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Abstract—In simulations of the Chua’s circuit with a smooth
nonlinearity for certain parameter values one observes the double
scroll attractor. This attractor contains an unstable equilibrium,
and typical trajectories belonging to the attractor may pass arbi-
trarily close to this equilibrium. In consequence, it is impossible
to compute trajectories over the whole attractor using standard
rigorous numerical integration procedures. This is due to the
existence of trajectories which spend arbitrarily long time in a
neighborhood of the equilibrium. In this work, a method to find
enclosures of trajectories passing arbitrarily close to an unstable
fixed point of spiral type is presented. This method is used to
prove the existence of a trapping region enclosing the double
scroll attractor for the Chua’s circuit with a cubic nonlinearity.

I. Introduction

The Chua’s circuit [1] is perhaps the most famous example
of an electronic circuit displaying chaotic dynamics. The
existence of various dynamical phenomena in this system has
been studied extensively in the literature [2], [3], [4], [5], [6],
[7], [8], [9], [10].

Most of the results presented in the literature are based on
simulations of the circuit and analysis of geometrical models
of corresponding attractors. The first rigorous result concern-
ing the existence of chaos in the Chua’s circuit was given
in [3], where the existence of a Shilnikov-type homoclinic
orbit is proved. A computer-assisted proof of chaotic behavior
(more precisely of positive topological entropy) for the double
scroll attractor was presented in [7]. In [11], it was shown that
there exist a trapping region for the double scroll attractor. A
rigorous study of the spiral attractor was carried out in [12].
The results listed above concern the circuit with a piece-wise
linear characteristic of the Chua’s diode.

Dynamical phenomena of the Chua’s circuit with a cubic
nonlinearity were first analyzed in [13]. Various types of bifur-
cations were studied via numerical simulations. An electronic
implementation of the cubic nonlinearity using two multipliers
and one operational amplifier was presented in [14]. In [15],
for the case of a spiral attractor the existence of a trapping
region has been proved using rigorous integration methods. It
was explained why available rigorous integration tools cannot
be applied to prove the existence of a trapping region for the
case of the double scroll attractor, which contains an unstable
equilibrium. The Chua’s circuit with a different type of a
smooth nonlinearity was considered in [16]. In this paper,

we continue the analysis of the double scroll attractor for the
Chua’s circuit with a cubic nonlinearity. We present a rigorous
method for the computation of trajectories in a neighborhood
of an unstable equilibrium. Using this method, we prove the
existence of a trapping region for the double scroll attractor.

The layout of the paper is as follows. In Section II the defini-
tion of the circuit is recalled and its properties are discussed. In
Section III we describe a method how to compute enclosures
of trajectories passing close to an unstable equilibrium and
prove that a certain set is a trapping region for the double
scroll attractor.

II. The Chua’s Circuit with a Cubic Nonlinearity

The Chua’s circuit [13] shown in Fig. 1 is composed of two
capacitors C1, C2, one inductor L, two linear resistors R0, R
and one nonlinear resistor RN. The i-v characteristics of the
nonlinear resistor is a polynomial of order three i = g(v) =

g1v + g2v3. Let us denote by x1 and x2 the voltages over the
capacitors C1 and C2 and by x3 the current flowing through
the inductor L. The dynamics of the circuit is defined by the
following differential equation

C1 ẋ1 = (x2 − x1)/R − g(x1),
C2 ẋ2 = (x1 − x2)/R + x3, (1)
Lẋ3 = −x2 − R0x3.
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Fig. 1. The Chua’s circuit.

Let us note that the system (1) is symmetric with respect
to the transformation (x1, x2, x3) 7→ (−x1,−x2,−x3). It follows
that if x(t) = (x1(t), x2(t), x3(t)) is a trajectory of the system
then also −x(t) is a trajectory.

We consider the system (1) with the following set of
dimensionless parameters: C1 = 0.7, C2 = 7.8, L = 1.891,



R0 = 0.01499, g1 = −0.59, g2 = 0.02, and R = 2.0. For
these parameter values the double scroll attractor is observed
in simulations. An example trajectory is shown in Fig. 2.
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Fig. 2. An example trajectory of the circuit.

For the parameter values considered, the dynamical sys-
tem (1) has three unstable equilibria, the origin (0, 0, 0) and
a symmetric pair of equilibria ±x? = (±x?1 ,±x?2 ,±x?3 ) ≈
±(2.164712700, 0.0161038235,−1.074304438), where x?1 =√
−(g1 + (R+R0)−1)g−1

2 , x?2 = R0(R + R0)−1x?1 , and x?3 =

−(R + R0)−1x?1 . Positions of the equilibria are shown in Fig. 2
using the star symbol.

III. Analysis of the Double Scroll Attractor

In this section, we prove the existence of a trapping region
enclosing the double scroll attractor. To reduce the continuous
system (1) to a discrete one we use the method of the return
map. Let Σ = Σ1∪Σ2 be the union of two planes Σ1 = {x : x1 =

2.1647} and Σ2 = {x : x1 = −2.1647}. The return map P : Σ 7→

Σ is defined as P(x) = ϕ(τ(x), x), where ϕ(t, x) is the trajectory
of (1) based at x, and τ(x) is the return time after which the
trajectory ϕ(t, x) returns to Σ.
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Fig. 3. Intersection of a trajectory of P with the plane Σ1.

The intersection of an example trajectory of the return map
P with the plane Σ1 is shown in Fig. 3. The plot is composed of
two parts R1 and R2. The set R2 contains two spirals; the large
one plotted in blue and the small one plotted in black. The
intersection of trajectories of P with Σ2 also contains two parts
R3, and R4, which are symmetric to R1 and R2, respectively.
Points belonging to R2 are mapped by P to R1. Blue points in
R1 are mapped to the larger spiral in R2, while red points in
R1 are mapped to the smaller spiral in R4.

In [15], the system (1) has been analyzed for the cases R =

2.1 and R = 2.0 for which in simulations one can see a spiral
attractor and a double scroll attractor, respectively. For the
case of the spiral attractor the existence of a trapping region
has been proved. To show that a set T ⊂ Σ is a trapping
region we prove that P(T ) ⊂ T . It is sufficient to prove that
the image of the border ∂T of T is enclosed in T and that
the return map is well defined on T (for details see [17]).
The first part can be done by covering ∂T by boxes vk (two-
dimensional interval vectors), finding enclosures yk of P(vk),
and verifying conditions yk ⊂ T . To prove that the return map
P is well defined on T the whole set T is covered by boxes
and enclosures of their images are found. The evaluation of
P is done by rigorous integration of the vector field using the
Lohner method [18]. The integration procedure was written in
C++ using Profil/BIAS packages [19] for interval arithmetic
computations. Part of the computations have been performed
using the CAPD library [20].

For the case of the double scroll attractor, a candidate T
for a trapping region has been presented in [15]. The set T =⋃4

k=1 Tk, is a union of the polygons Tk. The polygons T1 and
T2 shown in Fig. 4 are subsets of the plane Σ1, and enclose
numerically observed sets R1 and R2. The sets T3,T4 ⊂ Σ2
are symmetric to T1 and T2. The polygons T1 and T2 were
constructed in such a way that for test points vk belonging
to their borders the conditions P(vk) ∈ T are verified in non-
rigorous computations.
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Fig. 4. Borders of polygons T1 and T2 defining the trapping region.

In this case, the method described above fails to prove that
T is a trapping region. This happens because for a box vk



containing points which are mapped to T2 and also containing
points which are mapped to T4 it is impossible to evaluate
the return map P due to the discontinuity of P over vk. The
discontinuity is a consequence of the fact that the double
scroll attractor contains the origin—an unstable equilibrium.
There are trajectories starting in T1 which pass arbitrarily close
to the origin. These trajectories are repelled from the origin
along one of the two directions of its one-dimensional unstable
manifold and reach either T2 or T4. Points in T1 which are
mapped to T2 are separated from the points in T1 which are
mapped to T4 by a curve belonging to the stable manifold
of the origin. This curve separates points in R1 plotted using
different colors (compare Fig. 3). Trajectories initiated at the
stable manifold converge to the origin and never come back
to the set Σ. It follows that the return map is not even defined
over the whole set T1.

A rigorous evaluation of the return map for boxes containing
discontinuity points requires to handle trajectories passing
arbitrarily close to an equilibrium with infinitely large return
times. This is relatively easy for linear systems for which the
stable manifold is flat and explicit formulas for solution can
be used. This approach was used for the Chua’s circuit with
a piecewise linear nonlinearity to prove the existence of a
trapping region for the double scroll attractor [11]. For general
nonlinear systems the stable manifold is not flat and a different
approach has to be used (compare also [21]).

A. Computation of trajectories passing close to an equilibrium

In this section, we present a method how to compute tra-
jectories of (1) in a neighborhood of the origin. The Jacobian
matrix at the fixed point x = (x1, x2, x3) is

J(x) =

−(R−1 + g1 + 3g2x2
1)C−1

1 R−1C−1
1 0

R−1C−1
2 −R−1C−1

2 C−1
2

0 −L−1 −R0L−1

 . (2)

For the equilibrium x̄ = (0, 0, 0), we obtain

J ≈

0.128571429 0.714285714 0
0.064102564 −0.064102564 0.128205128

0 −0.528820730 −0.007927023

 . (3)

The matrix J has one real eigenvalue λ ≈ 0.2066098948
and a pair of complex eigenvalues α ± βi ≈ −0.0750340265 ±
0.1965518222i. Let B be a transformation matrix converting
the linear system ẋ = Jx to the linear system ẏ = Dy with the
matrix D in the Jordan normal form

D = B−1JB =

λ 0 0
0 α β
0 −β α

 . (4)

We use the transformation matrix

B ≈

−0.96026919 0.67812191 0
−0.10491311 −0.19329705 0.18660054
0.25860457 −0.60865747 −0.31225509

 . (5)

The explicit solution of the linear dynamical system ẏ = Dy
with the initial condition y(0) = (y1(0), y2(0), y3(0)) has the
form y1(t) = eλty1(0), y2(t) = eαt(cos(βt)y2(0) + sin(βt)y3(0)),

y3(t) = eαt(− sin(βt)y2(0) + cos(βt)y3(0)). The solution of the
linear dynamical system ẋ = Jx with the initial condition x(0)
can be computed as x(t) = By(t), where y(0) = B−1x(0).

For the computer assisted proof enclosures of the ma-
trix J, its eigenvalues, the transformation matrix B and its
inverse are computed rigorously using interval arithmetic
methods. For example, bounds for the eigenvalues are fol-
lowing: λ ∈ 0.2066098948215755

49, α ∈ −0.0750340265460014
09,

β ∈ 0.19655182217372786
65, where subscripts and superscripts

denote interval endpoints.
To handle trajectories passing close to the origin let us

construct a cylinder centered at the origin spanned by the
eigenvectors of J. Let us denote by Cy(h, r) = {y : |y1| ≤

h, y2
2 + y2

3 ≤ r2} the cylinder centered at the origin with the
height 2h > 0 and the radius r > 0. Let Cx(h, r) = BCy(h, r)
denote the cylinder Cy(h, r) transformed by the change of
coordinates x = By. The axis of Cx(h, r) is the unstable one-
dimensional eigenspace of the origin and bases of Cx(h, r) are
parallel to the stable eigenspace of the origin. The cylinder
Cx(h, r) with the height 2h = 0.008 and the radius r = 0.004
is plotted in Fig. 5 in red. Four example trajectories passing
through the cylinder are plotted in green and magenta. All four
trajectories enter the cylinder through its side very close to the
stable manifold of the fixed point at the origin and leave the
cylinder through one of its bases near the unstable manifold.
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Fig. 5. Dynamics of the nonlinear system near the origin.

To compute enclosures of trajectories passing through the
cylinder Cx(h, r) we first find an enclosure x of the entry set,
which contains intersections of trajectories with the cylinder’s
side and convert the enclosure x to the y coordinates via the
transformation y = B−1x. Then we modify the transformed
entry set y to take into account perturbations introduced by
the nonlinear change of coordinates to be applied for the
computation of trajectories inside the cylinder. This is achieved



by inflating the interval vector y by a specific radius. The
nonlinear change of coordinates is constructed in such a way
that the nonlinear vector field (1) is transformed into an almost
linear vector field ẏ ≈ Dy inside the cylinder. Next, we
integrate the linear flow ẏ = Dy inside the cylinder where the
matrix D contains perturbed (set-valued) eigenvalues and find
the exit set which is the intersection of trajectories initiated in
the entry set with cylinder bases. In case the perturbed entry
set has non-empty intersection with the stable eigenspace, the
exit set is composed of two components, each enclosed in one
of the cylinder’s bases. Otherwise, the exit set is enclosed in a
single cylinder’s base. Finally, we modify the exit set to take
into account perturbations introduced by the nonlinear change
of coordinates, convert the exit set to the original coordinates
using the transformation x = By and continue integration using
standard rigorous integration methods.

The main difficulty of the procedure is the construction of a
nonlinear change of coordinates such that the nonlinear vector
field (1) is transformed into something close to the linear
vector field ẏ = Dy inside the cylinder. In the construction
the theory of normal forms is used. In general, the method is
similar to the one used in [21] for the rigorous computation
of trajectories passing close to the unstable equilibrium in
the Lorenz attractor. The differences include stability types of
the equilibrium and nonlinearities. For the Lorenz system the
Jacobian matrix at the equilibrium has three real eigenvalues,
while in our case there is one real eigenvalue and two complex
ones. Regarding nonlinearities, for the Lorenz system the
nonlinearity is of quadratic type, while here we have a cubic
nonlinearity. Details of the construction procedure are skipped
for the sake of brevity and will be reported elsewhere.

As mentioned before, the nonlinear change of coordinates
introduces perturbations which have to be taken into account
when computing cylinder’s entry and exit points. For the
cylinder Cy(h, r) with the height 2h = 0.008 and the radius
r = 0.004 the bound for the entry perturbation is 3.303× 10−6

and the bound for the exit perturbation is 3.307 × 10−6.
Additionally one has to take into account the perturbation
of the eigenvalues which is bounded by 2.503 × 10−33. This
perturbation can be easily handled by inflating the entries of
the matrix D into an interval matrix D.

B. The existence of a trapping region for the double scroll
attractor

The main result is stated in the following theorem.
Theorem 1: There exists a set T ⊂ Σ enclosing the

numerically observed double scroll attractor such that for each
x ∈ T either P(x) ∈ T or the trajectory ϕ(t, x) with the initial
point x converges to the origin without intersecting Σ, i.e.,
ϕ(t, x)→ (0, 0, 0) for t → ∞ and {ϕ(t, x) : t > 0} ∩ T = ∅.

The proof is carried out for the set T =
⋃4

k=1 Tk defined
previously (see Fig. 4). From the symmetry of the problem it
is sufficient to verify the conditions stated in the theorem for
the set T1 ∪ T2. First, we prove that P(T2) ⊂ T1. This is done
using a standard rigorous integration method in the same way
as for the spiral attractor.

The proof regarding the set T1 consists of three steps. In
the first step, we prove that for each x ∈ T1 either P(x) ∈ T
or the trajectory with the initial point x enters the cylinder
Cx(h̄, r) through its side, where h̄ < h. By selecting h̄,
we control the distance between a cylinder entry point and
the stable eigenspace. The entry set satisfying the condition
|(B−1x)1| = |y1| ≤ h̄ for h̄ = 2×10−4 is plotted in Fig. 5 in cyan.
We use the method of generalized bisection. The list of boxes
to be processed is created by covering T1 by boxes vk of a fixed
size. For each box vk, we attempt to find an enclosure of P(vk).
If the procedure succeeds and the image is enclosed in T then
we remove the box vk from the list. In the opposite case, we try
to evaluate the return map PC with the section being the side
of the cylinder {(x1, x2, x3) : y2

2 + y2
3 = r2, where y = B−1x}.

If these computations are successful and the distance between
the entry set and the stable eigenspace is smaller than h̄ (the
condition |y1| = |(B−1x)1| ≤ h̄ is used) then we remove this
box from the list of boxes. If none of these two procedures are
successful then the box vk is split into smaller boxes which are
added to the list of boxes to be processed. The computations
are continued until the list of boxes is empty. Computations
in this step have been completed for h̄ = 5 × 10−5.

In the second step, we show that all trajectories initiated
inside the cylinder Cx(h̄, r) either converge to the origin or
exit through one of the sides of the cylinder Cx(h, r̄) with the
radius r̄ = 0.00084. In these computations the entry and exit
perturbation has been taken into account. The exit sets with
radius r̄ are plotted in blue in Fig. 5.

In the third step of the procedure, we prove that all trajecto-
ries with initial points belonging to exit sets return to T2 or T4.
This is done by covering the exit sets by boxes vk, evaluating
the return map on these boxes and verifying that one of the
inclusions P(vk) ⊂ T2 or P(vk) ⊂ T4 holds. This completes the
computer assisted proof of Theorem 1.

Details regarding the computer-assisted proof are following.
The border of T2 is covered by 1187 boxes and it is shown that
their images are enclosed in T1. The border of T1 is covered
by 5133 boxes. For 5101 boxes it was proved using standard
rigorous integration methods that their images are enclosed in
T1 ∪ T2. For the remaining 32 boxes it was shown that the
corresponding trajectories enter the cylinder Cx(h̄, r).

In [15], it was shown that the return map P restricted to the
trapping region T has positive topological entropy. It follows
that the set T contains infinitely many periodic orbits and
chaotic trajectories.

IV. Conclusions

A method to find enclosures of trajectories passing arbitrar-
ily close to an unstable equilibrium has been presented. Using
this method the existence of a trapping region for the double
scroll attractor observed for the Chua’s circuit with a cubic
nonlinearity has been proved.
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