
COMPUTING OF B-SERIES BY AUTOMATIC DIFFERENTIATION

FERENC BARTHA AND HANS Z. MUNTHE-KAAS

1. Introduction

B-series, named after John C. Butcher, is a fundamental tool for the study of numerical
integration methods [4, 14]. B-series are mainly used as a theoretical tool systematising the
analysis of numerical integration schemes. In recent years B-series methods have also been
used more directly as a computational tool. The method of modified vector fields [6] is based
on the idea that the results of a given numerical integration scheme can be improved by
modifying the vector field prior to feeding it into the numerical integrator. As an example,
given a differential equation y′ = f(y) and the second order implicit midpoint rule, one

may compute a modified vector field f̃ such that when f̃ is fed into the midpoint rule,
the result is a higher order approximation to the original differential equation y′ = f(y).

The modified vector field f̃ can be expressed as a B-series in f , and the computation of
f̃ involves the computation of derivatives of f . A very special example is the method of
modified vector fields applied to Eulers explicit method. In this case f̃ is given as a Taylor
series expansion of f up to the desired order. More generally, Runge–Kutta like methods
based on computing terms in the B-series are called elementary differential Runge–Kutta
methods [17].

Previous work on modified vector fields have mainly been applied to special dynamical
systems where the derivatives of f are analytically computable up to a certain order. For
more general systems the analytical computation of higher order derivatives is intractable
by analytical means, due to a combinatorial explosion in the number of terms. An impor-
tant alternative to analytical differentiation is the use of Automatic Differentiation (AD)
techniques [12]. Such techniques are applicable whenever there is a need to compute higher
order derivatives in given points, and analytical expressions are not needed. In the special
case of Taylor series integration methods, AD techniques have successfully been applied to
compute Taylor series up to order 50 or more [21].

The main purpose of the present paper is to investigate AD techniques and software for
the computation of general B-series, and hereby opening up the applicability of modified
vector field methods and elementary differential Runge-Kutta methods for general classes
of dynamical systems.

1.1. Pre-Lie algebras, trees and B-series. B-series can generally be defined in terms of
a pre-Lie algebra. A pre-Lie algebra is a vector space A with a bilinear product . : A×A →
A. The product is neither commutative nor associative, but satisfies the pre-Lie relation

a(x, y, z) = a(y, x, z),
1

2 FERENC BARTHA AND HANS Z. MUNTHE-KAAS

where a(x, y, z) = (x.y).z−x.(y.z) is the associator of the product. Our prime example
of a pre-Lie algebra is the set of vector fields on Rn, denoted Ξ(Rn). This consist of all
smooth functions f : Rn → Rn with the pre-Lie product given for f, g ∈ Ξ(Rn) as

(1.1) (f . g)(y) =
∂

∂s

∣∣∣∣
s=0

g(y + sf(y)).

An other important example of a pre-Lie algebra is the set of all rooted trees T , endowed
with the product . given by grafting. The grafting t1 . t2 is a sum of all possible ways of
attaching the root of t1 to a node of t2, as in this example:

. = + + = + 2 .

The pre-Lie algebra {T, .} is called the free pre-Lie algebra, since it has a universality
property as follows [5]. For any pre-Lie algebra A and any map 7→ f : T → A there
exists a unique pre-Lie morphism Ff : T → A, defined as a map such that Ff () = f and
Ff (t1 . t2) = Ff (t1) . Ff (t2) for all trees t1, t2 ∈ T . In numerical analysis Ff (t) ∈ Ξ(Rn)
are called elementary differentials. The evaluation of all elementary differentials can be
done in different ways. Based on the homomorphism property of Ff , we can build all the
elementary differentials from the monomial basis for the free pre-Lie algebra. The first of
these are , . , (.) . , . (.), (.) . (.). The monomial basis is
indexed by binary trees. Rooted trees are obtained from binary trees by a recursion known
as Knuth’s rotation correspondence [9]. The first elementary differentials can be obtained
from Knuth’s correspondence as

Ff () = f

Ff () = Ff (.) = Ff () . Ff () = f . f

Ff () = Ff (.) = (f . f) . f

Ff () = Ff (. −) = f . (f . f)− (f . f) . f.

A more conventional expression for the elementary differentials of rooted trees is directly
in terms of higher order derivatives of f , as given in (2.5) below.

A B-series is traditionally defined as a formal finite or infinite sum

Bf (β) =
∑
t∈T

h|t|

σ(t)
β(t)Ff (t)

where |t| denotes the number of nodes in t, σ(t) ∈ Z is the tree symmetry function, h ∈ R
is a real parameter (e.g. step size of a numerical method) and β : T → R is a given function.
The parameter h can be absorbed by a re-scaling of the vector field f 7→ hf and σ can be
absorbed into β. Therefore we adopt the simplified definition

(1.2) Bf (β) =
∑
t∈T

β(t)Ff (t) ∈ Ξ(Rn).

COMPUTING OF B-SERIES BY AUTOMATIC DIFFERENTIATION 3

Our goal is efficient computation of finite B-series, i.e. series where β(t) = 0 for all |t| > N ,
using automatic differentiation.

2. An algorithm for computing B-series

In this section we will present a way to calculate B-series. This problem consists of
multiple parts. The first is the generation of the rooted trees, for this we use the algorithm
of Li and Ruskey [16]. Then in order to evaluate Ff over a tree we take advantage of
Automatic Differentiation (AD, see in Griewank [12]) in our algorithm. One of the most
important characteristics of AD is that we are not working with the formulas for derivatives,
but the values at a given point. We compute higher order Taylor coefficients of univariate
functions with automatic differentiation, and through interpolation from these we obtain
the necessary derivatives using the formula by Griewank, Utke and Walther [13]. Finally
one has to take care of the redundancy when evaluating Ff over all the trees up to a given
degree. We handle this phenomenon by basing our calculation on weighted directed acyclic
graphs instead of rooted trees.

2.1. Generating rooted trees. We need an efficient way to generate all the rooted trees
up to degree d, taking care about the isomorphic equivalences. We use the algorithm of Li
and Ruskey [16], which we will review here.

There are multiple ways to represent a rooted tree, we will use the parent array concept.
Suppose that we have a rooted tree τ whose vertices are labeled as 1, 2, . . . , d. Then the ith
entry of the parrent array parτ [i] is 0 if the vertex with the label i is the root, otherwise it
is the label of the parent of the vertex labeled with i. In order to obtain a unique parent
array associated with a given rooted tree τ , we label the vertices in the depth-first order
starting from the root. See Figure 1 for a labeling of a rooted tree with 9 vertices.

Figure 1. The depth-first labeling of τ gives parτ = 〈0, 1, 2, 3, 3, 1, 1, 7, 7〉

We need a representative element from each isomorphic equivalence class. We obtain
these with the use of the parent array. The representative element from an equivalence
class of the rooted trees is the rooted tree τ that has the lexicographically maximal parent
array. This rooted tree is called canonic and we also say that the parent array is canonic.
It is straightforward that removing the vertex with the highest label from a canonic tree
with d vertices results in a canonic tree with d − 1 vertices. On Figure 2 we compare

4 FERENC BARTHA AND HANS Z. MUNTHE-KAAS

the parent arrays of two isomorphic rooted trees τ1 and τ2. Since τ2 has lexicographically
bigger parent array, it is the canonic tree in the class consisting these two trees.

Figure 2. Two isomorphic trees with parτ1 = 〈0, 1, 1, 3〉 < parτ2 = 〈0, 1, 2, 1〉

The algorithm from [16] generates canonic parent arrays up to a given size. Moreover
it does so in constant time, amortized over all trees. This is the so-called CAT-property
(Constant Amortized Time). The recursive procedure is based on extending a canonic tree
τ of d− 1 vertices into a canonic tree with d vertices.

The vertex with label d is a leaf by construction, and comes later than the vertex labeled
with d− 1 in the depth-first order. Therefore the parent of d is an ancestor of d− 1 or the
vertex d− 1 itself.

Lemma 2.1. Let parτ be the parrent array of the canonic rooted tree τ with d−1 vertices.
If the parrent array 〈parτ [1], . . . , parτ [d−1], η〉 is canonic and η 6= 1, then the parent array
〈parτ [1], . . . , parτ [d− 1], parτ [η]〉 is canonic as well.

Proof. Suppose that the parent array 〈parτ [1], . . . , parτ [d− 1], parτ [η]〉, and the respective
tree τ ′, are not canonic. Let the canonic tree in the class of τ ′ be τ ′′. Consider the
following operation on the tree τ ′′. Move the vertex that corresponds to d with respect
to the labeling of τ ′ to be the child of the vertex that corresponds to η in the labeling of
τ ′. We obtain a lexicographically bigger parent array than 〈parτ [1], . . . , parτ [d− 1], η〉 and
this is a contradiction. �

Lemma 2.1 suggests that we shall find the ancestor µ of d−1, for which 〈parτ [1], . . . , parτ [d−
1], parτ [µ]〉 is canonic and µ is the lowest such index. This is exactly what Algorithm 1
does.

COMPUTING OF B-SERIES BY AUTOMATIC DIFFERENTIATION 5

Algorithm 1 Generation of canonic rooted trees

1: procedure Gen(λ, ρ, S; par, T) . par[.] is a canonic parent array with λ− 1 entries
2: if (λ > d) then . the size of par is d
3: move par into T . save par into the list T
4: else . copy the next vertex of the subtree rooted at ρ
5: if L = 0 then
6: par[λ]← λ− 1 . the first tree
7: else if par[λ− S] < ρ then
8: par[λ]← par[ρ] . copying root
9: else

10: par[λ]← S + par[λ− S] . copying non-root
11: end if
12: Gen(λ+ 1, ρ, S; par, T) . continue the copying repeatedly
13: while par[λ] > 1 do . finding the next subtree to be copied
14: ρ← par[λ]
15: par[λ]← par[ρ]
16: Gen(λ+ 1, ρ, λ− ρ; par, T) . start the copying of this subtree
17: end while
18: end if
19: end procedure

For a rooted tree τ and its vertex labeled with q let Tτ (q) be the rooted subtree of τ rooted
at q. In Algorithm 1 we copy repeatedly the subtree with the root ρ. We store the degree of
this subtree in S. After Algorithm 1 is called, it produces all the canonic parent arrays of
the form 〈par[1], . . . , par[p− 1], ·〉. We start the generation by Gen(1, 0, 0; par = 〈〉, T = ∅).

Assume now that τ is a rooted tree with d− 1 vertices and let µ be the ancestor of d− 1
that satisfies that the parent array of Tτ (µ) is a prefix of the parent array of Tτ (ν) where
ν is the rightmost proper sibling of µ, and µ is the lowest such index. We call critical node
the leftmost sibling ρ of ν that satisfies that Tτ (ρ) = Tτ (ν). On Figure 3 we have a tree
with 16 vertices. We see that µ = 15, ν = 12 and ρ = 6.

Figure 3. A tree with 16 vertices, the critical node is 6.

In order to see that Algorithm 1 is correct, let τ be a rooted tree with d− 1 vertices and
consider the lexicographically largest infinite canonic rooted tree agreeing with τ in the
first d− 1 positions of its parent array. This infinite tree may be formed by deleting Tτ (µ),

6 FERENC BARTHA AND HANS Z. MUNTHE-KAAS

and replacing it with an infinite sequence of rooted subtrees, all isomorphic to Tτ (ρ) and
their root connected to parτ (ρ) (= parτ (ν) = parτ (µ)). Truncating this infinite tree at any
node D ≥ d gives the lexicographically largest extension of D nodes. We start a new copy
of Tτ (ρ) in line 8 of Algorithm 1, while in line 10 we make a new isomorphic copy with
offset S.

2.2. Computing higher order derivatives. Let f : Rn → Rn be sufficiently smooth
function such that all appearing derivatives exist and are continuous. Our goal is to
evaluate higher order derivatives of f . For this purpose one may use higher order automatic
differentiation techniques for multivariate functions, the reader is referred to Berz [3], Danis
[8]. We shall present here a different method described in Griewank, Utke and Walther
[13].

Fix the integer p ≥ 1 for the time being. We shall not denote explicitly that the
dimension of a quantity is dependent on p, it is rather straightforward to use the formulas
with different p-s later on.

Let i = (i1, . . . , ip) ∈ Np0 be a multi-index with the norm |i| defined as |i| =
∑p

r=1 ir. The
multi-indices i and j satisfy j ≤ i if the relation is satisfied componentwise. Consequently
j < i is true if j ≤ i and j 6= i stand. We denote by 0 and 1 the multi-indices that contain
only zeros or ones respectively. Naturally a multi-index is a real vector in Rp as well,
therefore we may use them in the standard algebraic operations.

Let sr ∈ Rn be real vectors for all r = 1, . . . , p. The S ∈ Rn×p matrix that has the
column vectors sj,

S =
[
s1; . . . ; sp

]
is called the seed matrix.

Our goal is to evaluate ∇dSf(x), that is the d-th derivative tensor of f(x + Sz) with
respect to z at z = 0. This means that we have to obtain the partial derivatives of the
form

(2.1) fi(x) =
∂|i|f(x + z1s1 + . . .+ zpsp)

∂zi11 . . . ∂z
ip
p

∣∣∣∣∣
z=0

,

where i ∈ Np0 is a multi-index with |i| = d.
Let Fk(x;v) be the k-th Taylor-coefficient of the univariate function

fx;v : R→ Rn : t 7→ f(x + tv)

at t = 0. The quantities γ(i, j) where i and j are multi-indices are defined as follows

(2.2) γ(i, j) =
∑

0<k≤i
(−1)|i−k|

(
j
k

)(
|j|k/|k|

j

)(
|k|
|j|

)|i|
.

Now we can state the main formula for higher derivative tensors from [12] and [13] that we
used in our implementation. If d ≥ |i| > 0, then

(2.3)
∂|i|f(x + z1s1 + . . .+ zpsp)

∂zi11 . . . ∂z
ip
p

∣∣∣∣∣
z=0

=
∑
|j|=d

γ(i, j)F|i|(x;Sj).

COMPUTING OF B-SERIES BY AUTOMATIC DIFFERENTIATION 7

According to the analysis done in [13], the operation count of this propagation of multiple
univariate Taylor series in comparison with the operation count of the propagation of
multivariate derivatives is essentially the same for moderate degrees and considerably fewer
for higher degrees.

2.3. Computing Ff over a rooted tree τ at x. The quantity Ff (τ) is a vectorfield.
Note that we want to obtain its value Ff (τ)(x) at the point x ∈ Rn. For the tree with one
vertex we have

(2.4) Ff ()(x) = f(x).

Assume that the rooted tree τ is a root connected to the subtrees: τ1, . . . , τp. In this
situation the recursive formula for Ff (τ)(x) is written as

(2.5) Ff (τ)(x) =
∑

j∈{1,2,...,n}p

∂pf

∂xj1 . . . ∂xjp
(x)F j1

f (τ1)(x) . . .F jp
f (τp)(x).

Having isomporphic trees τ1
∼= τ2 results in Ff (τ1)(x) = Ff (τ2)(x).

We may consider formula (2.5) as a higher derivative tensor and obtain the closed ex-
pression

(2.6) Ff (τ)(x) =
∂pf (x + z1Ff (τ1)(x) + . . .+ zpFf (τp)(x))

∂z1 . . . ∂zp

∣∣∣∣
z=0

.

We can convert this into the form of (2.3) by introducing i = (1, . . . , 1) ∈ Np+ and sr =
Ff (τr)(x) for r ∈ {1, . . . , p}. However, if τ has symmetries on the first level, that is there
are identical – up to isomorphism – trees between τ1, . . . , τp, exploiting this will result in a
more efficient computation.

Assume now that the root of τ has the following subtrees τ1,1 . . . τ1,i1 ; . . . ; τp,1 . . . τp,ip
where τr,1 ∼= . . . ∼= τr,ir for all r ∈ {1, . . . , p}. Let τr be the canonic tree in the equivalency
class that contains τr,1, . . . , τr,ir . Using these, equation (2.6) now takes the somewhat
familiar form

(2.7) Ff (τ)(x) =
∂|i|f(x + z1Ff (τ1)(x) + . . .+ zpFf (τp)(x))

∂zi11 . . . ∂z
ip
p

∣∣∣∣∣
z=0

.

The seed matrix in this case is

S = [Ff (τ1)(x); . . . ;Ff (τp)(x)] .

As the recursive definition shows, in order to evaluate Ff over the rooted tree τ , first we
have to evaluate the children of the root and for that, their children etc.

Let us assume that τ has d vertices and those are V(τ) = {v1, . . . , vd}. Let i be a
permutation of {1, . . . , d}. The ordering {vi1 , . . . , vid} of the vertices is called post-ordering
if for every vertex vij it is true that if vik is a child of vij , then ik < ij . In order to have
simpler notations let us assume that {v1, . . . , vd} is already in post-order. Note that this
implies that v1 is a leaf, and vd is the root.

Recall that Tτ (q) denotes the rooted subtree of τ rooted at q. Consider the following
sequence of rooted trees Tτ (v1), . . . , Tτ (vd). When computing Ff (Tτ (vj))(x), because of

8 FERENC BARTHA AND HANS Z. MUNTHE-KAAS

the post-ordering of the vertices, the rows of the seed matrix are amongst the vectors
Ff (Tτ (vk))(x) with k < j. Therefore we may evaluate the values

Ff (Tτ (v1))(x), . . . , Ff (Tτ (vd))(x)

in this order, using equations (2.3) and (2.7). Observe that Tτ (vd) = τ , thus we have a
way to compute Ff (τ)(x).

2.4. Computing Ff over multiple rooted trees. Our goal now is to evaluate Ff over
all the rooted trees up to degree d. Consider that the list T of these rooted trees is ordered
as follows. The rooted tree τ1 ∈ T preceeds the rooted tree τ2 ∈ T if the degree of τ1 is
smaller, or if they have the same degree, then if the parent array of τ1 is lexicographically
smaller. It is obvious that if τ ′ is a rooted subtree of τ , then τ ′ comes before τ in the
ordering.

We wish to evaluate Ff over all the trees in the ordered list T . We shall progress from
smaller order to higher order, thus we start with the tree with one vertex , obtaining
Ff ()(x) = f(x). In the rest of this section when we consider a rooted tree τ ∈ T , we
always assume that it has the following structure. The subtrees connecting to the root
are τ1,1 . . . τ1,i1 ; . . . ; τp,1 . . . τp,ip and τr,1, . . . , τr,ir are in the same equivalency class with the
canonic rooted tree τr for all r ∈ {1, . . . , p}. As we have seen with the post-ordering, we
may evaluate Ff (τ)(x) with applying equation (2.3) once, if Ff is known for the first level
subtrees already. It is obvious that we don’t have to repeat the evaluation recursively
vertex by vertex, instead we may proceed through the ordered list T . If we have evaluated
Ff over the first k trees already, then doing the computation for the (k + 1)th tree is one
application of the formula (2.3).

We may represent every rooted tree in T as a vertex in a weighted Directed Acylcic Graph
(wDAG) in the following way. Let G be a wDAG with vertices V and edges E ⊆ V × V.
We denote the weight of an edge e by w(e). The weight of the vertex v ∈ V is the sum of
the weights of the edges leaving v, that is

(2.8) w(v) =
∑

u:(v,u)∈E

w((v , u)).

We say that G represents the ordered list T of rooted trees if there exists a bijective function
ι : T → V such that if τ ∈ T , then

(2.9) {v ∈ V : (ι(τ), v) ∈ E} = {ι(τr) : r ∈ {1, . . . , p}}

and w((ι(τ), ι(τr))) = ir for all r ∈ {1, . . . , p}. On Figure 4 we added the wDAG generated
by our program representing the rooted trees with degree less than 6.

COMPUTING OF B-SERIES BY AUTOMATIC DIFFERENTIATION 9

Figure 4. G representing the rooted trees with degree less than 6

It is evident that G has only one sink, that is only one vertex with no outgoing edge and
this is ι(). Define the function ∆ : V → Rn as follows,

(2.10) ∆(v) =

f(x) if v = ι(),

∂w(v)f

(
x+

p∑
r=1

zr∆(ur)

)
∂z

w((v,u1))
1 ... ∂z

w((v,up))
p

∣∣∣∣∣∣
z=0

if {u ∈ V : (v, u) ∈ E} = {u1, . . . , up} .

We may progress with the evaluation of ∆ over the vertices of G in a post-ordering of V.
It is obvious that ∆ is computable and for any τ ∈ T we have

(2.11) Ff (τ)(x) = ∆(ι(τ)).

2.5. Computational cost. An important aspect of our algorithm is that the dimension
n of the vector field f enters linearly into the cost of the evaluation of the B-series, thus
the algorithm is tractable also for high dimensional vector fields. The operation cost of
evaluating a d’th order univariate Taylor-coefficients is of the order O(d2) according to
Griewank [12], thus the d’th order Taylor coefficient ∂d/∂zdf(x + zs) is found in only
O(nd2) operations. This compares favorably with the exponential growth observed for the
symbolic differentiation of a general function.

Griewank, Utke and Walther [13] analysed the formula (2.3) and found that the number
of nonvanishing coefficients

(2.12) 0 6= γ(i, j) for i, j ∈ Np0, 1 ≤ |i| ≤ d, |j| = d,

is less than or equal to

(2.13) #(d, p) =
d∑

m=1

(
p
m

)(
d
m

)(
m+ d− 1

d

)
.

10 FERENC BARTHA AND HANS Z. MUNTHE-KAAS

Given a seed matrix, this number bounds the number of operations needed to calculate all
partial derivatives from the univariate Taylor series.

As seen in Plotkin and Rosenthal [19] and Finch [11], if Td is the number of non-
isomorphic rooted trees with n vertices, then

Td ∼ r−dd3/2

(
0.4399240125...+

0.0441699018...

d
+

0.2216928059...

d2
+

0.8676554908...

d3
+ . . .

)
,

(2.14)

where r = 0.3383218568... is the unique positive root of the equation F (x, 1) = 0 for

(2.15) F (x, y) = x exp

(
y +

∞∑
k=2

T (xk)

k

)
− y,

and T (x) =
∑∞

j=1 Tjx
j is the generating function for {Td}. Recall that a rooted tree is

represented in the wDAG as a vertex with the same weight as the number (d) of the children
of the root and with as many children as many (p) non-isomporphic children the root has.

We do not have a precise expression for the total cost of evaluating B-series up to
order d with the present algorithm. However, assuming that we need at most Td different
seed matrices, we believe the cost is asymptotically bounded by O(nd2Td) < O(nd5/2)
operations.

2.6. Implementation. We have written our program in C++ using the automatic differ-
entiation library FADBAD++ by Bendtsen and Stauning [2] and the CAPD library [7]. For
the representation of the graphs we have used the Boost Graph library [20] and stored the
graphs in Graphviz format [10]. The source code is available at [1].

3. Conclusion and future directions

We have presented a method to efficiently compute B-series using automatic differentia-
tion. While repeatedly using formula (2.3), it becomes apparent, that during the evaluation
of the wDAG described in Section 2.4, we have to calculate with the same seed-matrix or
submatrix in certain cases. Note that it is also recommended to precompute the values
γ(i, j) in advance, possibly with higher accuracy. These gives space for further improve-
ments, that we plan to address in the future.

Whereas computation of d-order B-series for n dimensional vector fields is in general
impossible for high d or high n using symbolic derivations, the present algorithm has a
complexity which is only linear in n and polynomial in d and thus applicable in a range of
practical situations, at least for moderately high order d.

However, an order d B-series is still substantially more expensive to compute than a
order d Taylor expansion, using AD. The reason for this is that the Taylor expansion has
a sparse representation in the monomial basis, represented by the B-series

f + f . f +
1

2
f . (f . f) +

1

6
f . (f . (f . f)) +

1

24
f . (f . (f . (f . f)))

COMPUTING OF B-SERIES BY AUTOMATIC DIFFERENTIATION 11

In other words, the Taylor series is obtained by a repeated differentiation with repspect to
t of the function f(y(t)), where y′(t) = f(y(t)). Thus, the B-series of Taylor expansions
can be computed substantially more efficient than general B-series. An alternative to our
computational approach, which may be more efficient also for other B-series being sparse in
the monomial basis, might be to use (1.1) as a basis for an AD algorithm. The algorithmic
details and possible computational advantages of such an approach is subject to future
research.

References

[1] Bartha, F. Ad-trees software http://hans.munthe-kaas.no/work/Projects.html.
[2] Bendtsen, C., and Stauning, O. FADBAD, a flexible C++ package for automatic differentiation

–- using the forward and backward methods. Tech. Rep. IMM-REP-1996-17, TU Denmark, DK-2800
Lyngby, Denmark, 1996.

[3] Berz, M. Algorithms for higher derivatives in many variables with applications to beam physics.
In Automatic differentiation of algorithms (Breckenridge, CO, 1991). SIAM, Philadelphia, PA, 1991,
pp. 147–156.

[4] Butcher, J. An algebraic theory of integration methods. Math. Comp 26, 117 (1972), 79–106.
[5] Chapoton, F., and Livernet, M. Pre-lie algebras and the rooted trees operad. International Math-

ematics Research Notices 2001, 8 (2001), 395–408.
[6] Chartier, P., Hairer, E., Vilmart, G., et al. Numerical integrators based on modified differential

equations. Mathematics of computation 76, 260 (2007), 1941–1954.
[7] Computer Assisted Proofs in Dynamics group. CAPD Library. http://capd.ii.uj.edu.pl. a C++

package for rigorous numerics.
[8] Danis, A. Thesis: Parameter estimation, set valued numerics – in preparation. Uppsala University

(2012).
[9] Ebrahimi-Fard, K., and Manchon, D. The magnus expansion, trees and knuth’s rotation corre-

spondence. arXiv preprint arXiv:1203.2878 (2012).
[10] Ellson, J., Gansner, E., Koutsofios, L., North, S., Woodhull, G., Description, S., and

Technologies, L. Graphviz — open source graph drawing tools. In Lecture Notes in Computer
Science (2001), Springer-Verlag, pp. 483–484.

[11] Finch, S. Two asymptotic series. http://algo.inria.fr/bsolve/ .
[12] Griewank, A. Evaluating derivatives, vol. 19 of Frontiers in Applied Mathematics. Society for Indus-

trial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. Principles and techniques of algorith-
mic differentiation.

[13] Griewank, A., Utke, J., and Walther, A. Evaluating higher derivative tensors by forward propa-
gation of univariate Taylor series. Math. Comp. 69, 231 (2000), 1117–1130.

[14] Hairer, E., Lubich, C., and Wanner, G. Geometric numerical integration: structure-preserving
algorithms for ordinary differential equations, vol. 31. Springer, 2006.

[15] Jorba, À., and Zou, M. A software package for the numerical integration of ODEs by means of
high-order Taylor methods. Experiment. Math. 14, 1 (2005), 99–117.

[16] Li, G., and Ruskey, F. The advantages of forward thinking in generating rooted and free trees (ex-
tended abstract). In IN 10TH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS
(SODA (1999), pp. 939–940.

[17] Moan, P., Murua, A., Quispel, G., Sofroniou, M., and Spaletta, G. Symplectic elementary
differential runge–kutta methods. preprint (2004).

[18] Moore, R. E., Davidson, J. A., Jaske, H. R., and Shayer, S. DIFEQ integration routine—user’s
manual. Tech. Rep. LMSC 6–90–64–6, Lockheed Missiles and Space Co., Palo Alto, CA, 1964.

12 FERENC BARTHA AND HANS Z. MUNTHE-KAAS

[19] Plotkin, J. M., and Rosenthal, J. W. How to obtain an asymptotic expansion of a sequence from
an analytic identity satisfied by its generating function. J. Austral. Math. Soc. Ser. A 56, 1 (1994),
131–143.

[20] Siek, J. G., Lee, L.-Q., and Lumsdaine, A. The Boost Graph Library User Guide and Reference
Manual (With CD-ROM). Addison-Wesley Professional, 2001.

[21] Simó, C. On the analytical and numerical approximation of invariant manifolds. Les Méthodes Mod-
ernes de la Mecánique Céleste (1990), 285–329.

[22] Tucker, W. Validated numerics. Princeton University Press, Princeton, NJ, 2011. A short introduc-
tion to rigorous computations.

