
FIXED POINTS OF A DESTABILIZED KURAMOTO-SIVASHINSKY EQUATION

FERENC A. BARTHA†‡ AND WARWICK TUCKER§

† CAPA group, Department of Mathematics, University of Bergen, Bergen, Norway
‡ EMG group, Department of Computer Science, Rice University, Houston TX, U.S
§ CAPA group, Department of Mathematics, Uppsala University, Uppsala, Sweden

ABSTRACT. We consider the family of destabilized Kuramoto-Sivashinsky equations in one
spatial dimension ut + νuxxxx + βuxx + γuux = αu for α,ν ≥ 0 and β ,γ ∈ R. For certain
parameter values, shock-like stationary solutions have been numerically observed. In this
work we verify the existence of several such solutions using the framework of self-consistent
bounds and validated numerics.
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1. INTRODUCTION

The Kuramoto-Sivashinsky (KS) equation

(1.1) ut = µ∇
2u−ν∇

2
∇

2u−λ (u ·∇)u,

was derived by Kuramoto et al. [14] as a reaction-diffusion system modeling the Belousov-
Zhabotinsky reaction [6, 28], and by Sivashinsky [20] for studying hydrodynamic instabili-
ties in laminar flames. In one dimension, the KS-equation is usually studied in the form

ut +uux +uxx +νuxxxx = 0,

where the parameter ν is emphasized as the viscosity parameter; taking ν positive introduces
dissipation in the system. The Kuramoto-Sivashinsky equation has been subject to extensive
studies in various works; the reader is referred to [3, 11, 12, 18, 22], without attempting to be
comprehensive. Due to its dissipative nature, the KS-equation diplays long-term behaviour
(fixed points, periodic solutions) that appear to be rather low-dimensional. This indicates
that the higher modes are not very influential, and explains why approximation techniques
such as Galerkin projections are suitable. We will use this fact in what follows.

By introducing a destabilizing term αu, shock-like stationary solutions were observed by
Wittenberg [23], and Rademacher and Wittenberg [19]. Motivated by this, we consider the
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general form

(1.2) ut +νuxxxx +βuxx + γuux = αu,

where α ≥ 0 and β ,γ ∈ R. Without the destabilizing term αu, this is the same form that
has been subjected to rigorous, computer-assisted studies by Zgliczyński and Mischaikow
[27] and Zgliczyński [24, 25, 26], validating stationary and periodic solutions, and providing
means for time integration.

When looking for odd, stationary solutions, we may fix ν = 1 and introduce a new parame-
ter by considering solutions of period L. We are then interested in solving the boundary-value
problem

(1.3) uxxxx +βuxx + γuux = αu, u(−L/2, t) = u(L/2, t), u(x, t) =−u(−x, t).

Combining the methods and observations of Zgliczyński, Rademacher and Wittenberg, we
have validated several odd, shock-like, stationary solutions of (1.2) using the framework of
self-consistent bounds discussed in [27, 24, 25, 26]. Theorem 1.1 is an example from the
obtained results; the reader may find all the solutions that we have validated in Section 2.7.

Theorem 1.1. For the parameters β = 2, γ = 1, α = 0.5, and L = 30, the KS-equation (1.3)
has a shock-like stationary solution u∗(t,x) such that

‖u∗(t,x)−u(t,x)‖C0 ≤ 3.757×10−4 and ‖u∗(t,x)−u(t,x)‖L2 ≤ 1.353×10−4,

where u(t,x) = ∑
∞
k=1−2ak sin(2πx

L ) is given by its Fourier coefficients in Table 2.7.

We have already used the term rigorous computations; this refers to calculations that are
done using a computer program, and which give validated results, every possible numerical
error is controlled. We achieve this by using the framework of interval analysis, allowing
us to prove mathematical theorems from the obtained outputs. For more information about
interval analysis, computer-aided proofs, and rigorous numerics, the reader is referred to
Moore [16], Alefeld [2], Tucker [21], and Nedialkov et al. [17].

Outline. In the first part of the paper we will give some necessary definitions and notations,
in Section 1.1 we give an overview of the method of self-consistent bounds. In the sec-
ond part we discuss how to apply the previously presented techniques in a rigorous manner
adopted to the destabilized Kuramoto-Sivashinsky equation (1.2). Section 2.1 deals with
transforming our problem into an infinite ladder of ordinary differential equations. We con-
sider a Galerkin-projection, that is a finite projection of this infinite ladder of ODEs in Sec-
tion 2.2 and thus, introducing proper error terms, obtain a finite dimensional differential
inclusion. In Section 2.3 we obtain a non-rigorous candidate solution. This allows us to con-
struct a block decomposition and corresponding local coordinates in Section 2.4. According
to the method of self-consistent bounds, fulfilling certain isolation inequalities ensures that
we have a valid enclosure of a stationary solution for (1.2). These inequalities are discussed
in Section 2.5. We include the algorithm from [24] for obtaining such bounds in Section 2.6
and present our results in Section 2.7. In the final part of the paper we comment on future
directions.



FIXED POINTS OF A DESTABILIZED KURAMOTO-SIVASHINSKY EQUATION 3

FIGURE 1. u(t,x) for β = 2, γ = 1, α = 0.5, and L = 30.

Notation. We denote by N,N0,R and C the set of positive integers, nonnegative integers,
reals and complex numbers, respectively. For a set N ⊂ Rn, bd(N) denotes its boundary and
int(N) its interior.

Let L 2(R2) and l2(N) be the Hilbert space of the real square-integrable functions from R2

to R, and the Hilbert space of the complex square-summable series from N to C, respectively.
Given a differentiable function u(t,x) : R2→R by Dsu we denote the partial derivative ∂ s

∂xs u.

1.1. The method of self-consistent bounds. In this section we provide a quick overview of
the method of self-consistent bounds in a more abstract setting than we will use later on. For
a detailed and thorough introduction the reader is referred to Zgliczyński and Mischaikow
[27] and Zgliczyński [24, 25, 26].

Let H0 = L 2(R2) and consider the autonomous differential equation for u ∈H0

(1.4)

{
u̇ = F(u),
u(0,x) = u0(x), u0 ∈H0,

where F : H0→H0 is a differential operator. By a solution of (1.4) we understand a differ-
entiable function u : [0, tmax)×H0→H0 such that (1.4) is satisfied for t ∈ [0, tmax). In this
paper, we shall consider stationary solutions to (1.4) that are periodic in x.
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For a real separable Hilbert space H , given a subspace Xm ⊂H with dim(Xm)< ∞, we
can investigate the evolution equation u̇ = F(u) by decomposing H into the direct sum of
the finite dimensional Xm and the infinite dimensional Ym = X⊥m :

H = Xm⊕Ym.

Let Pm,Qm denote the orthogonal projections from H onto Xm and Ym respectively. By
introducing u = x⊕y, we may split the evolution equation (1.4) into the two parts

x′ = PmF(x⊕y),
y′ = QmF(x⊕y).

(1.5)

Consider now a compact W ⊂ Xm representing the main modes and a closed T ⊂ Ym repre-
senting the high modes or the so-called tail. For an initial condition x0⊕y0 ∈W ⊕T , let us
study the differential inclusion

(1.6)

{
x′ ∈ PmF(x⊕T ), x ∈W,

x = x0.

If T is "sufficiently small", then robust properties of the finite dimensional system

(1.7)

{
x′ = PmF(x⊕0), x ∈W,

x = x0.

should carry over to (1.6) and in turn to (1.5) and (1.4). The finite dimensional system (1.7)
is called the m-Galerkin projection of (1.4). The vector 0 in (1.7) denotes the zero vector of
Ym. We define the finite dimensional vector field Fm : Xm→ Xm as Fm(x) = PmF(x⊕0).

The finite dimensional system (1.7) may produce good approximations to solutions of the
full system (1.5) if F is such that the tail of the solutions are "small" in a particular sense.
In light of this, we impose several conditions on F : we require the following decomposition
into a linear and nonlinear part

F(u) = Lu+N(u,Du, . . . ,Dru), u ∈H0,

where the linear operator L is diagonal in the Fourier basis BF = {eikx}k∈Z, and the nonlinear
part is given as a polynomial N of spatial partial derivatives of u up to order r. In addition,
we require that (1.4) is dissipative in the sense that the eigenvalues ρk of L satisfy

(1.8) ρk =−g(|k|)|k|p,
for some p > r, where g : R+

0 → R, and there exists k0 ∈ R+ such that g(z) is positive,
uniformly bounded away from zero and from above for z > k0. Condition (1.8) suggests
that for large |k|, that is for large scales, the linear part of F will be dominant. Note that
expressing u ∈H0 in BF results in time-dependent Fourier coefficients

u(t,x) =
∞

∑
k=−∞

ck(t)eikx.

Since we are currently interested in stationary solutions, we omit the variable t when it is not
absolutely necessary. Also, rather than working directly with (1.4), we consider the Hilbert
space of the coefficients with respect to BF , that is H1 = l2(Z) ∼= H0. This means that we
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will identify u with its coefficient vector. As a consequence, the operators F , L and N then
act on H1 as well. Equation (1.4) on H0 then transforms into the infinite ladder of ODEs

(1.9) c′k = PkF(u) = ρkck +PkN(u), k ∈ Z

where Pk : H1→ C is the projection to the k-th component.
Returning to the abstract setting, let Hk denote the span of the kth basis vector of H . For

m ∈ N, we may decompose H into the direct sum of the finite dimensional Xm =⊕|k|≤mHk

and the infinite dimensional Ym = X⊥m =⊕|k|>mHk that is

H = Xm⊕Ym.

The orthogonal projections from H onto Hk, Xm and Ym are given by Ak, Pm and Qm, respec-
tively. Later on we shall obtain a candidate solution at which the Jacobian of the m-Galerkin
projection attains only a finite number of complex and a finite number of positive eigenval-
ues. We shall then impose the additional requirement that m is large enough so that all the
eigenvalues ρk are negative for |k| ≥ m.

In order to be able to study (1.4) through the m-Galerkin projections (1.7), we need uni-
form convergence, and thus regularity conditions for F , W and T . This can be constuctively
achieved by the use of isolation blocks and self-consistent bounds.

Definition 1.2. Let ϕ : R×Rn→ Rn be a continuous flow generated by a differential equa-
tion y′ = f (y), where f : Rn → Rn. The compact set N ⊂ Rn is said to be an isolating
neighbourhood if

Inv(N,ϕ) := {z ∈ N : ϕ(R,z)⊂ N} ⊂ int(N).

In addition, if for any z ∈ bd(N), there exists tz > 0 such that

ϕ((0, tz),z)∩N = /0 or ϕ((−tz,0),z)∩N = /0,

then we call N an isolating block.

Remark 1.3. The definition essentially says that trajectories trapped in an isolating block
stay in its interior. A trajectory entering or leaving the block crosses the boundary, and is
not tangential to it at any point. As a consequence we may divide the boundary of the block
into entry and exit sides.

Definition 1.4. Assume that F is such that Fn : Xn→ Xn is a C1 function for all n ∈ N, and
let 0 < m≤M < ∞. Consider the structure

S =W ⊕ ∏
|k|>m

Bk,

where W ⊂ Xm and Bk ⊂ Hk for |k| > m are compact sets. The conditions C1, C2, C3, C4
and C5 are defined as follows.

C1 0 ∈ Bk for |k|> M.
C2 ∑|k|>M a2

k < ∞, where ak = maxa∈Bk |a| for |k|> M. This implies that S⊂H .
C3 u 7→ F(u) is continuous on S and ∑|k|>M f 2

k < ∞, where fk = maxu∈S |AkF(u)| for
|k|> M.
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C4 For each |k| > m we have Bk = [ak,ak] that is, an interval. For u ∈ S and |k| > m it
holds that

uk = ak⇒ AkF(u)> 0,

uk = ak⇒ AkF(u)< 0,

using the notation uk = Aku.
C5 W is an isolating block for the m-Galerkin projection x=Pm(F(x⊕y)) for all y∈Ym.

We say that the set S forms self-consistent bounds for F if the conditions C1, C2 and C3 are
satisfied. If C4 holds in addition, we speak about topologically self-consistent bounds for F.
We call W the main part and

T = ∏
|k|>m

Bk ⊂ Ym

the tail. In addition we refer to ∏|k|>M Bk as the far-tail and to ∏m<|k|≤M Bk as the near-tail.

As shown in the papers of Zgliczyński, conditions C1, C2 and C3 imply that given self-
consistent bounds W ⊕ T , the set W ⊕ T is a compact subset of H . Moreover, the con-
vergence limn→∞ Pn(F(u)) = F(u) is uniform for u ∈W ⊕T . If in addition C4 is satisfied
it is possible to establish the existence and uniqueness of solutions of (1.4) inside W ⊕ T .
Condition C5 may be formulated in a similar manner to C4, that is inequalities for a scalar
product with the outward normal on the boundary of W . We shall present the details later on
when it comes to implementation. Having all conditions C1-C5 satisfied implies that W ⊕T
contains a fixed point.

The presented results suggest the following steps for a computer-aided proof:
1. Find a non-rigorous candidate solution that we will try to validate.
2. Construct a good direct sum decomposition and use the Jacobian of the Galerkin projec-

tion at the candidate solution to establish local coordinates for the main modes.
3. Find topologically self-consistent bounds forming an isolating block with the main modes

represented in local coordinates.
One crucial issue is how to represent self-consistent bounds in a computer-aided proof.

The most immediate obstacle we have to overcome is its infinite structure. The dominant
property of L for large k with negative eigenvalues suggests that the Fourier coefficients of
a solution decay to zero at least at a polynomial speed, and thus we may uniformly enclose
them. We do this for the far-tail ∏|k|>M Bk by the polynomial bounds Bk =

C
|k|s [−1,1] for

|k| > M, where C ∈ R+ and s ∈ N are independent of k. For a more detailed desciption of
this procedure, the reader is referred to [27, 24].

2. IMPLEMENTATION

In this part of the paper we discuss in detail how to apply the previously presented tech-
niques to the destabilized Kuramoto-Sivashinsky equation (1.2). As certain algebraic esti-
mates are essentially identical for (1.2) and the KS equation discussed in [27, 24], we omit
them and refer to these papers. The software for producing our results is available from [1].
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2.1. Infinite ladder of ODEs. In this section we convert (1.2) into an infinite ladder of
ODEs. Since we are looking for period-L solutions of

ut +uxxxx +βuxx + γuux = αu,

it is natural to consider the Fourier expansion u(t,x) = ∑k∈Z ck(t)eiηkx using the notation
η = 2π

L . It is easy to see that the nonlinear term may be expanded in two different ways
uux = ∑ iηncnck−n and uux = ∑ iη(k− n)cnck−n, therefore uux = iη k

2 ∑cnck−n holds. This
leads to the following infinite ladder of complex ODEs

(2.1) c′k = (−η
4k4 +βη

2k2 +α)ck− iγη
k
2

∞

∑
n=−∞

cnck−n, for k ∈ Z.

According to our assumption on u(t,x), we are interested in odd solutions. This results in
ck = −c−k, in particular c0 = 0. Since u(t,x) is real, the imaginary part of the Fourier sum
must vanish. One may easily check that this implies that ck is pure imaginary. Introducing
ak =−ick, (2.1) transforms into

(2.2) a′k = (−η
4k4 +βη

2k2 +α)ak + γη
k
2

∞

∑
n=−∞

anak−n, for k ∈ Z.

Using that ak =−a−k, we may decompose the infinite sum as

∞

∑
n=−∞

anak−n =
k−1

∑
n=1

anak−n +
−1

∑
n=−∞

anak−n +
∞

∑
n=k+1

anak−n

=
k−1

∑
n=1

anak−n−
∞

∑
n=1

anak+n−
∞

∑
n=1

anak+n.

(2.3)

We obtain from (2.2), (2.3), and by introducing ρk =−η4k4 +βη2k2 +α that

(2.4) a′k = ρkak + γη
k
2

k−1

∑
n=1

anak−n− γηk
∞

∑
n=1

anak+n = ρkak +AkN(a), for k ∈ N,

where a ∈ l2(N) in accordance with Section 1.1 (where we considered the equivalent l2(Z))
and

u(t,x) =−2
∞

∑
k=1

ak(t)sin(ηkx).

We point out that the destabilizing effect of α becomes apparent in the expression for ρk.

2.2. m-Galerkin projection. We shall transform equation (2.4) rigorously into a computa-
tionally tractable finite dimensional differential inclusion. We obtain this form by consid-
ering an m-Galerkin projection, that is we discard the terms containing ak with k ≥ m from
(2.4). Therefore, the projection is given by

(2.5) AkFm(a1, . . . ,am) = ρkak + γη
k
2

k−1

∑
n=1

anak−n− γηk
m−k

∑
n=1

anak+n, for k = 1, . . . ,m,
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while the error induced by the projection satisfies

AkEG(m,a) =−γηk
∞

∑
n=m−k+1

anak+n, for k = 1, . . . ,m.

We shall refer to EG(m,a) ∈Rm as the Galerkin error. We may enclose this using the formu-
lae given in Sections 3.1 and 3.2 of [27].

Assuming that [EG(m,a)] is an enclosure of EG(m,a), we obtain the following differential
inclusion for the main modes

(2.6) Pm(a)′ ⊆ Fm(a1, . . . ,am)+ [EG(m,a)].

2.3. Obtaining a non-rigorous candidate solution. Consider now the M-Galerkin projec-
tion of (2.4), that is

b′ = FM(b), b ∈ RM,

where M ∈ N. We introduced b in order to emphasize the distinction from the infinite di-
mensional a in the previous sections. Finding a candidate solution means also finding an
apparent zero of FM. We may use either a zero finding method, like Newton’s method, or if
this zero is stable – a non-rigorous integrator to obtain the starting guess.

For this guess to be a reasonable approximate solution of (2.4) as well, we need to be able
to neglect high-modes. When k is large enough, then |ρk| is large and ρk < 0, thus the term
−|ρk|bk dominates in the k-th component of (2.4). As the high modes of the solutions to this
projected ODE tend to zero, and since we are looking for a stationary solution for the infinite
ladder of ODEs, we may indeed neglect the higher order terms and still obtain a reasonably
good candidate solution if we choose M sufficiently large.

As an initial guess for a shock-like stationary solution, we construct a piecewise linear
shock and use its approximate Fourier expansion; this is shown in Figure 2. Using these
Fourier coefficients as an initial condition, we obtain a candidate solution for FM(b) = 0.

2.4. Block decomposition and local coordinates. Now we need to construct W ⊕ T en-
closing our non-rigorous candidate that satisfies conditions C1 - C5. This is done by solving
the so-called isolation equations for W given in Section 2.5. These equations require a suit-
able local coordinate system on Xm which is obtained from the eigenvalue decomposition of
JacFm at the candidate. Keeping the computations real, we eliminate the complex eigenval-
ues by switching to a real block decomposition.

Block decomposition. Assume that b∗ = (b∗1, . . . ,b
∗
m) is an approximate zero of Fm. This

leads to the approximation error

EA(m,b∗) = Fm(b∗).
Note that having a good approximation, we expect ‖EA(m,b∗)‖ to be small. We calcu-
late JacFm(b∗) and then obtain its eigenvalue decomposition. There are several algorithms
producing such a decomposition, but the result is in general non-rigorous. We obtain two
complex matrices Λ and E, where Λ is a diagonal matrix with the approximate complex
eigenvalues λk on the diagonal, while E holds the respective approximate eigenvectors ck
in its rows. Thus JacFm(b∗)E ∼ EΛ, and consequently JacFm(b∗)∼ EΛE−1 (given that E is
invertible).
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FIGURE 2. A piecewise linear shock and its Fourier approximation with 10 modes.

Now let us convert the complex eigenvalue decomposition into a real block decomposi-
tion. This is natural since we are interested in real solutions. This block decomposition is
given by the direct sum of the one-dimensional eigenspaces spanned by the real eigenvectors
and the two-dimensional eigenspaces spanned by the real and imaginary parts of a complex
conjugate pair of eigenvectors. The new decomposition is given by two real matrices, the
block diagonal matrix Λ̃ and the matrix Ẽ.

Assume that Λ is ordered such that |λk1 |> |λk2| given that k1 > k2, and λk = αk + iβk and
λk+1 = αk− iβk are conjugate pairs in Λ. In order to obtain the appropriate block in Λ̃, we
replace the submatrix (

Λk,k Λk,k+1
Λk+1,k Λk+1,k+1

)
=

(
αk + iβk 0

0 αk− iβk

)
by (

αk βk
−βk αk

)
.
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Accordingly, the kth and (k+ 1)th columns of E holding the conjugate pairs uk + ivk and
uk− ivk are replaced by uk and vk, respectively. The resulting matrices Λ̃ and Ẽ satisfy the
approximation JacFm(b∗) ∼ ẼΛ̃Ẽ−1 as before, but now all entries are real and Λ̃ is block
diagonal. This leads to the error term for the block decomposition

EJ(m,b∗) = JacFm(b
∗)− ẼΛ̃Ẽ−1.

We expect ‖EJ(m,b∗)‖ to be small; this is usually the case, since the non-rigorous algorithms
produce high-quality approximate decompositions.

The component-wise quadratic approximation for Fm(b) centered at b∗ is given by

AkFm(b) = Ak

(
Fm(b∗)+ JacFm(b

∗)(b−b∗)
)
+(b−b∗)T H(k)

Fm
(ξ )(b−b∗), k = 1, . . . ,m,

where H(k)
Fm
(ξ ) is the corresponding Hessian matrix evaluated at an intermediate point. Notice

that since Fm is of degree 2, see (2.5); H(k)
Fm
∈ Rm×m is a constant matrix. Taking enclosures,

substituting Rm 3 b = Pm(a) and introducing the the component-wise defined error term

AkEH(m,b∗,a) = (Pm(a)−b∗)T H(k)
Fm
(Pm(a)−b∗), k = 1, . . . ,m,

we transform our differential inclusion (2.6) for the main modes into

Pm(a)′ ∈ ẼΛ̃Ẽ−1(Pm(a)−b∗)+ [EA(m,b∗)]+ [EJ(m,b∗)](Pm(a)−b∗)
+ [EH(m,b∗,a)]+ [EG(m,a)],

where a ∈ l2(R).

Local coordinates. The transformation into local coordinates at b∗, that is from Pm(a) to z,
is given by

(2.7) z = P−1
b∗ (Pm(a)) = Ẽ−1(Pm(a)−b∗),

while the inverse transformation is

(2.8) Pm(a) = Pb∗(z) = Ẽz+b∗.

Using formulae (2.7) and (2.8) we introducing the error term

E (m,b∗,a,z) = Ẽ−1EA(m,b∗)+ Ẽ−1EJ(m,b∗)Ẽz

+ Ẽ−1EH(m,b∗,a)+ Ẽ−1EG(m,a).

Assuming that [E (m,b∗,a,z)] is an enclosure of E (m,b∗,a,z), we obtain the following for-
mula as the inclusion in local coordinates for the main modes

(2.9) z′ ∈ Λ̃z+[E (m,b∗,a,z)], for z ∈ Rm,

which is of the desired form.
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2.5. Isolation inequalities. Given the m-Galerkin projection, we have transformed our equa-
tion for the first m coefficients (main modes) into a differential inclusion. For the tail modes
we will work with (2.4). In order for the set S =W ⊕T to be an isolating block, conditions
C4 and C5 have to be satisfied. We shall use local coordinates on the space Xm, the set W is
obtained as W = Pb∗Z, where Z is given in the local coordinates as follows. If the compo-
nent k corresponds to a one-dimensional block then [z]k = [zk,zk]. If the components k and
k+1 correspond to a two-dimensional block, then using the notation (k) := (k,k+1), z(k) is
given as the closed ball around zero with radius rk, that is z(k) = B(0,rk). In addition, let us
define the notation

λ(k) =

(
αk βk
−βk αk

)

for the corresponding block in Λ̃. Now, we may formulate the isolation inequalities (see
Lemma 4.3 in [24]) for the main modes:

- for a one-dimensional main mode block corresponding to component k:

λkzk +[E (m,b∗,a,z)]k > 0

λkzk +[E (m,b∗,a,z)]k < 0,
(2.10)

- for a two-dimensional main mode block corresponding to components (k,k+1):

(2.11) λ(k)z(k)+
√

[E (m,b∗,a,z)]2k +[E (m,b∗,a,z)]2k+1 < 0,

together with the similar inequalities coming from C4 for the tail:

- for the tail mode k:

ρkak +AkN(a)> 0

ρkak +AkN(a)< 0.
(2.12)

If these equations are satisfied, then the vector field points inwards on the boundary of the
set W ⊕T implying that W is an isolating block and W ⊕T forms self-consistent bounds.

2.6. The isolation algorithm. We obtain the bounds through the following algorithm as
seen in [24]. The function Validate_FixedPoint takes in as parameter our non-rigorous
candidate solution. Note that this was obtained by using a "large" M for the Galerkin pro-
jection. We have the freedom to choose a smaller m and give initial values for some of the
modes in the initial guess for the tail T ∗ as well.



12 FIXED POINTS OF A DESTABILIZED KURAMOTO-SIVASHINSKY EQUATION

Algorithm 1 Validating a fixed point
1: function VALIDATE_FIXEDPOINT(b∗,T ∗)
2: Z← [−∆,∆]m . Z is a small set around zero in local coordinates.
3: Ẽ, Λ̃← Block Decomposition(b∗) . Obtain the block decomposition.
4: repeat
5: W ←Pb∗Z . W in the original coordinates.
6: T ← T ∗ . We always start from the candidate tail.
7: Generate Tail(W,T ) . Generation of the self-consistent tail T .
8: if the tail is consistent then
9: E ← [E (m,b∗,W ⊕T,z)] . Enclose the error and obtain (2.9).

10: for all k ∈ Nm do
11: Check Isolation(Z,T,k) . Check (2.10) and (2.11) for k.
12: end for
13: if the isolation equations are not satisfied then
14: Increase Z where necessary

15: end if
16: end if
17: until we obtain self-consistent bounds

18: end function

The function Generate Tail called in line 7 generates a topologically self-consistent tail,
thus inequalities (2.12) are satisfied. Line 11 checks if (2.10) and (2.11) are satisfied for the
k-th component. If they are, the function Check Isolation tightens the bounds maintaining
the isolation. In line 14 we increase Z in the non-isolated directions. For a description of
these procedures, the reader is referred to [27] and [24], respectively. In line 17 of Algorithm
1 we exit the cycle if the isolation is obtained for all modes, thus the existence of a fixed
point is validated.

2.7. Results of the computations. We implemented our program in C++, using the CAPD
Library [8] for rigorous computations. We have validated stationary solutions given various
parameter sets. A table is provided for each of these situations to describe the stationary
solution as follows.

For a given parameter set, we list the first 15 Fourier coefficients of u(t,x)=∑
∞
k=1−2ak sin(2πx

L )
truncated to 6 digits; the full description of u(t,x) may be found in the outputs [1]. Norm es-
timates are given to provide upper bounds on ‖u∗(t,x)−u(t,x)‖C0 and ‖u∗(t,x)−u(t,x)‖L2 ,
where u∗(t,x) is the found stationary solution of the destabilized Kuramoto-Sivashinsky
equation. Note that selecting an optimal ∆ – see line 2 in Algorithm 2.6 – is a delicate
matter. Taking ∆ too large will ruin all estimates needed for consistency and isolation. In
addition to this, we cannot hope to obtain good (small) norm estimates unless ∆ is small.
On the other hand, our method will fail for small ∆ unless we start with a good approximate
solution. This situation calls for a small amount of trial and error; we start with a very small
∆, and gradually (and locally) inflate the neighbourhood – see line 14 in Algorithm 2.6.
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k ak k ak k ak

1 −2.17937 6 0.56107 11 −0.25329
2 1.20909 7 −0.55752 12 0.16891
3 −0.80087 8 0.55773 13 −0.11215
4 0.66633 9 −0.48520 14 0.07532
5 −0.58366 10 0.36620 15 −0.05136

(1) Viscous shock solution for the parameters α = 0.5, β = 2, γ = 1, ν = 1 and L = 30. In
the algorithm, ∆ is set to 10−5. C0 estimate: 3.7567×10−4, L2 estimate: 1.3523×10−4.

k ak k ak k ak

1 −3.19964 6 0.62280 11 −0.48604
2 1.61679 7 −0.56912 12 0.45776
3 −1.10128 8 0.53591 13 −0.41057
4 0.85067 9 −0.51590 14 0.34852
5 −0.70942 10 0.50192 15 −0.28211

(2) Viscous shock solution for the parameters α = 0.5, β = 2, γ = 1, ν = 1 and L = 40. In
the algorithm, ∆ is set to 10−8. C0 estimate: 2.2855×10−8, L2 estimate: 6.0610×10−9.

k ak k ak k ak

1 −3.98764 6 0.72192 11 −0.48801
2 2.00717 7 −0.63934 12 0.47137
3 −1.35335 8 0.58130 13 −0.45724
4 1.03164 9 −0.53981 14 0.44270
5 −0.84323 10 0.50988 15 −0.42466
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(3) Viscous shock solution for the parameters α = 0.5, β = 2, γ = 1, ν = 1 and L = 50. In
the algorithm, ∆ is set to 10−8. C0 estimate: 1.0506×10−6, L2 estimate: 2.2773×10−7.

k ak k ak k ak

1 −1.84639 6 −1.84639 11 −0.38150
2 1.65079 7 1.65079 12 0.37451
3 −0.93640 8 −0.93640 13 −0.36967
4 0.70452 9 0.70452 14 0.35854
5 −0.61668 10 −0.61668 15 −0.33656

(4) Flat shock solution for the parameters α = 0.5, β = 2, γ = 1, ν = 1 and L = 50. In the
algorithm, ∆ is set to 10−8. C0 estimate: 7.0353×10−9, L2 estimate: 1.4926×10−9.

Remark 2.1. Note that the parameters of example (3) and (4) are identical. The initial
guesses, however, were selected differently. This explains why different solutions were found.

3. FUTURE DIRECTIONS

The theory for time integration of differential inclusions was developed by Zgliczyński
and Kapela [13]. The consequent works of Zgliczyński [25, 26] are aimed at validating and
studying time-periodic solutions of dissipative PDEs and time integration. These techniques
can be applied to the destabilized Kuramoto-Sivashinsky equation (1.2) and other equations
as well. We have already implemented the rigorous time integration algorithm and we plan
to study (1.2) in more detail.

After obtaining a fixed point, the next question is its stability. This usually requires a
suitable norm; for block-decompositions like the ones we employ, we might use the so-
called block-infinity norm, as seen in Zgliczyński [24]. Having obtained an enclosure for an
asymptotically stable stationary solution, it is a natural task to study its basin of attraction.
Assume that we obtain a larger trapping region in some way around the stationary solution on
which we cannot prove its stability, thus cannot guarantee uniqueness either. Using rigorous
time integration it may turn out that every solution starting from this larger set eventually
enters the attracted isolating block obtained by Algorithm 1. This would imply that the
new trapping region is inside the basin of attraction as well. Cyranka [9] provided such a
computer-aided proof for the global stability of certain stationary solutions for the viscous
Burgers equation with constant forcing using the techniques of Zgliczyński.

When time integration does not provide such results directly, possibly because the new
candidate region is too large, we may still consider the time-h map given by the rigorous
integrator. Studying this map on the finite dimensional space, where the self-consistent
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bounds are represented, opens up the possibility for using graph representation techniques
[10, 15, 5, 4] to estimate the basin of attraction.

As one can see, there are plenty of possibilities lying ahead. We plan to address these in
the future.
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