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Abstract

We consider the global asymptotic stability of the trivial fixed point of the difference equation

xn+1 = mxn−αφ(xn−1), where (α,m) ∈R2 and φ is a real function that satisfies 0≤ xφ(x)≤ x2

for all x ∈ R. We show that (α,m) ∈ (|m|−1,1/(1+ |m|))× (−1,1) is a sufficient condition for

the global asymptotic stability of 0. As our main result, we prove that if φ(x)≡ tanh(x), then the

condition (α,m) ∈ [|m| − 1,1]× [−1,1], (α ,m) ̸= (0,−1),(0,1) is necessary and sufficient for

global asymptotic stability.
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1 Introduction

Consider the difference equation given by

xn+1 = mxn−αφ(xn−1), (1.1)

where(α,m) ∈ R2 and φ is a real function which satisfies

0≤ xφ(x)≤ x2 for all x ∈ R. (1.2)

This means visually that the graph of φ(x) is between the x-axis and the line y = x. This situa-

tion is depicted on Figure 1. Note that (1.2) implies, that φ is continuous at 0, φ(0) = 0 and

0≤ liminfx→0
φ(x)−φ(0)

x ≤ limsupx→0
φ(x)−φ(0)

x ≤ 1.

Equation (1.1) can be interpreted as a discrete-time single neuron model with delay or as a

discrete-time version of the Krisztin–Walther equation [16], as well. For a comprehensive descrip-

tion of the global dynamics of the delayed, continuous Krisztin–Walther equation see papers of Cao,

Krisztin and Walther [4, 14, 15, 16] and the monograph of Krisztin, Walther and Wu [17].
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Figure 1: The graph of φ(x) lies between the x-axis and the line y = x

We consider (1.1) as the two dimensional map Fα,m : (x,y) 7→ (y,my−αφ(x)) that has a fixed

point in the origin. We shall investigate the global asymptotic stability (GAS) of this fixed point.

Besides of that from a mathematical point of view, global stability of a unique equilibrium point

is always a fundamental topic, in neural networks it is also important in solving optimization and

signal processing problems. We have applied the method that was developed to analyze the two

dimensional Ricker map in our previous work [3]. The main goal of this paper is to demonstrate, on a

special case of (1.1), that this technique is easily applicable for other problems. In addition, we give

a new sufficient condition for the global asymptotic stability of the trivial fixed point of equations of

the class (1.1) in Theorem 3.6.

There is a vast number of papers giving sufficient conditions for global stability of more com-

plicated models of neural networks (see in [6, 11, 20, 28, 29] and the references therein, without

attempting to be comprehensive), but to the best of our knowledge, none of those are claimed to be

necessary. We also call the reader’s attention to the monograph of Kocić and Ladas [13] (and in par-

ticular to Section 2.1) in which the authors present some very interesting results on the global stability

of the trivial fixed point of a delay difference equation, similar to (1.1). Although the models in the

aforementioned works are more general in some sense, their results do not apply directly to (1.1).

Moreover, Theorem 3.6 yields new parameter regions of global stability for our equation (1.1) even

in those cases when the above mentioned general results may be applied.

In our main result, Theorem 4.3 we give a necessary and sufficient condition for the global stabil-

ity of our model difference equation

xn+1 = mxn−α tanh(xn−1), (1.3)

with the same assumptions on m and α as in the general case (1.1). The tanh function is one of the

most common examples for a sigmoid-type feedback function occurring in neural network models.
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We shall see that it suffices to concentrate on parameter values satisfying (α,m) ∈ [0,1]2. Figure

2 gives an overview of this region. Note that the formerly mentioned results may be applied for

equation (1.3). The statement is elementary to prove on the triangle marked with A and is also a

consequence of e.g. [11]. The theorem of Kocić and Ladas [13] establishes that the fixed point is

GAS in the triangle labelled with B. Theorem 3.6 will cover the area marked with C. Finally, we deal

with D and E using computational tools in the proof of Theorem 4.3 presented in Section 4.

Figure 2: The parameter region (α,m) ∈ [0,1]2

Our proof is a combination of analytical and computer-aided tools and is based on a technique

presented in our previous work [3]. The term computer-aided refers to that we do our calculations

using a computer program that gives validated results, every possible numerical error is controlled.

This allows us to prove mathematical theorems from the obtained outputs. For more information

about computer-aided proofs and rigorous numerics, the reader is referred to Moore [21], Alefeld [2],

Tucker [25, 26], and Nedialkov et al. [22]. We shall use graph representations, whereas we model our

function on a grid, resulting in a directed graph. This concept has been utilized both in rigorous and

non-rigorous computations for analyzing maps by Dellnitz, Hohmann and Junge [8, 9], Galias [10],

Luzzatto and Pilarczyk [19] and for studying the attractor of a differential equation by Wilczak [27].

The article has the following structure. Section 2 contains the definitions and notations used in

this paper. In Section 3 we give the proof of Theorem 3.6, and in addition, we construct two invariant

and attracting sets with a compact intersection S, having (α,m) ∈ [0,1]2. To do the latter, we assume

that φ(x) is bounded and continuous, which is satisfied by our model equation (1.3). In Section 4

we turn our attention to (1.3), and prove that the trivial fixed point is GAS for the parameter values

(α,m) ∈ [ 1
m+1 ,1]× [0,1]. We do this by showing the property on the regions marked with D and E on

Figure 2. Combining this with Theorem 3.6, Remarks 4.1 and 4.2 completes the proof of Theorem

4.3. As the first part of the proof, we derive a compact neighbourhood of the origin that lies entirely in

the basin of attraction of (0,0). It is an important feature of this neighbourhood U(α) that for every
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parameter value (α,m) ∈ [α]× [m] ⊆ [ 1
m+1 ,1]× [0,1], where [α] and [m] are intervals, it contains

the same closed disc around the origin, thus its complement is uniformly bounded away from zero.

As the system undergoes a Neimark–Sacker bifurcation at α = 1 and a strong 1:4 resonance occurs

at (α,m) = (1,0), we obtain U(α) by studying the corresponding normal form and the linearized

equation at the fixed point. We finish our proof in Part II by using a rigorous computer program

that analyzes different graph representations of the two dimensional map corresponding to (1.3). The

computations show that for any given pair (α,m) ∈ [ 1
m+1 ,1]× [0,1], every trajectory starting from S,

that was constructed in Section 3, eventually enters the compact neighbourhood U(α), thus the origin

is globally attracting.

Our further research interests in the topic include the application of our method for higher di-

mensional maps. This should involve a center manifold reduction, that gives birth to new technical

challenges. A method for automatized generation of S, together with a recipe-like algorithm for

finding U(α) is amongst our plans as well.

2 Definitions and notations

Let us define some notations that we shall use in this paper. We denote by N,N0,R and C the set of

positive integers, nonnnegative integers, reals and complex numbers respectively. The open ball in

the maximum norm with radius δ > 0 around 0∈Rn is denoted by Kδ . The open disk on the complex

plain with radius δ > 0 is denoted by Bδ = {z ∈C : |z|< δ}, where |z| denotes the absolute value of

z ∈ C. For R⊆ R2, let bd(R) and cl(R) denote the topological boundary and the closure of the set R,

respectively. It is unambiguous whether a vector in a formula is a row or a column vector, therefore

we omit the usage of the transpose. For ξ = (ξ1,ξ2) ∈ C2 and ζ = (ζ1,ζ2) ∈ C2 let ⟨ξ ,ζ ⟩ denote

the scalar product of them defined by ⟨ξ ,ζ ⟩ = ξ1ζ1 + ξ2ζ2. For a bounded function ψ : R→ R, let

Mψ = supx∈R |ψ(x)|. For a real function γ : R→ R and for c ∈ R, let δinf(γ;c) := liminfx→c
γ(x)−γ(c)

x−c

and δsup(γ;c) := limsupx→c
γ(x)−γ(c)

x .

Given a number or set X , by [X ] we denote an interval enclosure of X . With the usage of this

notation, we emphasize always, that even though we might obtain [X ] from a computation, X ⊆ [X ] is

always satisfied. Any subsequent computations will result in validated results due to the proper usage

of interval analysis.

Consider the continuous map f : D f ⊆ R2→ R2. For k ∈ N0, f k denotes the k-fold composition

of f , i.e., f k+1(x) = f ( f k(x)), and f 0(x) = x.

Definition 2.1. The point x∗ ∈ D f is called a fixed point of f if f (x∗) = x∗. The point q ∈ D f is a

non-wandering point of f if for every neighbourhood U of q and for any M≥ 0, there exists an integer

m≥M such that f m(U ∩D f )∩U ∩D f ̸= /0.

A fixed point x∗ ∈ D f of f is called locally stable if for every ε > 0 there exists δ > 0 such that

∥x− x∗∥< δ implies ∥ f k(x)− x∗∥< ε for all k ∈ N, where ∥.∥ denotes the Euclidean norm. We say

that the fixed point x∗ attracts the region U ⊆D f if for all points u ∈U, ∥ f k(u)− x∗∥→ 0 as k→ ∞.

The fixed point x∗ is globally attracting if it attracts all of D f , and it is globally asymptotically stable

(GAS) if it is locally stable and globally attracting.
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We shall associate directed graphs with f . The vertices of these graphs are sets and the edges

correspond to transitions between them. These graphs reflect the behaviour of the map, if for every

point (x,y) and its image f (x,y), it is satisfied that there is an edge going from any vertex containing

(x,y) to any vertex containing f (x,y). We give the necessary definitions here, the reader is referred to

[3] for a more detailed overview of graph representations.

Definition 2.2. P is called a partition of D ⊆ R2 if it is a collection of closed subsets of R2 such

that |P| := ∪p∈P p = D and ∀p1, p2 ∈P : p1∩ p2 ⊆ bd(p1)∪bd(p2). We define the diameter of the

partition P by

diam(P) = sup
p∈P

sup
x,y∈p
∥x− y∥.

Let f : D f ⊆ R2 → R2, D ⊆ D f , and P be a partition of D . We say that the directed graph

G (V ,E ) is a graph representation of f on D with respect to P , if there exists a bijection ι : V →P

such that the following implication is true for all u,v ∈ V :

f (ι(u)∩D)∩ ι(v)∩D ̸= /0⇒ (u,v) ∈ E .

We take the liberty to handle the elements of the cover as vertices and vice versa, omitting the usage

of ι .

Let us now define the following 2-dimensional map, corresponding to equation (1.1)

F : R2→ R2, F(x,y) = Fα,m(x,y) = (y,my−αφ(x)). (2.1)

For (x,y) ∈ R2 and k ∈ N0, we shall use notation (xk,yk) = Fk(x,y).

3 Preliminaries and a sufficient condition for global stability

Even though φ is not assumed to be differentiable at 0, one may characterize the local stability of the

origin by the following generalized multipliers of the map F at (0,0)

µ1,2(λ ) = µ1,2(α,m;λ ) = m±
√

m2−4λα
2 ,

where λ ∈ [δinf(φ ;0),δsup(φ ;0)] is an accumulation point of φ(x)−φ(0)
x = φ(x)

x as x→ 0. Recall from

our initial observations, that (1.2) implies λ ∈ [0,1]. It is easy to see, that max |µ1,2(λ )| ≤ 1 is

satisfied only if m ∈ [−2,2] and λα ∈ [|m| − 1,1] hold and we have equality if and only if λα =

1 or λα = |m| − 1. Consequently, the global stability of the zero solution may hold only if both

δinf(φ ;0)α ∈ [|m| − 1,1] and δsup(φ ;0)α ∈ [|m| − 1,1]. Our first goal in this section is to give a

region on the parameter plane (α,m) where, with some exceptions, the global asymptotic stability

of the trivial fixed point is guaranteed without any further assumptions. Note that in the case of

δsup(φ;0) = 1 or in the special case when φ is differentiable at the origin and φ ′(0) = 1, local stability

may only hold if α ∈ [|m|− 1,1] is satisfied. Observe that if (α,m) = (0,1), then every c ∈ R is an

equilibrium point of equation (1.1). On the other hand, if (α,m) = (0,−1), then {c,−c} is a period
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two orbit for every c ∈R, c ̸= 0. According to these simple observations and to the following lemma,

we shall restrict our attention in the sequel to the parameter range

(α,m) ∈R := cl(R0)\{(0,−1),(0,1)},

where R0 is the open set (|m|−1,1)× (−1,1). These regions are depicted on Figure 3.

Figure 3: The solid blue and dashed green lines represent the sets R and R0, respectively. The

dashed red and purple lines correspond to the curves α = 1
1+|m| and α = 1−|m|, respectively.

Remark 3.1. We will see that in order to show the global asymptotic stability of (0,0) for parameter

pairs in bd(R0), we shall need additional information on φ . For practical reasons we have chosen to

assume that φ is continuous and 0 < xφ(x)< x2 for x ̸= 0.

After stating a sufficient condition for GAS in Theorem 3.6, we shall restrict our attention to

m ∈ [0,1] and φ being bounded and as in Remark 3.1. Having these assumptions, we construct a

compact, invariant and attracting region of the plane for (1.1).

Lemma 3.2. Assume that φ is bounded. If |m|> 1, then the zero fixed point of (2.1) is not GAS.

Proof. Indeed, if |m| > 1 then we readily get that min{|x0|, |y0|} >
Mφ |α|
|m|−1 implies min{|x1|, |y1|} >

Mφ |α|
|m|−1 , excluding the global stability of the fixed point (0,0) of F in this case.

Lemma 3.3. The fixed point (0,0) is globally asymptotically stable if

(a) (α,m) ∈R0 with α < 1−|m| or

(b) φ is as in Remark 3.1 and (α,m) ∈R with α < 1−|m|.

See Figure 3 for an image of these regions.
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Proof. We prove statement (a) first. For any point (x0,y0) ∈ R2, we have |y1| ≤ |m||y0|+ |α||φ(x0)|,
thus the inequalities max{|x1|, |y1|}≤max{|x0|, |y0|} and max{|x2|, |y2|}≤ (|m|+ |α|)max{|x0|, |y0|}
are satisfied. Since |m|+|α|< 1, by induction we obtain that max{|x2k+1|, |y2k+1|}≤max{|x2k|, |y2k|}
for k ∈ N and limk→∞ max{|x2k|, |y2k|}= 0, thus global asymptotic stability holds in this case.

Consider now statement (b). For α ∈ (|m| − 1,1− |m|) the same argument works, thus let

α = |m| − 1 ∈ [−1,0) and m ∈ (−1,1). In the same way, for a point (x0,y0) ∈ R2, we obtain that

max{|x2k|, |y2k|} is decreasing, thus max{|x2k|, |y2k|} → c ≥ 0. In order to show that c = 0, due to

the continuity of φ , it is enough to establish that, for any (x0,y0) such that max{|x0|, |y0|} = c > 0,

the orbit satisfies limsupk→∞ max{|x2k|, |y2k|} < c. This easily follows from the condition on φ and

m ∈ (−1,1), since for any point (x,y) ̸= (0,0), we have |my−αφ(x)|< max{|x|, |y|}.

Even though Theorem 3.6 will supply a stronger condition, note that using an analogous argument,

GAS is easily shown for (α,m) ∈ {1− |m|}× (−1,1) if we assume that φ fulfils the conditions in

Remark 3.1.

Let us define the following sets for a,b ∈ (0,∞]

H1(a,b) = {(x,y) : 0≤ x≤ a; 0 < y≤ b},

H2(a,b) = {(x,y) : 0 < x≤ a; −b≤ y≤ 0},

H3(a,b) = {(x,y) :−a≤ x≤ 0; −b≤ y < 0},

H4(a,b) = {(x,y) :−a≤ x < 0; 0≤ y≤ b}

and Hi = Hi(∞,∞) for i ∈ {1,2,3,4}. Figure 4 shows these four sets for a pair of values (a,b).

Figure 4: The sets H1(a,b),H2(a,b),H3(a,b) and H4(a,b)

Proposition 3.4. For m ∈ [0,1] and α ∈ [0,1] the following statements hold.

(i) If (x0,y0) ∈ H1(a,b), then (x1,y1) ∈ H1(b,mb)∪H2(b,αa).

(ii) If (x0,y0) ∈ H2(a,b), then (x1,y1) ∈ H3(b,mb+αa).
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(iii) If (x0,y0) ∈ H3(a,b), then (x1,y1) ∈ H3(b,mb)∪H4(b,αa).

(iv) If (x0,y0) ∈ H4(a,b), then (x1,y1) ∈ H1(b,mb+αa).

(v) Having m∈ [0,1) and (xk,yk)∈H1 or (xk,yk)∈H3 for all k∈N0 implies limk→∞(xk,yk) = (0,0).

In addition, if φ is as in Remark 3.1, then the claim holds for m = 1 as well.

Proof. The proof is elementary. We denote the first point with (x0,y0). To see that statement (i) holds,

first note that 0 < x1 = y0 ≤ b. Since we have y1 = my0−αφ(x0) and 0 ≤ xφ(x) ≤ x2, therefore

(x0,y0) ∈ H1(a,b) readily implies −αa ≤ y1 ≤ mb, resulting in (x1,y1) ∈ H1(b,mb)∪H2(b,αa).

Statements (ii)–(iv) can be proven in a similar manner.

To prove statement (v), let us suppose that the point (x0,y0) ∈ H1 is such that (xk,yk) ∈ H1 holds

for all k ∈ N0. Using the notation a = max{x0,y0}> 0 and statement (i), we obtain by induction that

(x2k,y2k) ∈ H1(mka,mka), (x2k+1,y2k+1) ∈ H1(mka,mk+1a) and 0 < y2k+1 ≤ y2k

hold for all k ∈ N0 implying that

lim
k→∞

max{xk,yk}= lim
k→∞

xk = lim
k→∞

yk = c≥ 0,

which results in c = 0 if m ∈ [0,1). We finish our argument by noting, that for m = 1, the continuity

of φ implies that it is enough to show that (c,c) cannot be a fixed point for c > 0. This easily follows

from 0 < φ(c).
The case of (xk,yk) ∈ H3 is analogous.

We may formulate similar statements for m ∈ [−1,0].

Proposition 3.5. For m ∈ [−1,0] and α ∈ [0,1] the following statements hold.

(i) If (x0,y0) ∈ H1(a,b), then (x1,y1) ∈ H2(b, |m|b+αa).

(ii) If (x0,y0) ∈ H2(a,b), then (x1,y1) ∈ H3(b,αa)∪H4(b, |m|b).

(iii) If (x0,y0) ∈ H3(a,b), then (x1,y1) ∈ H4(b, |m|b+αa).

(iv) If (x0,y0) ∈ H4(a,b), then (x1,y1) ∈ H1(b,αa)∪H2(b, |m|b).

The proof is analogous to what we have seen at Proposition 3.4. Now we are ready to state one of

the main results of this section.

Theorem 3.6. The fixed point (0,0) is globally asymptotically stable, if any of the following condi-

tions is satisfied

(a) (α,m) ∈R0 \ [ 1
1+|m| ,1]× (−1,1), or

(b) φ is as in Remark 3.1 and (α,m) ∈R \ ( 1
1+|m| ,1]× [−1,1].

See Figure 3 for a visualization of these parameter regions.
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Proof. For simplicity, we restrict our attention to the case when m≥ 0. The other case can be treated

similarly. For α ∈ [m−1,1−m), the statement follows from Lemma 3.3. Let (x0,y0) ∈ R2 \{(0,0)}
be an arbitrary point. From Proposition 3.4 it is clear that either (xk,yk)→ (0,0) as k→ ∞ or there

exists a sequence of integers

0≤ k1,1 < k1,2 < k1,3 = k1,2 +1 < k1,4 < k2,1 = k1,4 +1 < · · ·k2,4 < · · ·

such that (xkn,i ,ykn,i) ∈ Hi for all n ∈ N and i ∈ {1,2,3,4}. In the former case our claim trivially

holds, thus we may assume the latter. Now we may suppose without loss of generality that k1,1 = 0,

that is (x0,y0) ∈ H1(a,a) for some positive constant a. Statement (i) of Proposition 3.4 implies that

(xk,yk)∈H1(a,a) for 0≤ k < k1,2 and (xk1,2 ,yk1,2)∈H2(a,αa). From statement (ii) of Proposition 3.4

(xk1,3 ,yk1,3) = (xk1,2+1,yk1,2+1) ∈ H3(αa, (m+1)αa)

⊆ H3((m+1)αa, (m+1)αa)

follows. Similarly, from statement (iii) we obtain that for k1,3 ≤ k < k1,4,

(xk,yk) ∈ H3((m+1)αa, (m+1)αa)

holds. Moreover, statements (iv) and (i) of Proposition 3.4 imply

(xk1,4 ,yk1,4) ∈ H4((m+1)αa, (m+1)α2a)

and

(xk1,4+1,yk1,4+1) = (xk2,1 ,yk2,1) ∈ H1(((m+1)α)2a, ((m+1)α)2a).

Note that 0≤ |yk2,1 | ≤ |yk1,1 |. We obtain by induction that

lim
n→∞

max{|xkn,1 |, |ykn,1 |}= c≥ 0.

If 0 ≤ 1−m ≤ α < 1
1+m , then c = 0 follows immediately. Since the origin is LAS, this implies

limk→∞(xk,yk) = (0,0). Now, let us consider the case α = 1
m+1 . The continuity of φ implies that in

order to obtain c = 0, it is enough to show that for any point (x′0,y
′
0) ∈ H1 such that max{|x′0|, |y′0|}=

c > 0 and ((x′k,y
′
k))

∞
k=0 visits every Hi infinitely many times, inequality max{|x′k2,1

|, |y′k2,1
|} < c is

satisfied (by keeping the above meaning of the indexes). We finish by noting that the condition on φ
implies that there exists 0 < c′ < c such that (x′k1,3

,y′k1,3
) ∈H3(c′,c′)⊂H3(c,c) implying (x′k2,1

,y′k2,1
) ∈

H1(c′,c′).

In the remaining part of the section we limit our analysis to the case when m∈ [0,1], φ is bounded

and satisfies the conditions in Remark 3.1. Let M ≥ 0 and consider the sets T(M,m) and S (M,m)

given by

T(M,m) =

R2, for m = 0,

H1(
2M
m , 2M

m )∪H2(
M
m , M

m )∪H3(
2M
m , 2M

m )∪H4(
M
m , M

m )∪{(0,0)}, for m ∈ (0,1],
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Figure 5: The set T(M,m) for m > 0

and

S (M,m) =

[− 2M
1−m ,

2M
1−m ]

2, for m ∈ [0,1),

R2, for m = 1.

We sketched T(M,m) on Figure 5 for m ̸= 0.

The following proposition has an essential role in the proof of our main result, Theorem 4.3.

Proposition 3.7. Assume that(α,m) ∈ [0,1]2, φ is as in Remark 3.1, bounded and let M = Mφ . Then

the following statements hold.

(i) (x0,y0) ∈ T(M,m) implies (x1,y1) ∈ T(M,m), moreover, for (x0,y0) ∈ R2, there exists k ∈ N0

such that (xk,yk) ∈ T(M,m) is satisfied.

(ii) (x0,y0) ∈S (M,m) implies (x1,y1) ∈S (M,m), moreover, for (x0,y0) ∈ R2, there exists k ∈ N0

such that (xk,yk) ∈S (M,m) holds.

Proof. Let m and M be fixed and let us use notations T= T(M,m) and S = S (M,m).

(i) The case m = 0 is trivial, therefore we may assume m ∈ (0,1]. First, let us show the second

part of the statement. Let (x0,y0) ∈ R2 be an arbitrary point. According to Proposition 3.4

either there exists k0 ∈N0 such that (xk0 ,yk0)∈H1 or we have (xk,yk)→ (0,0) as k→∞, which

implies (xk,yk) ∈ T for large enough values of k. Thus we may assume (x0,y0) ∈ H1.

a) If 0 < y0 ≤ M
m , then we readily get that (x1,y1) ∈ H1(

M
m , M

m )∪H2(
M
m , M

m )⊂ T.

b) y0 > M
m leads to 0 < x1 = y0 and 0 < y1 = my0−αφ(x0) ≤ my0 ≤ y0. Now if y1 ≤ M

m ,

then we are in case a). Otherwise y1 >
M
m and (x1,y1) ∈ H1. We obtain by induction, that

either there exists k0 ∈ N such that 0 < yk0 ≤ M
m and xk0 >

M
m and the claim follows from

case a), or (xk,yk) ∈ H1 \H1(
M
m , M

m ) for all k ∈ N. In the latter case, Proposition 3.4 leads

to limk→∞(xk,yk) = (0,0), implying a contradiction.
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Now, we may prove the first part of statement (i). The argument above also shows that for

(x0,y0) ∈ H1(
2M
m , 2M

m ), (x1,y1) ∈ T is guaranteed. For (x0,y0) ∈ H2(
M
m , M

m ), statement (ii) of

Proposition 3.4 with a = b = M
m yields (x1,y1) ∈ T. A similar argument can be applied to show

that for (x0,y0) ∈H3(
2M
m , 2M

m )∪H4(
M
m , M

m ), (x1,y1) ∈ T holds, which completes the proof of (i).

(ii) The statement is trivial for m = 1, thus we may assume that m ∈ [0,1). To prove the first part,

let us suppose that (x0,y0) ∈S . Then |x1| = |y0| ≤ 2M
1−m together with |y1| ≤ m|y0|+αM ≤

m 2M
1−m +M < 2M

1−m yields (x1,y1) ∈S .

To prove the second part of the statement let us assume that (x0,y0) /∈S .

a) If |y0| ≥ 2M
1−m , then |x1|= |y0| ≥ 2M

1−m and |y1| ≤m|y0|+M ≤ m+1
2 |y0|< |y0|. By induction

we get a geometrically decreasing series yk, thus there exists k0 ∈N such that |xk0 | ≥ 2M
1−m

and |yk0 |< 2M
1−m . Now |xk0+1|= |yk0 |< 2M

1−m and |yk0+1| ≤m|yk0 |+M < m 2M
1−m +M < 2M

1−m ,

thus (xk0+1,yk0+1) ∈S .

b) If |y0| < 2M
1−m , then (x0,y0) /∈S implies |x0| > 2M

1−m which reduces to case a) and makes

our proof complete.

Corollary 3.8. Let us assume that (α,m) ∈ [0,1]2, φ is continuous and bounded. Given M = Mφ , the

sets T(M,m) and S (M,m) are well defined. Their intersection S = T(M,m)∩S (M,m) is compact.

Moreover, S is invariant and attracting for F. In addition, the following inclusion holds

S = T(M,m)∩S (M,m)⊆ [− 2M
max{m,1−m} ,

2M
max{m,1−m} ]

2 ⊆ [−4M,4M]2.

4 Main result: necessary and sufficient condition for global stability

In this section we restrict our attention to equation (1.3), namely

xn+1 = mxn−α tanh(xn−1),

where (α,m) ∈ R2, that is (1.1) with φ(x)≡ tanh(x).

Remark 4.1. Note that, the function tanh is as in Remark 3.1. In addition, it is bounded (Mtanh = 1)

and tanh′(0) = 1.

These observations imply, in accordance with the results of Section 3, that GAS of the zero

solution may only hold when

(α,m) ∈R = [|m|−1,1]× [−1,1]\{(0,−1),(0,1)}.

Remark 4.2. Using the substitution yk := (−1)kxk and the fact that tanh is an odd function one

obtains yn+1 = (−m)yn−α tanh(yn−1).
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Notice that at α = 1 a Neimark–Sacker bifurcation takes place with a 1:4 strong resonance at

(α,m) = (1,0). Our main result is that we show in Theorem 4.3 that condition (α,m)∈R is not only

necessary but also sufficient for global asymptotic stability of the origin. Keeping the notations of the

previous section we get that

F : R2→ R2, F(x,y) = Fα,m(x,y) = (y,my−α tanh(x)). (4.1)

Theorem 4.3. The fixed point (0,0) of the map F is globally asymptotically stable if and only if

(α,m) ∈R.

Note that due to Theorem 3.6 and the symmetry described in Remark 4.2, it is sufficient to con-

sider (α,m) ∈ [ 1
m+1 ,1]× [0,1]. The proof of global stability in this region consists of two parts.

In Part I, for every such pair (α,m), we obtain a compact neighbourhood U(α) inside the basin of

attraction of (0,0), such that for any parameter interval [α]× [m] ⊆ [1/(1+m),1]× [0,1], the set

U([α]) := ∩α∈[α]U(α) contains a closed disk around the origin. For this we shall study the lin-

earized equation and the 1:4 resonant normal form of the Neimark–Sacker bifurcation. After we have

derived this neighbourhood and the compact set S = T(Mtanh,m)∩S (Mtanh,m) from Section 3, in

Part II we analyze the equation using a rigorous computer program. The results prove that having

(α,m) ∈ [α]× [m], every trajectory starting in S will enter U([α])⊆U(α).

Part I: Obtaining the compact neighbourhood U(α)

Linearizing F at the (0,0) fixed point yields

(x,y) 7→ F(x,y) = A(α,m)(x,y)T + fα,m(x,y) (4.2)

where the linear part is

A(α,m) =

(
0 1

−α m

)
,

and the remainder is given by

fα(x,y) =

(
0

αx−α tanh(x)

)
.

First recall that the eigenvalues of A(α,m) are µ1,2(α,m) = m±i
√

4α−m2

2 ∈ C. Let µ = µ1(α,m)

and q denote the eigenvector q = q(α,m) =
(

m−i
√
−m2+4α
2α ,1

)T
∈ C2. Let also p = p(α,m) ∈ C2

denote the eigenvector of A(α,m)T corresponding to µ such that ⟨p,q⟩= 1. This results in

p =
(
− iα√

4α−m2 ,
1
2 +

im
2
√

4α−m2

)
. (4.3)

We shall introduce the complex variable

z = z(x,y,α,m) = ⟨p,(x,y)⟩= α(mx−2y−ix
√

4α−m2)
m2−4α−im

√
4α−m2 . (4.4)

12



The inverse of the transformation may also be given by

(x,y) = zq+ zq =
(

1
α

(
−iz
√

4α−m2 +
(

m+ i
√

4α−m2
)

Rez
)
,2Rez

)
. (4.5)

System (4.1) is now transformed into the complex system

z 7→ G(z) = G(z,z,α,m) = ⟨p, A(α,m)(zq+ zq)+ fα,m(zq+ zq)⟩

= µz+g(z,z,α,m),
(4.6)

where g is a complex valued smooth function of z,z,α and m defined by

g(z,z,α,m) =2α
(

mRez+
√

4α−m2Imz−α tanh
(

mRez+
√

4α−m2Imz
α

))
·
(

4α−m2 + im
√

4α−m2
)−1

.
(4.7)

It is also clear that for fixed α and m, g is an analytic function of z and z. Calculating the Taylor

expansion of g around 0 with respect to z and z we get that it has only cubic and higher order terms

(due to the fact that tanh′′(0) = 0). That is,

g(z,z,α,m) = ∑
k+l=3

gkl

k!l!
zkzl +R1(z), with k, l ∈ {0,1,2,3}, (4.8)

where gkl = gkl(α,m)= ∂ k+l

∂ zk∂ zl g(z,z,α,m)
∣∣∣
z=0

for k+l = 3, k, l ∈{0,1,2,3} and R1(z)=R1(z,z,α,m)=

O(|z|4) for fixed (α,m).

Theorem 4.4. Let α ∈ [1
2 ,1) and m ∈ [0,1]. If (x0,y0) ∈U(α) = Kε(α), where

ε(α) = 4
√

27
800

√
1−
√

α,

then limk→∞(xk,yk) = (0,0).

Proof. Let us study our map in the form (4.6). Let also (x,y) ∈ Kε(α) \{(0,0)} be an arbitrary point

and z = z(x,y,α,m) be defined by (4.4). We are going to show, that |G(z,z,α,m)|< |z| if z ̸= 0. Using

equations (4.4) and (4.5) it can be easily shown that for all α ∈ [1
2 ,1] and m ∈ [0,1]

max{|x|, |y|} ≤ 2|z|√
α ≤ 2

√
2|z|, and

|z| ≤
√

α(1+α+m)
4α−m2 max{|x|, |y|} ≤

√
5

2 max{|x|, |y|}
(4.9)

hold with z = z(x,y,α,m). Using the Taylor expansion of the tanh function, inequality ε(α)< 1 and

that max|x|≤1

{∣∣∣ d3

dx3 tanh(x)
∣∣∣}= 2, we get that

|g(z,z,α,m)|=
∣∣∣⟨p(α,m), fα,m

(
zq(α,m)+ zq(α,m)

)⟩∣∣∣
=
√

α
4α−m2 α2|x− tanh(x)|

≤
√

α
4α−m2

α2

6 max
|x|≤ε(α)

{∣∣∣ d3

dx3 tanh(x)
∣∣∣} |x|3

=
√

α
4α−m2

α2

3 |x|
3.
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Now, by the first inequality in (4.9) and equation |µ|=
√

α , we obtain

|G(z,z,α,m)| ≤
√

α|z|+
√

α
4α−m2

α2

3 (2
√

2)3|z|3

= |z| ·
(√

α +
√

α
4α−m2

α2

3 16
√

2|z|2
)
.

As
√

α
4α−m2

α2

3 ≤
1

3
√

3
holds for all α ∈ [1

2 ,1] and m ∈ [0,1], thus 0 ̸= |z| < ε0(α) = 4
√

27
512

√
1−
√

α
guarantees |G(z)|< |z|. Using the second inequality of (4.9) yields that for (x,y) ∈ Kε(α), inequality

|z|= |z(x,y,α,m)|< ε0(α) is satisfied. Now, we have |G(z)|< |z| if z ̸= 0. This implies Gk(z)→ 0 as

k→∞. Thus the (0,0)∈R2 solution is asymptotically stable in U(α) = Kε(α) for our original system

(x,y) 7→ F(x,y).

Theorem 4.5. Let α ∈ [0.98,1] and m ∈ [0,1]. If (x0,y0) ∈U(α) = Kε(α), where

ε(α) = 1
6 ,

then limk→∞(xk,yk) = (0,0).

The proof is based on the argument applied in our previous work [3]. As already noted, at α =

1, the dynamical system defined by Fα,m undergoes a Neimark–Sacker bifurcation. However, at

(α,m) = (1,0), a strong 1 : 4 resonance occurs. We shall transform our system into its 1 : 4 resonant

normal-form (according to Kuznetsov [18]) to prove the claim of the theorem, as the non-resonant

normal form of the Neimark–Sacker bifurcation would not be not applicable near the parameter values

(α,m) = (1,0). The reason for that is that we shall need, among others, uniform estimates on the

transformation, which is impossible as the parameters tend to the critical pair (1,0). However, the

resonant normal form is applicable over the whole region (α,m) ∈ [0.98,1]× [0,1]. In the following

proof we used the assistance of the symbolic toolbox of Wolfram Mathematica.

Proof of Theorem 4.5. In this proof, we shall present several estimations. The given bounds shall

always be uniform, that is, they hold for all parameter values α ∈ [0.98,1] and m ∈ [0,1].

Step 1: Transformation into the 1:4 resonant normal form

Let us consider our system in the form (4.6). We are looking for a smooth complex function h =

hα,m : C→ C, which is defined and is invertible on a neighbourhood of 0 ∈ C and which transforms

our system (4.6) into the following normal form w 7→ G1:4(w) = G1:4(w,w,α,m), where

G1:4(w) = h−1(G(h(w),h(w),α,m)) = µw+ c(α,m)w2w+d(α,m)w3 +R2(w), (4.10)

and R2(w) = R2(w,w,α,m) = O(|w|4) for (α,m) fixed. One can find such a function h by assuming

it to be a polynomial of w and w with at most cubic terms. This results in

h(w) = h(w,w,α,m) = w+ h30
6 w3 + h12

2 ww2, (4.11)

and

h−1(z) = h−1(z,z,α,m) = z− h30
6 z3− h12

2 zz2 +R3(z), (4.12)
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where

h30 = h30(α,m) = g30
µ(µ2−1) , h12 = h12(α,m) = g12

2µ(µ2−1)

and R3(z) = R3(z,z,α,m) = O(|z|4) for (α,m) fixed. The domains of h and h−1 are to be defined

later.

Our aim is now to find ε0 > 0 such that for all (x,y) ∈
[
−1

6 ,
1
6

]2, |w| < ε0 is satisfied and for all

0 ̸= |w|< ε0 the following inequality holds

|G1:4(w)|= |µw+ c(α,m)w2w+d(α,m)w3 +R2(w,w,α,m)|< |w|. (4.13)

To find ε0, we need several uniform estimations on the higher order (error) terms R1, R2 and R3, on

the transformations h and (x,y) 7→ z and their inverses and on the functions g, c and d, as well.

Step 2: Estimations

Estimation of g and R1

First of all, it can be easily shown from equations (4.4) and (4.5) that the following inequalities

hold
max{|x|, |y|} ≤ 2|z|√

α ≤ 2.03|z| and

|z| ≤
√

α(1+α+m)
4α−m2 max{|x|, |y|} ≤ 1.01 ·max{|x|, |y|},

(4.14)

for all α ∈ [0.98,1], m ∈ [0,1]. Now, it is clear from the Taylor expansion of the tanh function and

from equations (4.2), (4.3) and (4.5) that

|R1(z)| ≤
∣∣∣1

2 +
im

2
√

4α−m2

∣∣∣ · α
120 ·max

|x|≤1
6

{∣∣∣ d5

dx5 tanh(x)
∣∣∣} · |x|5 =√ α

4α−m2
2α2

15 · |x|
5

is satisfied if z = z(x,y,α,m). Now, using rigorous estimations, from the first inequality of (4.14) and

from |x| ≤ 1
6 it can be readily shown that

|R1(z)| ≤ 0.22|z|4. (4.15)

We have the following explicit formulae for the third order terms of g

g30 =
2iα−m(im+

√
4α−m2)

α
√

4α−m2 , g21 =− 2i√
4α−m2 ,

g12 =
2(m+i

√
4α−m2)

4α−m2+im
√

4α−m2 , g03 =
(m+i

√
4α−m2)

3

2α(4α−m2+im
√

4α−m2)
.

(4.16)

By symbolic calculations, we obtain that

∑
k+l=3

|gkl |
k!l! =

8
3
√

4α−m2 < 1.57, with k, l ∈ {0,1,2,3}. (4.17)

Inequalities (4.15) and (4.17) together with equations (4.6) and (4.8) yield in particular that

|G(z)| ≤ |z|+1.57|z|3 +0.22|z|4. (4.18)

A region where transformation h is valid, and estimation of h

We are going to show that the transformation h, defined by equation (4.11), is injective on B1/2 ⊂
C and that its inverse h−1 is defined on B1/3 and has the form (4.12).
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The following equations and upper bound can be easily obtained

|h30|= |h12|= 2√
α(4α−m2)((1+α)2−m2)

< 0.7. (4.19)

Let

Hz = Hα,m,z : C ∋ w 7→ w+ z−h(w) ∈ C.

By this notation, Hz(w) = w holds if and only if h(w) = z. Let us make the following observation.

|Hz(w1)−Hz(w2)|= |w1−h(w1)−w2 +h(w2)|

≤ |h30|
6

∣∣w3
1−w3

2
∣∣+ |h12)|

2

∣∣w1|w1|2−w2|w2|2
∣∣ .

Note also that ∣∣w1|w1|2−w2|w2|2
∣∣≤ ∣∣w1|w1|2−w1|w2|2

∣∣+ ∣∣w1|w2|2−w2|w2|2
∣∣

=|w1|
(
|w1|2−|w2|2

)
+ |w2|2|w1−w2|

≤|w1|(|w1|− |w2|)(|w1|+ |w2|)+ |w2|2|w1−w2|

≤|w1−w2|
(
|w1|2 + |w1||w2|+ |w2|2

)
.

Now, if w1,w2 ∈ B1/2 are arbitrary and z ∈ B1/3 is fixed, then we have the following estimations

|Hz(w1)−Hz(w2)| ≤|w1−w2| ·
(
|h30|

6 + |h12|
2

)(
|w1|2 + |w1||w2|+ |w2|2

)
≤0.47|w1−w2| ·3 · 1

4 ≤ |w1−w2|,

and

|Hz(w)| ≤ |z|+ |w−h(w)| ≤ |z|+
(
|h30|

6 + |h12|
2

)
|w|3 ≤ 1

3 +0.47 ·2 · 1
8 < 1

2 .

We obtained that Hα,z : B1/2→ B1/2 is a contraction. Hence for all fixed z ∈ B1/3 there exists exactly

one w = w(z) ∈ B1/2 such that Hz(w(z)) = w(z), that is h(w(z)) = z. This means that h−1 can be

defined on B1/3.

It is also clear from equation (4.11) and inequality (4.19) that

|w|−0.47|w|3 ≤ |h(w)| ≤ |w|+0.47|w|3. (4.20)

Estimation of h−1

Using inequalities (4.20) and assuming w ∈ B1/5, z = h(w) yield the following inequality

|w| ≤ 1.02|h−1(z)|. (4.21)

In order to have a similar upper estimation on its inverse h−1, as well, we need to estimate the remain-

der term R3. Let us assume that z ∈ B1/3. Since h−1 is defined on B1/3, hence there exists exactly one

number w in B1/2 such that z = h(w). Now, we have

R3(z) = R3(h(w)) = h−1(h(w))−h(w)+ h30
6 (h(w))3 + h12

2 h(w)
(

h(w)
)2

,

a polynomial of w and w having only fourth to ninth order terms. Assuming now w ∈ B1/5 and using

inequalities (4.19) and (4.21) we obtain that

R3(z)≤ 0.14|w|4 < 0.16|z|4
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is satisfied for z = h(w). This inequality combined with equation (4.12) and inequality (4.19) yields

that if w ∈ B1/5 and z = h(w), then∣∣h−1(z)
∣∣≤ |z|+0.47|z|3 +0.16|z|4 (4.22)

holds.

Estimation of R2

Now, we are ready to estimate R2. Let us define the following three polynomials

h−1;max(s) = s+0.47s3 +0.16s4,

Gmax(s) = s+1.57s3 +0.22s4,

hmax(s) = s+0.47s3.

(4.23)

Let also Q(s) = ∑48
k=1 qksk = h−1;max ◦Gmax ◦hmax(s). It is obvious from our previous estimations that

for 0 ̸= w ∈ B1/5, we have |R2(w)|< ∑48
k=4 qk|w|4

(1
5

)k−4, which leads to

|R2(w)|< 1.59|w|4. (4.24)

Step 3: A region of attraction for the fixed point 0 of system (4.10)

From equations (4.10),(4.11), (4.12) and (4.16) one can readily derive the formulae

c = c(α,m) =− i√
4α−m2 , d = d(α,m) =

(m+i
√

4α−m2)
3

12α(4α−m2+im
√

4α−m2)
. (4.25)

Let

β = β (α,m) = |µ(α,m)|
µ(α,m) c(α,m) = −im−

√
4α−m2

2
√

α
√

4α−m2

and let γ = γ(α) denote the real part of β , which is γ =− 1
2
√

α . Using these notations and inequality

(4.24) we obtain that for all 0 ̸= w ∈ B1/5 we have

|G1:4(w)|=
∣∣µw+ c(α,m)w2w+d(α,m)w3 +R2(w)

∣∣
≤|w|

(∣∣µ + c|w|2
∣∣+ |d||w|2)+ |R2(w)|

=|w|
(∣∣|µ|+β |w|2

∣∣+ |d||w|2)+ |R2(w,w,α)|

<|w|
(∣∣√α +β |w|2

∣∣+ |d||w|2 +1.59|w|3
)

≤|w|
(∣∣√α + γ|w|2

∣∣)
+ |w|

(∣∣∣∣√α +β |w|2
∣∣− (
√

α + γ|w|2)
∣∣+ |d||w|2 +1.59|w|3

)
.

(4.26)

Note that −1 <− 5
7
√

2
≤ γ ≤−1

2 . Now supposing 0 ̸= w ∈ B1/5 yields the following

∣∣∣∣√α +β |w|2
∣∣− (
√

α + γ|w|2)
∣∣= ∣∣∣∣√α +2

√
αγ |w|2 + |β |2|w|4− (

√
α + γ|w|2)

∣∣∣∣
=

∣∣∣∣ (|β |2−γ2)|w|4√
α+2
√

αγ |w|2+|β |2|w|4+
√

α+γ |w|2

∣∣∣∣
≤ (|β |2−γ2)|w|4√

25α|w|2+2
√

αγ |w|2+5
√

α|w|+γ|w|

≤ (|β |2−γ2)√
25α−2+5α−1

|w|3.
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Using the formulae for γ,β and d, one readily get that the following inequalities hold∣∣∣∣√α +β |w|2
∣∣− (
√

α + γ|w|2)
∣∣< 0.02|w|3, (4.27)

and

|d| ≤ 5
3
√

73
< 1

5 . (4.28)

Combining inequalities (4.26), (4.27) and (4.28) we obtain that for 0 ̸= w ∈ B1/5 we have

|G1:4(w)|< |w|
(
1−0.5|w|2 +0.2|w|2 +1.61|w|3

)
= |w|

(
1−|w|2(0.3−0.161|w|)

)
< |w|,

provided that |w| < ε0 = 0.3
0.161 . This proves the asymptotic stability of the 0 fixed point of system

(4.10) in the region Bε0 .

Step 4: The 0 fixed point of system (4.1) is asymptotically stable in the region [−1
6 ,

1
6 ]

2

Inequalities (4.14) and (4.21) imply that for all (x,y) ∈ [−1
6 ,

1
6 ]

2, w ∈ Bε0 is satisfied. This guarantees

that given (x0,y0) ∈U(α) = [−1
6 ,

1
6 ]

2, we have limk→∞(xk,yk) = (0,0) and completes our proof.

Figure 6 illustrates how U(α) changes with the parameter α .

Figure 6: U(α) is the square with sides 2ε(α), centred at 0.

Part II: Rigorous computations

Consider now a pair of parameter values(α,m) ∈ [ 1
m+1 ,1]× [0,1]. Given any starting point (x0,y0),

the accumulation points of its orbit ((xk,yk))
∞
k=0 are non-wandering points of Fα,m. In order to prove

that the fixed point (0,0) is globally attracting, it is enough to show that it is the only non-wandering

point of Fα,m. We know from Corollary 3.8, that all the non-wandering points are inside S = [−4,4]2.

We shall show that S lies entirely in the basin of attraction of (0,0), or equivalently, S contains exactly

one non-wandering point, and that is (0,0).
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In the remaining part of the paper we emphasize, that [α], [m], [S] and [U ] are quantities that

are represented in the computer as intervals or interval boxes, while F[α],[m] is an interval valued

function. Even though the sets are handled numerically, they provide rigorous enclosures of the

number or set between the brackets. For any (α,m) ∈ [α]× [m] and for any (x,y) ∈ [S], we have

Fα,m(x,y)∈ F[α],[m](x,y). This is achieved by using the CAPD Library [7] for validated computations.

To proceed with the proof, first we divide the parameter range into small interval boxes [α]× [m].

Given one small box and a starting resolution δ , we shall run the procedure Global_Stability, that

appeared as Algorithm 3 together with a proof of its correctness in [3]. The algorithm uses partitions

and graph representations. For a detailed introduction the reader is referred to [3].

1: procedure GLOBAL_STABILITY([α], [m],δ )

2: [S]← [−4,4]2

3: [U ]←∩α∈[α]U(α) ◃ from Theorems 4.4 and 4.5

4: V ← Partition([S],δ ) ◃ V is a partition of [S], diam(V )≤ δ
5: repeat
6: E ← Transitions(V , F[α],[m])

7: G ← GRAPH(V ,E ) ◃ G is a graph representation of F[α],[m]

8: T ←{v : v is in a directed cycle }
9: for all v ∈ V do

10: if v /∈ T or v⊆ [U ] or F[α],[m](v)⊆ [U ] then
11: remove v from G

12: end if
13: end for
14: δ ← δ/2

15: V ← Partition(|V |,δ )

16: until |V |= /0

17: end procedure

To obtain a simple picture of what the algorithm does, notice that it utilizes graph representations of

the function F[α],[m] over nested compact sets and with respect to partitions of decreasing diameter.

The next (smaller) compact set is obtained by removing certain partition elements in line 11. A vertex

v is removed from the graph representation only when we manage to establish that either it does not

contain any non-wandering point or it lies inside the basin of attraction of the origin.

If the procedure ends in finite time, that is, at one point |V | = /0 is satisfied, it implies that the

origin is the only non-wandering point in [S], thus it is globally attracting for all parameter pairs inside

the given box [α]× [m].

The code is implemented in C++. The CAPD Library [7] and the Boost Graph Library [23]

were used for obtaining rigorous computations and handling directed graphs respectively. We used

Tarjan’s algorithm [24] in order to find the directed cycles. We used different sizes for the parameter

intervals and ran the computations on a cluster of the NIIF HPC centre at the University of Szeged

parallelizing it with OpenMP. We covered the region (α,m) ∈ [ 1
m+1 ,1]× [0,1] using 6964 parameter
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intervals [α]× [m] of size between 0.01× 0.01 and 0.001× 0.001. The iteration count (that is one

cycle in program Global_Stability) varied from 10 to 25. The computation took 67 minutes and

54 seconds, while the total run time, summing for all the simultaneous processes was 11 hours 47

minutes and 3 seconds.

Proof of Theorem 4.3. The program Global_Stability ran successfully for every parameter box.

Combining this with Theorem 4.4 and Theorem 4.5, proves that (0,0) is globally attracting for

(α,m) ∈ [ 1
m+1 ,1]× [0,1]. The output of these computations can be found at [1]. These results,

together with Theorem 3.6, Corollary 3.8, Remarks 4.1 and 4.2, prove the global attractivity of (0,0)

for (α,m) ∈R, and thus complete the proof of Theorem 4.3.
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