
Estimation of the diffusion coefficient by interval methods,

level curves and bicubic splines

O. Fogelkloua,1,2,∗

aDepartment of Mathematics, Uppsala University, P.O. Box 480, SE–751 06 Uppsala, Sweden

Abstract

We propose a new method for estimating a solution dependent diffusion coefficient
in the heat equation, given a numerical solution to the latter. The main idea is to
use a set–valued approximation of the solution in order to construct constraints on
the coefficient. These constraints enable us to obtain a cover of the graph of the
diffusion coefficient for a discrete set of temperatures. We illustrate the pros and
cons of our method on several examples.

Keywords: inverse problem, bicubic spline, interval analysis, heat equation

1. Introduction

Inverse problems are notoriously hard; inverse problems for the heat equation
are no exception. Many variations of these type of problems have been investigated;
for example, it is common to recover a coefficient in the heat equation. Here the
problem can be linear with space dependent coefficient and one-dimensional as in
[1], [2] and [3], linear with time dependent coefficient and one-dimensional as in [4],
linear with space dependent coefficient and multidimensional as in [5], [6] and [7], and
nonlinear with space dependent coefficient and one-dimensional as in [8]. The initial
temperature can also be recovered as in the linear and one-dimensional problems
described in [9] and [10]. Yet another variant of this problem is to consider the heat
equation driven by a source which is to be determined as in the linear one-dimensional
problems in [11], [12] and [13], and in the linear multidimensional problem [14]. The
solution can be recovered on the boundary too as in [15]. The inverse problems can

∗Corresponding author
Email address: oswald@math.uu.se (O. Fogelklou)

1Telephone: +46 18 471 3187
2Fax: +46 18 471 3201

Preprint submitted to Applied Mathematics and Computation August 31, 2011

also be a combination of the earlier mentioned problems. There is a search for the
coefficient and the initial temperature in [16] and [17], and for the coefficient, the
initial temperature and the boundary conditions in [18]. The four last problems are
one-dimensional and linear. The problem we study comes from [19] and has some
similarity to [8] due to the nonlinearity and the coefficient recovery. In our situation,
however, we use a distinct method from that used in [19].

2. Problem formulation

Given an approximation of the solution u of the heat equation

ut = (a(u)ux)x, 0 < x < 1 and 0 < t < T,

u(t, 0) = f(t), u(t, 1) = g(t), 0 < t < T,

u(0, x) = u0(x),

(1)

our goal is to estimate the diffusion coefficient a(u). Here a, f and g are positive
functions and f and g are also continuously differentiable. To be more precise, what
we are aiming for is a tabulation of a over a finite set of temperatures u1, . . . , uM ,
taken from the range of the solution to (1).

It should be pointed out that this problem is hard even if the approximation
errors |u− ũ| are zero. One way of simplifying matters is to only consider diffusion
coefficients having a (known) finite parameterization, e.g. a(u) = a1u+a2 sin (a3u

2).
This makes the problem finite dimensional, and easier to analyze.

2.1. Main strategy

Our approach to this problem begins by recasting (1) into the integral form:

a(u(t, x2))ux(t, x2)− a(u(t, x1))ux(t, x1) =

∫ x2

x1

ut(t, x)dx. (2)

Next, we consider two levels c1 and c2 and two level curves Γ1 = {(t, x) ∈ [0, T] ×
[0, 1] : u(t, x) = c2} and Γ2 = {(t, x) ∈ [0, T]× [0, 1] : u(t, x) = c2}. Assuming that we
can find two points on Γ1 and Γ2 having the same first variable value t′1, say (t′1, h11)
and (t′1, h12) and two points on Γ1 and Γ2 having another same first variable value
t′2, say (t′2, h21) and (t′2, h22), we can write (2) as the equation system

{

a(c2)ux(t
′
1, h12)− a(c1)ux(t

′
1, h11) =

∫ h12

h11
ut(t

′
1, x)dx

a(c2)ux(t
′
2, h22)− a(c1)ux(t

′
2, h21) =

∫ h22

h21
ut(t

′
2, x)dx.

(3)

2

Assuming further that our approximation ũ of u can be made C1-close in the supre-
mum norm, we have

{

a(c2)ũx(t
′
1, h12)− a(c1)ũx(t

′
1, h11) ≈

∫ h12

h11
ũt(t

′
1, x)dx

a(c2)ũx(t
′
2, h22)− a(c1)ũx(t

′
2, h21) ≈

∫ h22

h21
ũt(t

′
2, x)dx.

(4)

Given a sufficient amount of high quality data, we can achieve this by approximating
the solution by a piecewise bicubic spline. Repeating the process for different values
of the levels c1 and c2 and solving (4) for a(c1) and a(c2), we obtain the desired
tabulation of the diffusion coefficient a.

3. Set–valued considerations

Of course, in passing from (3) to (4), we must try to account for the effects of
our approximations. To this end, we will extend our computations to the set–valued
realm. We use sets to incorporate the fact that we are dealing with uncertainties;
both in the given data, and in our subsequent estimations of the partial derivatives
and integrals appearing in (4). We will use boldface to indicate that a entity is set–
valued: the basic element is a compact interval x = [x, x] = {x ∈ R : x ≤ x ≤ x}.
There exists a well developed theory for set–valued analysis [20, 21, 22], as well as
sophisticated libraries for this purpose [23, 24, 25, 26]

Let us assume that the data provided comes in the following form:

{ti, xj , ũi,j}i∈I,j∈J ,

where I and J are finite index sets. To begin with, we will use the given data set
to produce a piecewise bicubic spline. This can be done by standard methods [27],
given a (rectangular) partition of the global domain ∪N

k=1P
(k) = [0, T]× [0, 1]. Thus,

on each set P (k) of the partition, we approximate the solution to (1) by a bicubic
spline

s(k)(t, x) =
∑

0≤m,n≤3

b(k)mn(t− ť(k))m(x− x̌(k))n. (5)

Here (ť(k), x̌(k)) denotes the lower left corner of the partition element at hand P(k).
There are three kinds of errors for s approximating u.

• Errors are made by the solver of the forward problem (1).

• Errors are made in the finite difference approximation of ũt.

3

• Last but not least, the spline could be a bad fit of u at non-grid points.

We compensate for this by inflating the spline coefficients into intervals, producing
a set–valued spline:

s
(k)(t, x) =

∑

0≤m,n≤3

b
(k)
mn(t− ť(k))m(x− x̌(k))n. (6)

Our aim is to enclose all data points in the, now set-valued, graph of the spline:

ũi,j ∈ s
(k)(ti, xj) for all (ti, xj) ∈ P (k), i ∈ I, j ∈ J . (7)

Once we have achieved (7) for all k = 1, . . . , N , we form the spline for the global
domain by gluing together the local pieces:

s(t, x) =
N
∑

k=1

χP(k)(t, x)s(k)(t, x). (8)

It is our hope that, by formally differentiating (8), we can obtain reasonable approx-
imations to – or even enclosures of – the partial derivatives of u:

ut(t, x) ∈ st(t, x) and ux(t, x) ∈ sx(t, x). (9)

If this is indeed the case, we can mimic the strategy outlined in Section 2.1. The
first difference is that we must now consider set–valued level curves: Γ1 = {(t, x) ∈
[0, T]× [0, 1] : c1 ∈ s(t, x)} and Γ2 = {(t, x) ∈ [0, T]× [0, 1] : c2 ∈ s(t, x)}. This means
for example that an intersection between Γ1 and the line t = t′1 and an intersection
between Γ2 and the line t = t′1 will not consist of points (previously denoted h11 and
h12), but of intervals h11 and h12. These intervals can be found by a standard branch
and bound procedure, in which the global x domain [0, 1] is bisected into smaller
intervals. Once we have the four intervals h11, h12, h21 and h22 we can formulate
a set–valued version of the constraint (4) for the diffusion coefficient, producing an
interval enclosure of a(c1) and a(c2). Repeating the process for different values of the
levels c1 and c2, we obtain an interval–valued tabulation of the diffusion coefficient
a.

3.1. The set–valued level curves

We choose a vector with levels c1, . . . , cM and a vector with time values t′1, . . . , t
′
N .

Our goal is to estimate a on the set {c1, . . . , cM}. For every time value t′n and every
level cm we check if cm ∈ s(t′n, [0, 1]). If that is the case, we check if cm ∈ s(t′n, [0, 1/2])

4

x

t

t = t′1 t = t′2 t = t′3
(t′1,h11)

(t′1,h12)
(t′2,h21)

(t′2,h22)

(t′3,h31)

Γ1

Γ2

Figure 1: Some possible entries in the matrix H.

or cm ∈ s(t′n, [1/2, 1]). We continue bisecting each interval with x values Ix and
reevaluating the spline on its halves if cm ∈ s(t′n, Ix). We stop bisecting the intervals
when their lengths are smaller than some given tolerance tol. Each interval Ix such
that cm ∈ s(t′n, Ix) and such that its length is shorter than tol is put into a list. If the
list is non–empty, the union of the entries in the list consists of one or several disjoint
intervals. We let one of these intervals be the entry hnm in a matrix H. If the list is
empty, we just set hnm empty as well. In Figure 1 we show how h11, h12, h21, h22,
h31 and h32 can be chosen for some set–valued level curves. Note that h32 = ∅, since
the line t = t′3 does not cut the level curve Γ2 and that there is a subset of the circle
in Figure 1 which could have been our chosen h22.

3.2. Estimation of the diffusion coefficient

Suppose that there are t′n, t
′
p 6= t′n, cm and cq 6= cm such that hnm, hnq, hpm and

hpq are non–empty and such that hnm ∩hnq and hpm ∩hpq are empty. Then we look
for solutions a(cq), a(cm) of the interval linear equation system

{

sx(t
′
n,hnq)a(cq)− sx(t

′
n,hnm)a(cm) =

∫

hnq

hnm
st(t

′
n, x)dx

sx(t
′
p,hpq)a(cq)− sx(t

′
p,hpm)a(cm) =

∫

hpq

hpm
st(t

′
p, x)dx

5

t
t−
i−1

ti−1 t+
i−1

t−
i

ti t+
i

t−
i+1

ti+1 t+
i+1

Figure 2: Two nodes, t−
i
and t+

i
, are set symmetrically around and very close to each time node ti.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

f

g

Figure 3: The boundary data f(t) and g(t).

corresponding to the constraint (4). Of course we can construct an interval linear
equation system with time values t′n and t′p for any p 6= n and unknowns a(cm) and
a(cq) for any q 6= m. Therefore for each a(cm) we gather all possible equation sys-
tems containing the unknown a(cm) whose non–emptiness and emptiness properties
mentioned above hold. In all these equation systems a(cm) is a solution. Therefore
we let a(cm) be the intersection of all these solutions. Finally the diffusion coefficient
is shown as a function of u on the set {c1, . . . , cM} in a plot.

4. Examples and results

The approximate solution to (1), ũ, and its interpolated derivative ũx are com-
puted by the MATLAB initial-boundary value problem solver pdepe until the time
t = T = 6. The time derivatives also have to be approximated. In order to
compute time derivative finite difference approximations, we set two nodes t−i and

6

0
0.2

0.4
0.6

0.8
1

0

2

4

6

8
0

0.2

0.4

0.6

0.8

1

1.2

x
t

ũ

Figure 4: The solution to the forward problem ũ(x, t).

t+i symmetrically around and very close to each time node ti. See Figure 2. In our
examples we choose the initial condition u0(x) = ω0 and the boundary data

f(t) =

{

α1e
−β1t−γ1/t + ω0, if t > 0

ω0, if t = 0

and

g(t) =

{

α2e
−β2t−γ2/t + ω0, if t > 0

ω0, if t = 0,

where

α1 = 1.195779408199670

β1 = 0.199396405798781

γ1 = 0.024426059710351

α2 = 0.342798419030656

β2 = 0.084663195505547

γ2 = 1.714429708987323

ω0 = 0.02.

7

0 0.2 0.4 0.6 0.8 1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Upper bound
Lower bound
Exact

u

a(u)

Figure 5: The diffusion coefficient a(u). r = 0.01. Time values in {1, 1.5, 2, 2.5, . . . , 5}. Computation
time: 37 minutes.

The functions f and g given here resemble the upper and lower curve in FIG. 7.1
in [19] scaled by a factor 10−4 on the x–axis and 10−3 on the y–axis. They also
satisfy the conditions (2.1) in [19] that f(0) = g(0) = ω0 and f ′(0) = g′(0) = 0. The
functions are shown in Figure 3. We also let a(u) = 0.5 − 0.620761904761905u +
1.098231292517007u2 − 0.402721088435375u3. This function resembles the function
in FIG. 7.3 in [19] scaled by a factor 10−3 on the x–axis. The approximate solution
of the forward problem ũ is shown in Figure 4.

We set the number of time steps and the number of space grid intervals to 30
and the tolerance to 0.0005. The ratio between the time step and the small time
step used for the finite differences is set to 104. We choose the set of levels to
be {0.1, 0.15, 0.2, 0.25, . . . , 0.9}. The spline coefficients are multiplied by the interval
[1−r, 1+r] to perform the transition from (5) to (6). We show the result for r = 0.01
and r = 0.001 and for time values in the set {1, 1.5, 2, 2.5, . . . , 5} and {1, 2, 3, 4, 5}.
The four different cases and their computation times are shown in Figure 5–8. The
triangles are the lower bounds of the estimation of a(u), the diamonds and the curve
are the exact function a(u) and the pentagons are the upper bounds of the estimation
of a(u). All interval computations are performed using the free MATLAB package
INTLAB [23].

8

0 0.2 0.4 0.6 0.8 1
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Upper bound
Lower bound
Exact

u

a(u)

Figure 6: The diffusion coefficient a(u). r = 0.001. Time values in {1, 1.5, 2, 2.5, . . . , 5}. Computa-
tion time: 28 minutes.

5. Discussion

For very large or small data there is very little information. Therefore we cannot
estimate a at 0 or 1.1 as in FIG. 7.3 in [19].
We find it natural to scale in the last section, in order to keep numbers not too large
and not too small. The parameter values of f and g are determined by the locations
of the critical points and the function values at t = 0, at t = T and at the critical
points. See FIG 7.1 in [19]. Similarly, the parameter values of a are determined by
the location of the critical point and the function values at u = 0, at u = 1.1 and at
the critical point. See FIG 7.3 in [19].
To decrease the computation time we can just decrease the inflation parameter r
or above all the number of time values N . This is natural because if r decreases,
the set–valued level curves become thinner and the chance of intersecting the line
t = t′n decreases, so that more intervals are not bisected in the branch and bound
procedure. If N decreases, we get a rougher estimation because less information is
used as seen in Figure 8 and above all in Figure 7. In the figures one can see that
there are no estimations for small and large values of u.
In the branch and bound procedure, we use queues in a time–consuming way. Since

9

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Upper bound
Lower bound
Exact

u

a(u)

Figure 7: The diffusion coefficient a(u). r = 0.01. Time values in {1, 2, 3, 4, 5}. Computation time:
13 minutes.

the bottleneck in the computations is solving all possible equation systems, we how-
ever do not gain much by improving the queue implementation.
The method presented in this article has the privilege that it is intuitively clear and
that is easy to implement with exception of the bicubic spline part and the integrals
with intervals as upper and lower limits. The drawback is that it is not rigorous
so there is no guarantee that we can enclose the diffusion coefficient. It is also not
clear how the levels and the time values should be chosen in a systematic way. Here
we simply choose the levels and the time values to be uniformly distributed within
the range of ũ and the time domain respectively. It is harder to determine the ap-
propriate value of the inflation parameter r. If r is too small, the information can
get inconsistent so that we do not have any result at all. It could also happen that
the interval which should include a(u) do not. If r is too large, the intervals which
include a(u) get too wide.

Acknowledgements

The author thanks his supervisor Professor Warwick Tucker and Alexander Danis
for reading many versions of the manuscript and suggesting many ideas.

10

0 0.2 0.4 0.6 0.8 1
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Upper bound
Lower bound
Exact

u

a(u)

Figure 8: The diffusion coefficient a(u). r = 0.001. Time values in {1, 2, 3, 4, 5}. Computation time:
9 minutes.

[1] A. G. Ramm, An inverse problem for the heat equation,
Journal of Mathematical Analysis and Applications 264 (2)
(2001) 691–697.

[2] N. S. Hoang and A. G. Ramm, An inverse problem for a
heat equation with piecewise-constant thermal conductiv-
ity, Journal of Mathematical Physics 50 (6) (2009).

[3] A. Boumenir and V. K. Tuan, An inverse problem for the
heat equation, Proceedings of the American Mathematical
Society 138 (11) (2010) 3911–3921.

[4] M. I. Ivanchov and N. V. Saldina, Inverse problem for the
heat equation with degeneration, Ukrainian Mathematical
Journal 57 (11) (2005) 1563–1570.

[5] S.A. Avdonin, M. I. Belishev and Y. S. Rozhkov, The BC-
method in the inverse problem for the heat equation, J.
Inv. Ill-posed Problems 5 (4) (1997) 309–322.

11

[6] Y. V. Kurylev, N. Mandache and K. S. Peat, Hausdorff mo-
ments in an inverse problem for the heat equation: numer-
ical experiment, Inverse Problems 19 (2) (2003) 253–264.

[7] A. Boumenir and V. K. Tuan, Inverse Problem for Multi-
dimensional Heat Equations by Measurements at a Single
Point on the Boundary, Numerical Functional Analysis and
Optimization 30 (11-12) (2010) 1215–1230.

[8] E. G. Savateev and R. Riganti, Inverse Problem for the
Nonlinear Heat Equation with the Final Overdetermina-
tion, Mathematical and Computer Modelling 22 (1) (1995)
29–43.

[9] K. Masood and F. D. Zaman Investigation of the Initial
Inverse Problem in the Heat Equation, Journal of Heat
Transfer 126 (2) (2004) 294–301.

[10] K. Masood, S. Messaoudi and F. D. Zaman Initial inverse
problem in heat equation with Bessel operator, Interna-
tional Journal of Heat and Mass Transfer 45 (2002) 2959–
2965.

[11] J. R. Cannon and S. Pérez Esteva, An inverse problem for
the heat equation, Inverse Problems 2 (1986) 395–403.

[12] P. Wang and K. Zheng, Determination of the source/sink
term in a heat equation, Electronic Journal o Differential
Equations Conference 03 (1999) 119–125.

[13] Y. Fan and D. G. Li, Identifying the Heat Source for
the Heat Equation with Convection Term, Int. Journal of
Math. Analysis 3 (27) (2009) 1317–1323.

[14] M. Ikehata, An inverse source problem for the heat equa-
tion and the enclosure method, Inverse Problems 23 (2007)
183–202.

[15] A. G. Ramm, An inverse problem for the heat equation,
Journal of Mathematical Analysis and Applications 123 (6)
(1993) 973–976.

12

[16] T. Suzuki, On a certain inverse problem for the heat equa-
tion on the circle, Proc. Japan Acad. Ser. A Math. Sci. 58
(6) (1982) 243–245.

[17] T. Hattori, An inverse problem for one-dimensional heat
equations with the Dirichlet boundary condition, J. Inv.
Ill-posed Problems 2 (1) (1994) 33–48.

[18] T. Suzuki, Inverse problems for heat equations on compact
intervals and on circles, I, J. Math. Soc. Japan 38 (1) (1986)
39–65.

[19] M. Hanke and O. Scherzer, Error analysis of an equation
error method for the identification of the diffusion coeffi-
cient in a quasi-linear parabolic differential equation, Siam
Journal of Applied Mathematics 59 (3) (1999) 1012–1027.

[20] Jaulin, L., Kieffer, M., Didrit, O., Applied Interval Analy-
sis, Springer–Verlag, London, 2001.

[21] Moore, R. E., Kearfoot, B. R., Cloud, M. J., Introduction
To Interval Analysis, SIAM Studies in Applied Mathemat-
ics, Philadelphia, 2009.

[22] Neumaier, A., Interval Methods for Systems of Equa-
tions. Encyclopedia of Mathematics and Its Applications
37, Cambridge Univ. Press, Cambridge, 1990.

[23] INTLAB – INTerval LABoratory Version 5.3. Available
from www.ti3.tu–harburg.de/rump/intlab/.

[24] CXSC – C++ eXtension for Scientific Computa-
tion, version 2.0. Available from www.math.uni-
wuppertal.de/org/WRST/xsc/cxsc.html

[25] M. Lerch, G. Tischler and J. Wolff von Gudenberg,
FILIB++, a fast interval library supporting containment
computations, ACM Trans. Math. Software (32) 2 (2006)
299–324.

13

[26] PROFIL/BIAS – Programmer’s Runtime Opti-
mized Fast Interval Library/Basic Interval Arith-
metic Subroutines. Available from www.ti3.tu-
harburg.de/Software/PROFILEnglisch.html

[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P.
Flannery, Numerical Recipes. The Art of Scientific Com-
puting, 3rd Edition, Cambridge University Press, New
York, 2007.

6. Appendix

Here we list all the MATLAB code used in implementing the algorithm. The sign
means that a row is terminated in the listing, but not in the corresponding M–file.

heatsplinelevelhanketime.m

function [A,h]=heatsplinelevelhanketime(K,J,Jsol,C,tol,tp,varargin)

% function [A,h]=heatsplinelevelhanke(K,J,Jsol,C,tol,tp,rir,microt,T)

% Solves the equation u_t=(aa(u)u_x)_x, u(0,x)=\omega_0

% u(0,t)=f(t), u(1,t)=g(t) with t\in[0,T] and x\in[0,1] and

% computes an approximation of the function aa(u) given the solution u.

% In the method a bicubic spline s=s(t,x) of u=u(x,t) is constructed. Then

% intervals with relative radius rir are set around the coefficients of the

% spline functions. For each level c_m and each time value t_i we look for

% intervals such that c_m belongs to the range of s(t_i,x) restricted to

% the interval. Those intervals are bisected and each half is also bisected

% if c_m belongs to the range of s(t_i,x) restricted to the half. The

% process is repeated. If it happens that the length of such an interval is

% less than the tolerance tol it is saved in the queue tolqueue. The union

% of the entries of the list is empty or consists of one or several

% disjoint intervals. We let the matrix element h_{im} be one of these

% disjoint interval (or we let h_{im} be empty if the union is empty).

% Then for every (non-ordered) time value pair t_1 and t_2 and every

% (non-ordered) level pair c_1 and c_2 we take the corresponding H

% component pairs with x values say h_{12} and h_{11} and h_{22}

% and h_{21}. Then we solve the equation system

% {aa(c_2)s_x(t_1,h_{12})-aa(c_1))s_x(t_1,h_{11})

% =\int_{h_{11}}^{h_{12}}s_t(t_1,x)dx.

% {aa(c_2)s_x(t_2,h_{22})-aa(c_1))s_x(t_2,h_{21})

% =\int_{h_{11}}^{h_{12}}s_t(t_2,x)dx.

% with respect to aa(c_1) and aa(c_2).

% Now after solving the equation system we know that aa(c_1) be-

% longs to some interval. After pairing with say aa(c_3) we get

14

% another interval which aa(c_1) should belong to. We then take the

% intersection of all such intervals. The same goes for aa(c_2)

% and all other. The intersection is also taken over all time values in tp.

% Input:

% K = number of spline time steps

% J = number of spline space steps

% Jsol= number of space steps in the solver

% C = vector with levels

% tol = maximal length of the intervals in the queue tolqueue.

% tp = the time values for which x intervals are found

% Optional input:

% rir = relative interval radius. Default is 0.01.

% microt = ratio between a short time step for computing derivatives

% with finite differences and the time step of the solution.

% Default is 10^(-4).

% T = the value of time in the end. Default is 6.

% Output:

% h = Matrix with x values of intervals which contain tp and such that

% C is possibly assumed on them.

% A= The first row contains some levels, the second contains

% intervals which contain aa(u).

% Default values

rir=0.01;

microt=10^(-4);

T=6;

if nargin>=7

rir=varargin{1};

end

if nargin>=8

microt=varargin{2};

end

if nargin>=9

T=varargin{3};

end

ts=linspace(0,T,K+1);

k=1;

t2=zeros(1,1+K*3);

% Adds 2 points to every point in ts for a second order

% finite difference time derivative approximation.

for j=3:3:length(t2)-1

t2(j-1:j+1)=ts(k+1)+microt*(ts(k+1)-ts(k))*[-1 0 1];

k=k+1;

end

xs=linspace(0,1,J+1); % The spline net

xsol=linspace(0,1,Jsol+1); % The solution net

options=odeset(’RelTol’,10^(-8),’AbsTol’,10^(-8));

15

% The zero on the following line comes from slab symmetry.

disp(’Solving the forward problem...’)

tic

u=pdepe(0,@pdefun,@pdeini,@pdebc,xsol,t2,options); % pde solver

toc

disp(’Constructing and evaluating splines...’)

tic

% Removes one point in the beginning due to lack of regularity.

start=2;

t2=t2(3*start-4:end);

ts=ts(start:end);

us=zeros(length(t2),length(xs));

uxs=us;

for k=1:length(t2)

% Interpolation of u and ux

[us(k,:),uxs(k,:)]=pdeval(0,xsol,u(k+3*start-5,:),xs);

end

s=bicubictransform2interval(us,uxs,t2,xs,rir); % Makes bicubic splines.

figure

surf(xs,t2,us) % Plots the forward solution u.

drawnow

% The matrix H

h=intval(nan(length(tp),length(C)));

K=zeros(1,length(tp)); % Spline indices in time

for pp=1:length(tp)

time_number=pp

time=tp(pp)

for c=1:length(C)

value_number=c

value=C(c)

% Evaluates the spline on the whole space domain.

[se,K(pp)]=bicubicevalintervaltime(s,ts,xs,tp(pp),infsup(0,1));

if ~in(C(c),se)

continue

end

queue=infsup(0,1);

tolqueue=[];

while ~isempty(queue)

xq=queue(1);

queue=queue(2:end);

xq1=infsup(inf(xq),mid(xq));

xq2=infsup(mid(xq),sup(xq));

% Evaluates the spline on the halves.

se1=bicubicevalintervaltime(s,ts,xs,tp(pp),xq1,K(pp));

se2=bicubicevalintervaltime(s,ts,xs,tp(pp),xq2,K(pp));

if in(C(c),se1) % Is x at the set-valued level curve?

16

if diam(xq1)>tol

queue=[queue xq1]; % Bisects further.

else

tolqueue=[tolqueue xq1];

end

end

if in(C(c),se2) % Is x at the set-valued level curve?

if diam(xq2)>tol

queue=[queue xq2]; % Bisects further.

else

tolqueue=[tolqueue xq2];

end

end

end

if ~isempty(tolqueue)

h(pp,c)=connect2first(tolqueue); % Chooses one of the disjoint

% intervals.

end

end

end

hold off

disp(’Solves the 2x2 equation systems...’)

st=bicubicddtinterval(s,ts); % The time derivative of the spline

sx=bicubicddxinterval(s,xs); % The spacee derivative of the spline

A=intval(ones(1,length(C)))*infsup(-inf,inf);

B=intval(zeros(2));

b=intval(zeros(2,1));

% The first time value in the 2x2 equation system

for k1=1:length(tp)-1

% The second time value in the 2x2 equation system

for k2=k1+1:length(tp)

% The first value of u

for c1=1:length(C)-1

if isnan(h(k1,c1)) || isnan(h(k2,c1))

continue

end

% The second value of u

for c2=1+c1:length(C)

% Disjoint integration limits

if isnan(h(k1,c2)) || isnan(h(k2,c2)) || ~isnan(intersect(h(k1,c1),h(k1,c2))) || #

~isnan(intersect(h(k2,c1),h(k2,c2)))

continue

end

% The first row of the matrix in the 2x2 equation system

B(1,:)=[bicubicevalintervaltime(sx,ts,xs,tp(k1),h(k1,c2),K(k1)) #

-bicubicevalintervaltime(sx,ts,xs,tp(k1),h(k1,c1),K(k1))];

17

% The first right hand side integral

% Determines which limit is lower und which is upper.

if sup(h(k1,c1))<sup(h(k1,c2))

b(1)=intbicubicxinterval(st,ts,xs,tp(k1),h(k1,c1),h(k1,c2));

else

b(1)=-intbicubicxinterval(st,ts,xs,tp(k1),h(k1,c2),h(k1,c1));

end

% The second row of the matrix in the 2x2 equation system

B(2,:)=[bicubicevalintervaltime(sx,ts,xs,tp(k2),h(k2,c2),K(k2)) #

-bicubicevalintervaltime(sx,ts,xs,tp(k2),h(k2,c1),K(k2))];

% The second right hand side integral

% Determines which limit is lower und which is upper.

if sup(h(k2,c1))<sup(h(k2,c2))

b(2)=intbicubicxinterval(st,ts,xs,tp(k2),h(k2,c1),h(k2,c2));

else

b(2)=-intbicubicxinterval(st,ts,xs,tp(k2),h(k2,c2),h(k2,c1));

end

k1

k2

c1

c2

% Checks the determinant

deter=B(1,1)*B(2,2)-B(1,2)*B(2,1);

inf(deter)

sup(deter)

% Solves the equation system

sol=B\b;

if ~isnan(sol(1)) && ~isnan(sol(2))

if ~in(0,deter)

% Intersects the solution of the interval equation system from

% INTLAB with the solution from Cramer’s rule.

sol(2)=intersect(sol(2),(B(1,1)*b(2)-b(1)*B(2,1))/deter);

sol(1)=intersect(sol(1),(b(1)*B(2,2)-B(1,2)*b(2))/deter);

end

A(c1)=intersect(sol(2),A(c1));

A(c2)=intersect(sol(1),A(c2));

end

end

end

end

end

A=[C;A];

figure

mi=mid(A(1,:));

hold on

% Plots the diffusion coefficient and the upper and lower bound of its

18

% estimation.

for l=1:length(A(2,:))

if ~isnan(A(2,l))

plot(mi(l),sup(A(2,l)),’p’,mi(l),inf(A(2,l)),’^’,mi,aa(mi),’d’)

legend(’Upper bound’,’Lower bound’,’Exact’,’Location’,’BestOutside’)

end

end

plot(mi,aa(mi),’r’)

hold off

toc

end

% Required information for the PDE solver.

function [c,h,s]=pdefun(~,~,u,dudx) % u_t=(aa(u)u_x)_x

c = 1;

h = aa(u).*dudx;

s = 0; % No source

end

function u0 = pdeini(x) % Initial data

% u0 = u(0,x)

u0=0.020;

end

function [pl,ql,pr,qr]=pdebc(~,ul,~,ur,t) % u(0,t)=f(t), u(1,t)=g(t)

pl = ul-f(t); % The left boundary

ql = 0; % Dirichlet boundary condition on the left

pr = ur-g(t); % The right boundary

qr = 0; % Dirichlet boundary condition on the right

end

% Diffusion coefficient a(u)

function A = aa(u)

a=[1 .7 3*.35^2;0.35 0.35^2 .35^3;1.1 1.1^2 1.1^3]\[0 -.1 .11]’;

A=.5+a(1)*u+a(2)*u.^2+a(3)*u.^3;

end

% Left boundary function

function F = f(t)

% f(t)=u(t,0)

% f(0)=\omega_0.

b=log(1.04/0.36)/(2*0.35-6-0.35^2/6);

g=b*0.35^2;

a=log(0.36)-6*b-g/6;

F=exp(a+b*t+g./t)+0.02;

end

19

% Right boundary function

function G = g(t)

% g(t) = u(t,1)%

% g(0)=\omega_0.

b=log(0.16/0.155)/(2*4.5-6-4.5^2/6);

g=b*4.5^2;

a=log(0.155)-6*b-g/6;

G=exp(a+b*t+g./t)+0.02;

end

bicubictransform2interval.m

function a=bicubictransform2interval(us,uxs,t2,xs,rir)

% function a=bicubictransform2interval(us,uxs,t2,xs,rir)

% Creates splines for the function us defined on time grid ts and the

% space grid xs and with the derivative uxs. t2 is ts with two extra points

% around every points. Those points are used for a second order finite

% difference derivative approximation. The spline is stored in a

% (length(ts)-1)*(length(xs)-1)*16 tensor describing the piecewise defined

% polynomials with 16 coefficients each.

% Input:

% us = the grid function whose spline will be created and which is

% defined on the time grid t2 and space grid xs

% uxs = the approximate derivative of us with respect to xs

% t2 = the time grid of us and uxs with two uniformly spaced points

% around every point in ts.

% xs = the space grid of us and uxs

% rir = relative interval radius

% Output:

% a = the spline described by a (length(ts)-1)*(length(xs)-1)*16 tensor

s=size(us);

if s(1)~=length(t2) || s(2)~=length(xs)

error(’The sizes of the arguments are not consistent.’)

end

ts=t2(2:3:end-1); % ts is the original grid without added points.

% Initialization of the right hand sides

f=zeros(length(ts),length(xs));

fx=f;

ft=f;

fxt=f;

k=1;

for j=2:3:length(t2)-3

f(k,:)=us(j,:);

fx(k,:)=uxs(j,:);

% Second order time derivative approximation

ft(k,:)=(us(j+1,:)-us(j-1,:))/2/(t2(j+1)-t2(j));

20

fxt(k,:)=(uxs(j+1,:)-uxs(j-1,:))/2/(t2(j+1)-t2(j));

k=k+1;

end

% The inverse system matrix for the spline problem on the unit square

Ainv=bicubicinverse;

a=zeros(length(ts)-1,length(xs)-1,16);

b=zeros(16,1);

% Notice the time and space scale in the right hand side b.

for k=1:length(ts)-1

for j=1:length(xs)-1

b(:)=[f(k,j);f(k+1,j);f(k,j+1);f(k+1,j+1);(ts(k+1)-ts(k))*[ft(k,j);ft(k+1,j);ft(k,j+1);#

ft(k+1,j+1)];(xs(j+1)-xs(j))*[fx(k,j);fx(k+1,j);fx(k,j+1);fx(k+1,j+1)];(ts(k+1)-ts(k))*#

(xs(j+1)-xs(j))*[fxt(k,j);fxt(k+1,j);fxt(k,j+1);fxt(k+1,j+1)]];

a(k,j,:)=Ainv*b;

end

end

% An interval is set around every spline coefficient.

a=intval(a)*(1+infsup(-rir,rir));

bicubicinverse.m

function Ainv=bicubicinverse

% function Ainv=bicubicinverse

% Creates the inverse system matrix for the bicubic spline problem on

% the unit square.

% Output:

% Ainv = the inverse system matrix for the bicubic spline problem on

% the unit square

Ainv=zeros(16);

Ainv(1,1)=1;

Ainv(2,5)=1;

Ainv(3,1:6)=[-3 3 0 0 -2 -1];

Ainv(4,1:6)=[2 -2 0 0 1 1];

Ainv(5,9)=1;

Ainv(6,13)=1;

Ainv(7,9:14)=[-3 3 0 0 -2 -1];

Ainv(8,9:14)=[2 -2 0 0 1 1];

Ainv(9,1:3)=[-3 0 3];

Ainv(9,9:11)=[-2 0 -1];

Ainv(10,5:7)=[-3 0 3];

Ainv(10,13:15)=[-2 0 -1];

Ainv(11,:)=[9 -9 -9 9 6 3 -6 -3 6 -6 3 -3 4 2 2 1];

Ainv(12,:)=[-6 6 6 -6 -3 -3 3 3 -4 4 -2 2 -2 -2 -1 -1];

Ainv(13,1:3)=[2 0 -2];

Ainv(13,9:11)=[1 0 1];

Ainv(14,5:7)=[2 0 -2];

Ainv(14,13:15)=[1 0 1];

21

Ainv(15,:)=[-6 6 6 -6 -4 -2 4 2 -3 3 -3 3 -2 -1 -2 -1];

Ainv(16,:)=[4 -4 -4 4 2 2 -2 -2 2 -2 2 -2 1 1 1 1];

bicubicevalinterval.m

function f=bicubicevalinterval(A,tn,xn,t,x)

% function f=bicubicevalinterval(A,tn,xn,t,x)

% Evaluates the spline A defined on the time grid tn and the space grid xn

% in the points (t,x).

% Input:

% A = the spline created by bicubictransform2interval defined on the time

% grid tn and the space grid xn

% tn = the time grid of the spline A

% xn = the space grid of the spline A

% t = the time values when the spline is evaluated

% x = the sites where the spline is evaluated

% Output:

% f = the value of the spline at the time t on the site x

s=size(A);

t=intval(t);

x=intval(x);

if s(1)~=length(tn)-1 || s(2)~=length(xn)-1

error(’The sizes of the arguments are not consistent.’)

end

for k=1:length(tn)-1

if tn(k)>=tn(k+1)

error(’The second argument is not an increasing vector.’)

end

end

for j=1:length(xn)-1

if xn(j)>=xn(j+1)

error(’The third argument is not an increasing vector.’)

end

end

% The evaluation points must be in the grid.

for p=1:length(t)

if inf(t(p))<tn(1) || sup(t(p))>tn(end)

error(’The spline is not defined for at least one of the time values.’)

end

end

for q=1:length(x)

if inf(x(q))<xn(1) || sup(x(q))>xn(end)

error(’The spline is not defined on at least one of the sites.’)

end

end

% Searches in which rectangle the point should be evaluated.

% Loop over all points where the spline is evaluated

22

f=intval(zeros(length(t),length(x)));

a=intval(zeros(1,16));

for q=1:length(x)

for p=1:length(t)

% Loop over the time grid of the spline

for k=1:length(tn)-1

if inf(t(p))<=tn(k+1) % Finds the correct time to evaluate.

Kinf=k;

break

end

end

for k=Kinf:length(tn)-1

if sup(t(p))<=tn(k+1) % Finds the correct time to evaluate.

Ksup=k;

break

end

end

% Loop over the space grid of the spline

for j=1:length(xn)-1

if inf(x(q))<=xn(j+1) % Finds the correct space to evaluate.

Jinf=j;

break

end

end

for j=Jinf:length(xn)-1

if sup(x(q))<=xn(j+1) % Finds the correct space to evaluate.

Jsup=j;

break

end

end

% Special case for short t and x.

for k=1:length(tn)-1

if in(t(p),infsup(tn(k),tn(k+1)))

Kinf=k;

Ksup=k;

break

end

end

for j=1:length(xn)-1

if in(x(q),infsup(xn(j),xn(j+1)))

Jinf=j;

Jsup=j;

break

end

end

if Kinf==Ksup && Jinf==Jsup

23

K=Kinf;

J=Jinf;

a(:)=A(K,J,:);

% Transformation to the unit square

t01=(t(p)-tn(K))/(tn(K+1)-tn(K));

x01=(x(q)-xn(J))/(xn(J+1)-xn(J));

% Evaluation

f(p,q)=hornersplineevaluate(a,t01,x01);

elseif Kinf==Ksup && Jinf<Jsup

K=Kinf;

t01=(t(p)-tn(K))/(tn(K+1)-tn(K));

x01=(infsup(inf(x(q)),xn(Jinf+1))-xn(Jinf))/(xn(Jinf+1)-xn(Jinf));

a(:)=A(K,Jinf,:);

f(p,q)=hornersplineevaluate(a,t01,x01);

x01=(infsup(xn(Jsup),sup(x(q)))-xn(Jsup))/(xn(Jsup+1)-xn(Jsup));

a(:)=A(K,Jsup,:);

f(p,q)=hull(f(p,q),hornersplineevaluate(a,t01,x01));

x01=infsup(0,1);

for j=Jinf+1:Jsup-1

a(:)=A(K,j,:);

f(p,q)=hull(f(p,q),hornersplineevaluate(a,t01,x01));

end

elseif Kinf>Ksup && Jinf==Jsup

J=Jinf;

x01=(x(q)-xn(J))/(xn(J+1)-xn(J));

t01=(infsup(inf(t(p)),tn(Kinf+1))-tn(Kinf))/(tn(Kinf+1)-tn(Kinf));

a(:)=A(Kinf,J,:);

f(p,q)=hornersplineevaluate(a,t01,x01);

t01=(infsup(tn(Ksup),sup(t(p)))-tn(Ksup))/(tn(Ksup+1)-tn(Ksup));

a(:)=A(Ksup,J,:);

f(p,q)=hull(f(p,q),hornersplineevaluate(a,t01,x01));

t01=infsup(0,1);

for k=Kinf+1:Ksup-1

a(:)=A(k,J,:);

f(p,q)=hull(f(p,q),hornersplineevaluate(a,t01,x01));

end

else

x01=(infsup(inf(x(q)),xn(Jinf+1))-xn(Jinf))/(xn(Jinf+1)-xn(Jinf));

t01=(infsup(inf(t(p)),tn(Kinf+1))-tn(Kinf))/(tn(Kinf+1)-tn(Kinf));

a(:)=A(Kinf,Jinf,:);

f(p,q)=hornersplineevaluate(a,t01,x01);

t01=(infsup(tn(Ksup),sup(t(p)))-tn(Ksup))/(tn(Ksup+1)-tn(Ksup));

a(:)=A(Ksup,Jinf,:);

f(p,q)=hull(f(p,q),hornersplineevaluate(a,t01,x01));

t01=infsup(0,1);

for k=Kinf+1:Ksup-1

24

a(:)=A(k,Jinf,:);

f(p,q)=hull(f(p,q),hornersplineevaluate(a,t01,x01));

end

x01=(infsup(xn(Jsup),sup(x(q)))-xn(Jsup))/(xn(Jsup+1)-xn(Jsup));

t01=(infsup(inf(t(p)),tn(Kinf+1))-tn(Kinf))/(tn(Kinf+1)-tn(Kinf));

a(:)=A(Kinf,Jsup,:);

f(p,q)=hull(f(p,q),hornersplineevaluate(a,t01,x01));

t01=(infsup(tn(Ksup),sup(t(p)))-tn(Ksup))/(tn(Ksup+1)-tn(Ksup));

a(:)=A(Ksup,Jsup,:);

f(p,q)=hull(f(p,q),hornersplineevaluate(a,t01,x01));

t01=infsup(0,1);

for k=Kinf+1:Ksup-1

a(:)=A(k,Jsup,:);

f(p,q)=hull(f(p,q),hornersplineevaluate(a,t01,x01));

end

x01=infsup(0,1);

for j=Jinf+1:Jsup-1

t01=(infsup(inf(t(p)),tn(Kinf+1))-tn(Kinf))/(tn(Kinf+1)-tn(Kinf));

a(:)=A(Kinf,j,:);

f(p,q)=hull(f(p,q),hornersplineevaluate(a,t01,x01));

t01=(infsup(tn(Ksup),sup(t(p)))-tn(Ksup))/(tn(Ksup+1)-tn(Ksup));

a(:)=A(Ksup,j,:);

f(p,q)=hull(f(p,q),hornersplineevaluate(a,t01,x01));

t01=infsup(0,1);

for k=Kinf+1:Ksup-1

a(:)=A(k,j,:);

f(p,q)=hull(f(p,q),hornersplineevaluate(a,t01,x01));

end

end

end

end

end

hornersplineevaluate.m

function p=hornersplineevaluate(a,t,x)

% function p=hornersplineevaluate(a,t,x)

% Evaluates the a spline at time t and place x. The variables

% t and x belong to [0,1]. The Horner scheme is used in two orders.

% Input:

% a = the vector with the spline coefficients

% t = the time

% x = the place

% Output:

% p = the value of the spline at time t and place x

pt=a(1)+t*(a(2)+t*(a(3)+t*a(4)))+x*(a(5)+t*(a(6)+t*(a(7)+t*a(8)))+#

x*(a(9)+t*(a(10)+t*(a(11)+t*a(12)))+x*(a(13)+t*(a(14)+t*(a(15)+t*a(16))))));

25

px=a(1)+x*(a(5)+x*(a(9)+x*a(13)))+t*(a(2)+x*(a(6)+x*(a(10)+x*a(14)))+#

t*(a(3)+x*(a(7)+x*(a(11)+x*a(15)))+t*(a(4)+x*(a(8)+x*(a(12)+x*a(16))))));

p=intersect(pt,px);

connect2first.m

function conint=connect2first(s)

% function conint=connect2first(s)

% This function makes a hull about all intervals in the vector s which are

% connected to the first interval in s, s(1),

% Input:

% s = vector of intervals

% Output:

% conint = interval which encloses all intervals connected to s(1)

bool=true;

while bool

bool=false;

d=2;

while d<=length(s)

if ~isnan(intersect(s(1),s(d)))

s=[hull(s(1),s(d)) s(2:d-1) s(d+1:end)];

bool=true;

break;

end

d=d+1;

end

end

conint=s(1);

bicubicddtinterval.m

function A=bicubicddtinterval(A,t)

% function A=bicubicddtinterval(A,t)

% Differentiate the bicubic spline A=A(t,x), which is piecewise

% polynomial, with respect to t. The spline was created by

% bicubictransform2interval.

% Input:

% A = a spline created by bicubictransform2interval defined on a time grid

% t and a space grid x

% t = the time grid where the spline A is defined

% Output:

% A = the partial derivative of the spline A with respect to t

s=size(A);

if s(1)~=length(t)-1

error(’The sizes of the arguments are not consistent.’)

end

a=intval(zeros(1,16));

26

for j=1:s(2)

for k=1:s(1)

a(:)=A(k,j,:);

A(k,j,:)=[a(2) 2*a(3) 3*a(4) 0 a(6) 2*a(7) 3*a(8) 0 a(10) 2*a(11) 3*a(12) 0 #

a(14) 2*a(15) 3*a(16) 0]/(t(k+1)-t(k));

end

end

bicubicddxinterval.m

function A=bicubicddxinterval(A,x)

% function A=bicubicddxinterval(A,x)

% Differentiates the bicubic spline A=A(t,x), which is piecewise

% polynomial, with respect to x. The spline was created by

% bicubictransform2interval.

% Input:

% A = a spline created by bicubictransform2interval defined on a time grid

% t and a space grid x

% x = the space grid where the spline A is defined

% Output:

% A = the partial derivative of the spline A with respect to x

s=size(A);

if s(2)~=length(x)-1

error(’The sizes of the arguments are not consistent.’)

end

a=intval(zeros(1,16));

for j=1:s(2)

for k=1:s(1)

a(:)=A(k,j,:);

A(k,j,:)=[a(5) a(6) a(7) a(8) 2*[a(9) a(10) a(11) a(12)] 3*[a(13) a(14) a(15) #

a(16)] zeros(1,4)]/(x(j+1)-x(j));

end

end

intbicubicxinterval.m

function I=intbicubicxinterval(A,t,x,tp,xmin,xmax)

% function I=intbicubicxinterval(A,t,x,tp,xmin,xmax)

% Computes the integral of the spline A=A(t,x) at time value tp

% from xmin to xmax.

% The spline was created by bicubictransform2interval.

% Input:

% A = a spline created by bicubictransform2interval defined on a time

% grid t and a space grid x

% x = the space grid where the spline A is defined

% tp = time value for the integral to be computed (number)

% xmin = lower integral limit (interval)

27

% xmax = upper integral limit (interval)

% Output:

% I = the integral of A from xmin to xmax,

s=size(A);

a=intval(zeros(1,16));

xmin=intval(xmin);

xmax=intval(xmax);

if sup(xmin)>inf(xmax)

error(’Wrong integration interval.’)

end

for k=1:length(t)-1

if t(k)>=t(k+1)

error(’The second argument is not an increasing vector.’)

end

end

for j=1:length(x)-1

if x(j)>=x(j+1)

error(’The third argument is not an increasing vector.’)

end

end

if inf(xmin)<x(1) || sup(xmax)>x(end) || tp<t(1) || tp>t(end)

error(’The integral is not defined outside the spline grid.’)

end

if s(2)~=length(x)-1 || s(1)~=length(t)-1

error(’The sizes of the arguments are not consistent.’)

end

% Determines in what spline interval the limits of integration are.

for j=1:length(x)-1

if inf(xmin)<=x(j+1) % The spline for the infimum of the lower limit

Linf=j;

break

end

end

for j=Linf:length(x)-1

if sup(xmin)<=x(j+1) % The spline for the supremum of the lower limit

Lsup=j;

break

end

end

for j=Lsup:length(x)-1

if inf(xmax)<=x(j+1) % The spline for the infimum of the upper limit

Uinf=j;

break

end

end

for j=Uinf:length(x)-1

28

if sup(xmax)<=x(j+1) % The spline for the supremum of the upper limit

Usup=j;

break

end

end

for k=1:length(t)-1

if tp<=t(k+1)

t01=intval((tp-t(k))/(t(k+1)-t(k)));

break

end

end

% Lower part, zero if the lower limit is thin.

% The thin part is due to the fact that the integral domain is connected.

a(:)=A(k,Lsup,:)*(x(Lsup+1)-x(Lsup));

x2=(sup(xmin)-x(Lsup))/(x(Lsup+1)-x(Lsup));

if Linf==Lsup

x1=(xmin-x(Lsup))/(x(Lsup+1)-x(Lsup));

LI=hornersplineintegral(a,t01,x1,x2,true);

else

x1=(infsup(x(Lsup),sup(xmin))-x(Lsup))/(x(Lsup+1)-x(Lsup));

LI=hornersplineintegral(a,t01,x1,x2,true);

LIthin=hornersplineintegral(a,t01,0,x2,false);

x1=infsup(0,1);

for j=Lsup-1:-1:Linf+1

a(:)=A(k,j,:)*(x(j+1)-x(j));

LI=hull(LI,LIthin+hornersplineintegral(a,t01,x1,1,true));

LIthin=LIthin+hornersplineintegral(a,t01,0,1,false);

end

a(:)=A(k,Linf,:)*(x(Linf+1)-x(Linf));

x1=(infsup(inf(xmin),x(Linf+1))-x(Linf))/(x(Linf+1)-x(Linf));

LI=hull(LI,LIthin+hornersplineintegral(a,t01,x1,1,true));

end

% Upper part, zero if the upper limit is thin.

% The thin part is due to the fact that the integral domain is connected.

a(:)=A(k,Uinf,:)*(x(Uinf+1)-x(Uinf));

x1=(inf(xmax)-x(Uinf))/(x(Uinf+1)-x(Uinf));

if Uinf==Usup

x2=(xmax-x(Uinf))/(x(Uinf+1)-x(Uinf));

UI=hornersplineintegral(a,t01,x1,x2,true);

else

x2=(infsup(inf(xmax),x(Uinf+1))-x(Uinf))/(x(Uinf+1)-x(Uinf));

UI=hornersplineintegral(a,t01,x1,x2,true);

UIthin=hornersplineintegral(a,t01,x1,1,false);

x2=infsup(0,1);

for j=Uinf+1:Usup-1

a(:)=A(k,j,:)*(x(j+1)-x(j));

29

UI=hull(UI,UIthin+hornersplineintegral(a,t01,0,x2,true));

UIthin=UIthin+hornersplineintegral(a,t01,0,1,false);

end

a(:)=A(k,Usup,:)*(x(Usup+1)-x(Usup));

x2=(infsup(x(Usup),sup(xmax))-x(Usup))/(x(Usup+1)-x(Usup));

UI=hull(UI,UIthin+hornersplineintegral(a,t01,0,x2,true));

end

% Middle part of the integral (thin)

a(:)=A(k,Lsup,:)*(x(Lsup+1)-x(Lsup));

x1=(sup(xmin)-x(Lsup))/(x(Lsup+1)-x(Lsup));

if Lsup==Uinf

x2=(inf(xmax)-x(Uinf))/(x(Uinf+1)-x(Uinf));

MI=hornersplineintegral(a,t01,x1,x2,false);

else

MI=hornersplineintegral(a,t01,x1,1,false);

for j=Lsup+1:Uinf-1

a(:)=A(k,j,:)*(x(j+1)-x(j));

MI=MI+hornersplineintegral(a,t01,0,1,false);

end

x2=(inf(xmax)-x(Uinf))/(x(Uinf+1)-x(Uinf));

MI=MI+hornersplineintegral(a,t01,0,x2,false);

end

I=LI+UI+MI;

hornersplineintegral.m

function I=hornersplineintegral(a,t,x1,x2,b)

% function I=hornersplineintegral(a,t,x1,x2,b)

% Computes the integral of a spline at time value t from x1 to x2. The variables

% t, x1 are x2 belong to [0,1]. The Horner scheme is used if l is true.

% Input:

% a = the vector with the spline coefficients in the patch

% t = the time value (number)

% x1 = lower limit of the integral (interval)

% x2 = upper limit of the integral (interval)

% b = should be set false if x1 and x2 are numbers to save computation

% time.

% Output:

% I = the integral of the spline from x1 to x2 for the time value t

if ~b

I=(a(1)+t*a(2)+t^2*a(3)+t^3*a(4))*(x2-x1)+(a(5)+t*a(6)+t^2*a(7)+t^3*a(8))*(x2^2-x1^2)/2+#

(a(9)+t*a(10)+t^2*a(11)+t^3*a(12))*(x2^3-x1^3)/3+#

(a(13)+t*a(14)+t^2*a(15)+t^3*a(16))*(x2^4-x1^4)/4;

else

I2=x2*(a(1)+t*a(2)+t^2*a(3)+t^3*a(4)+x2*((a(5)+t*a(6)+t^2*a(7)+t^3*a(8))/2+#

x2*((a(9)+t*a(10)+t^2*a(11)+t^3*a(12))/3+x2*(a(13)+t*a(14)+t^2*a(15)+t^3*a(16))/4)));

I1=x1*(a(1)+t*a(2)+t^2*a(3)+t^3*a(4)+x1*((a(5)+t*a(6)+t^2*a(7)+t^3*a(8))/2+#

30

x1*((a(9)+t*a(10)+t^2*a(11)+t^3*a(12))/3+x1*(a(13)+t*a(14)+t^2*a(15)+t^3*a(16))/4)));

I=(x2-x1)*(a(1)+t*a(2)+t^2*a(3)+t^3*a(4)+(a(5)+t*a(6)+t^2*a(7)+t^3*a(8))*(x2+x1)/2+#

(a(9)+t*a(10)+t^2*a(11)+t^3*a(12))*(x2^2+x2*x1+x1^2)/3+#

(a(13)+t*a(14)+t^2*a(15)+t^3*a(16))*(x2^3+x2^2*x1+x2*x1^2+x1^3)/4);

I=intersect(I2-I1,I);

end

31

