PERIODIC ORBIT TO THE FLOW

n T s n T s
2 1.558653

2 LR 7 5.394218
6 LLRLLRR

3 2.305908
6 LLR 7 5.429127

4 LLRLRLR
4 3.023585

3 LLLR 8 5.783413
09 LLLLLLLR

4 3.084278
6 LLRR 8 5.924996

2 LLLLLLRR
5 3.725643

1 LLLLR 8 5.990445
2 LLLLLRRR

5 3.820255
3 LLLRR 8 5.997321

18 LLLLLRLR
5 3.869540

38 LLRLR 8 6.010028
5 LLLLRRRR

6 4.417768
5 LLLLLR 8 6.035234

1 LLLLRLLR
6 4.534109

7 LLLLRR 8 6.082359
6 LLLLRLRR

6 4.566312
0 LLLRRR 8 6.083828

5 LLLLRRLR
6 4.593816

3 LLLRLR 8 6.108056
3 LLLRLRRR

6 4.637142
0 LLRLRR 8 6.121456

3 LLLRLLRR
7 5.103040

37 LLLLLLR 8 6.122338
5 LLLRRLLR

7 5.234200
197 LLLLLRR 8 6.135129

6 LLLRRLRR
7 5.286343

0 LLLLRRR 8 6.154721
18 LLLRLRLR

7 5.301202
199 LLLLRLR 8 6.175880

77 LLRLLRLR
7 5.330914

1 LLLRLLR 8 6.187521
18 LLRLRRLR

7 5.369882
79 LLLRLRR 8 6.194603

1 LLRLRLRR
7 5.370527

4 LLLRRLR

The results concerning periodic orbits with the period n ≤ 8
are collected in Table II. For each orbit its period n, the interval
T containing the flow-time and the corresponding symbol
sequence are reported. Periodic orbits with the period n ≤ 6
are plotted in Fig. 3. In case of a pair of symmetric orbits only
one of them is plotted.

The number of periodic orbits of P with a given minimum

TABLE III
SHORT PERIODIC ORBITS OF P , THE NUMBER pn OF PERIOD–n CYCLES,

RIGOROUS BOUNDS Tn FOR THE LENGTH OF PERIOD–n CYCLES

n pn Tn

2 1 [1.5586, 1.5587]
3 2 [2.3059, 2.3060]
4 3 [3.0235, 3.0843]
5 6 [3.7256, 3.8696]
6 9 [4.4177, 4.6372]
7 18 [5.1030, 5.4292]
8 30 [5.7834, 6.1947]
9 56 [6.4602, 6.9880]
10 99 [7.1346, 7.7531]
11 186 [7.8073, 8.5467]
12 335 [8.4792, 9.3117]
13 630 [9.1509, 10.1054]
14 1161 [9.8231, 10.8703]

period n and bounds for flow times are collected in Table III. It
is interesting to note that some of period–11 orbits are longer
than some period–12 orbits. Similar phenomena is observed
for larger n. Positions of periodic orbits of P with the period
n ≤ 13 are plotted in Fig. 4. One can see that they fill densly
the middle part of the attractor, and that the area occupied by
period–n orbits grows with n.

The method has also been applied for longer orbits. Three
examples are presented in Fig. 5. In the last example the
symbol sequence contains all possible subsequences of length
p ≤ 8. The examples show that the method proposed makes
it possible to find very long periodic orbits with a prescribed
symbol sequence.

(a) T ≈ 46.7077 n = 60

(b) T ≈ 160.455 n = 220

(c) T ≈ 369.337 n = 486

Fig. 5. Examples of long periodic orbits

IV. CONCLUSION

We have described a symbolic dynamics based method
for finding all short periodic orbits for chaotic systems. The



n = 2, LR n = 3, LLR n = 4, LLLR n = 4, LLRR

n = 5, LLLLR n = 5, LLLRR n = 5, LLRLR n = 6, LLLLLR

n = 6, LLLLRR n = 6, LLLRRR n = 6, LLLRLR n = 6, LLRLRR

Fig. 3. The shortest periodic orbits for the Lorenz system

n = 2 n = 3 n = 4 n = 5

n = 6 n = 7 n = 8 n = 9

n = 10 n = 11 n = 12 n = 13

Fig. 4. All periodic orbits of P with the period n ≤ 13

method has been applied to the Poincaré map associated with
the Lorenz system. All periodic orbits with the period n ≤ 14
have been found. Several long periodic orbits with specific
symbol sequences have been located and their existence have
been proved.
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