L

1 PHYSICA &

ELSEVIER Physica D 171 (2002) 127-137

www.elsevier.com/locate/physd

Computing accurate Poincaré maps
Warwick Tuckef

Department of Mathematics, Uppsala University, Box 480, 751 06 Uppsala, Sweden

Received 27 August 2001 ; received in revised form 9 July 2002; accepted 12 July 2002
Communicated by E. Ott

Abstract

We present a numerical method particularly suited for computing Poincaré maps for systems of ordinary differential
equations. The method is a generalization of a stopping procedure described by Hénon [Physica D 5 (1982) 412], and it
applies to a wide family of systems.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords:Poincaré maps; Numerical method; Differential equations

1. Introduction

In this paper, we will consider an autonomous system of differential equations
x=f(x), xeR". 1)

Throughout the text, we will assume that the vector figld sufficiently smooth* will do nicely). Using standard
notation, lety(x,) denote the solution dfl) satisfyingg(x, 0) = x. The curve @x) = {¢(x, t) : t € R} is called
theorbit or trajectory passing through the point

Traditionally, when an orbit of1) is to be approximated via a numerical method, it is done in small time
increments. Given an initial valug (@, +©9), the numerical approximation yields successive grid pairits, :©)),

k > 1, which hopefully satisfx® ~ ¢(x©@, 1®)). Thus, thephase variables® can be plotted against discrete
time valueg®), and an approximation of the graph¢fx,) with respect ta is obtained.

Quite often, however, one is oft@otinterested in following the phase variables with respect to the time variable
t, but rather with respect to another phase variahl&or example, it is very common that stopping conditions are
expressed in terms of phase variables, and not the time variable.

In many physical applications and particularly in the theory of dynamical systems, one is often interested in
computing aPoincaré mapP (also known as éirst return mayp of a system such g4). This map is produced by
considering successive intersections of a trajectory with a codimension-one staa®oincaré section—of the
phase spack”.

* Tel.: +46-18-471-32-00; fax}46-18-471-32-01.
E-mail addresswarwick@math.uu.se (W. Tucker).

0167-2789/02/$ — see front matter © 2002 Elsevier Science B.V. All rights reserved.
PIl: S0167-2789(02)00603-6

128 W. Tucker/Physica D 171 (2002) 127-137

Fig. 1. The surfac& and two trajectories.

Given a systen(l), the existence of a Poincaré map is far from obvious, and in many cases it simply does not
exist. One important occasion, however, where the Poincarésmagll defined is when the system admits periodic
solutions. Indeed, let©® be a point on such a solution. Then there exists a positive nufalled theperiod of
the orbit, such thap(x©@, T + 1) = p(x©, 1) for all € R. In particularp(x©@, T) = p(x©, 0) = x©@, so the
pointx @ returns to itself after having flowed @t time units. Now we consider a surfagethat is transversal to
the flow, i.e., the surface normal &) satisfiesin s (x©), f(x©)) # 0, where(-) denotes the inner product. By
the implicit function theorem we can find an open neighbourhbod X of x© such that for alkk € U, there
exists a positive number(x) such that if; = ¢(x, t(x)), then:

(8) z € X (x returns to the plan& after timez (x));
(b) signny(x), f(x)) =signinx(z), f(z)) (X is passed from the same direction).

The functionr : R" — R, is continuous, and represents the time it takes for the pdimteturn toX' according to
condition (b). The point = ¢(x, t(x)) is called thdfirst returnof x, and the Poincaré map : U — X' is defined
by P(x) = ¢(x, T(x)). Note that, by definition, we havex@) = T and P (x @) = x©@ (Fig. 2).

The use of Poincaré maps reduces the study of flows to the study of maps—a topic that is more well understood,
and therefore has a richer flora of theorems. It also reduces the dimension of the problem by 1: we may restrict
our attention to points exclusively lying in the Poincaré sectionUnfortunately, except under the most trivial
circumstances, the Poincaré map cannot be expressed by explicit equations. Instead, it is implicitly defined by the
vector field f and the sectior®. Obtaining information about the Poincaré map thus requires both solving the
system of differential equations, and detecting when a point has returned to the Poincaré section. In what follows,
we will propose a numerical algorithm that addresses both requirements.

2. Classical numerical methods

As mentioned irSection 1 the approach usually taken consists of two parts: first one s@yesing a suitable
integration algorithm

16D — 0 a0 D O LA 0G 0 AR =1,),

where, e.9G;(x,h) = f;(x + (h/2) f(x)) in the case of the midpoint Euler method. This will produce a set of
numerically computed grid points©, x©@), @D, x®D), ... ¢® x®) along an approximate trajectory. There is
a vast literature on this topic, so we shall not discuss the various choicgs of

Secondly, one tries to determine when the surfaces intersected. Sinc& is defined in terms of the phase
variablesxi, ..., x, and not in terms of the independent variahl¢his is not an entirely trivial task. One can,

W. Tucker/Physica D 171 (2002) 127-137 129

however, easily detect when the surface has been crossed. As$uting is defined by{x € R” : X, = C},

one simply has to check for a sign change in the quardity xl.((f). Also, as one is only interested in returns

to the surface flowing in the same direction as the initial point, one wants the signg 6f?), f;,(x©)) and
(nx(x®), fi,(x¥)) to coincide. Once such a crossingDfhas been detected, the actual interseciign®) can

be approximated by an interpolation scheme, e.g. a bisection- or a Newton algorithm. Such an iterative ending may
require many vector field evaluations, as well as a diminishing stepAsiz€his complicates any attempt to make
arigorous, global error estimate. Furthermore, as pointed ¢ii},iit is at this final stage the largest computational

error usually occurs.

3. A new approach

Following the spirit of Hénofil], we will transform one of the dependent variablgs. . . , x,, into an independent
one. As described in the above-mentioned paper, this provides a set-up allowing us to make the final approach to
in one single step, thereby avoiding the error accumulation associated with classical methods. The novelty of our
approach is that, instead of applying this transformation only at the last stage, we will always ensure that one of
the phase variables is independent. Not only does this take care of the problematic last step described above, it also
facilitates a very powerful adaptive control which will be described later.

Given a pointx € R", consider the dominating component of the vector field

i) = . max {Ifi 1}

,,,,, n

Assuming that we are bounded away from fixed points of the system, the dominating component will always be
bounded from below by a positive constant. Therefore, we can divide all components of the vector field by the
number f;(x). Using the notation, 1 = ¢, we first embed the original systeft) into an(n + 1)-dimensional
system

dxp 1 dx; .

T_l’ 5 =i (i=1,...,n). (2)
By dividing each component @) by f;(x), we get the rescaled system

s dvi _ fi®) G=1...,n). 3)

dg AW dy A
We shall from here on use the notatidmndx’ to denote differentiation with respectt@ndx;, respectively.

Note that sincer] = 1, the variabler; now is independent i8). On the other hand, the formerly independent
variablex, 1 has now become dependent. In view of this, we should take integration steps in tekms of

Y =0 Ax® D = APG a0, A e (L 1 ().

Here, we would take

Gi(x. h) = filx + (h/2) f (x)/fi(x))
filx + (h/2) f(x)/ fi(x))
in the case of the midpoint Euler method. Applying such an integration scheme will now produce a sequence
of (n + 1)-dimensional grid points @, x@ ... x® where we can explicitly specify the phase space step-size

Axi(k) = xi(k+l) — xT(k).

1 The more general situation whekeis defined byS(x) = 0 can be treated with minor modifications.

130 W. Tucker/Physica D 171 (2002) 127-137

This integration procedure can be continued as long agtiheomponent of the original vector field does not
vanish. For topological reasons, however, this degenerate situatishoccur if we are to return t&'. When
approaching such an instance, we simply change the independent coordinate according to the rule

.....

By our assumption that we stay away from fixed points, there is always at least one non-zero vector field component
at any given poink € R”". Therefore the rescaled vector fi€R) is always well defined.

The algorithmic implementation is actually quite simple. Using a high-level approach, the main stages can be
described as follows.

Algorithm 1.
e Input: the vector fieldf (x) and initial valuex©.

0: Setk = 0.
1: Atthe pointx®, compute the dominating coordinate= 1(x®)).
2: SetH (x) = 1/f;(x), and consider the system

dx,,+1 dx;

ax; = H(x), d—)q:H(x)fi(x) i=1...,n).

3: Selecta step-sizAxT(k). If this step-size will cause the trajectory to craSsshorten it so that *+1 will
land exactly onX.

4: Taking the step-size derived in Step 3, compute the next integrationydbit using the system derived
in Step 2.

5: If we do not have a return, set= k + 1, and return to Step 1.

e Outputx*®+D,

Recall that we are assuming th&tis defined by{x € R" : x;, = C}. To simplify matters further, we are also
assuming that all first returns t6 have the same dominating coefficién& ig. This second assumption covers
the most common applications, and allows us to make the exposition clear. A more general situation can naturally
be handled, but at the expense of a more complicated algorithm. For example, if the vagiaeténing X~ is not
dominating at the final stage, we can always force the algorithm to take astep, which will complete the return
to X.

4. Adaptive control

A question that naturally arises is how to choose the stepés't#’@ appearing in Step 3 éflgorithm 1. Of course,
we cannot give a completely satisfactory answer to this question without resorting to the theory of auto-validating
algorithms. This would involve a move from computing with floating point numbers to computer representable
intervals, where all arithmetic operations are carried out with directed rounding. A nice exposition of such methods
is given in, e.g[4]. Remaining in the realm of ordinary floating point computations, we will nevertheless attempt
to give a partial answer to the posed question. Let us introduce the following notation:

.....

W. Tucker/Physica D 171 (2002) 127-137 131

e

\\\
A

Fig. 2. Region Al fi(x)| > | f;(x)|; region B:| fi(x)| ~ | f7(x)].

The coordinatg is thus the second largest componeny ofVe can now give a qualitative estimate of the step-size
interms of f; and f;: if | i(x®)| > | £;(x®)], we should be able to tal«exi(k) relatively large. This is because at
the pointx®, the flow is moving almost exclusively in the-direction. In other words, in a neighbourhoodvdf,
the remaining components of the trajectory are almost constant. If, on the other hand, the two companénts
and|f;(x®))| are of the same order of magnitude, this is no longer the case. Instead, in a neighbourhébd of
the trajectory is arching at a considerable angle in(fhex;)-plane. In order to remain on the arch, we must now
chooseAxT(k) relatively small, se€&ig. 2

But how large is “relatively large”, and how small is “relatively small”? Again, we cannot expect to give a
complete answer to this question. There are, however, some rules of thumb that are useful in most situations. First,
we note that none of thefirst components of the systef8) has an absolute value greater than 1. The last variable
(the former time variable), however, may have a large modulus. Even if this happens to be the case, this particular
variable is special in that it does not affect the other variables. Thus, if we are not too concerned about computing an
accurate flow time, we can use the fact that the remaining components of the vector field are bounded by 1. Bearing
this in mind, we may introduce the following quantity:

_ 1@
Aol

which satisfies"(x) € [0, 1] for all x € R". If we predefineA™ andA™ to be the smallest resp. largest allowed
step sizes, one natural choice would be

I'(x)

|Axi(k)| — F(Xi(k))A_ + (1_ F(xi(k)))A+

HereA~ and A+ would depend on the global error that is acceptable. In addiionshould also depend on the
machine precision available. Both constants will also depeng, time order of the integration method used in Step
4 of Algorithm 1. Indeed, assuming that the selected method is of grdand that the step-sizte;xi(kﬂ is chosen

to be A at every integration step, the global eriox (xi(k)) can be bounded from above according to
A k
Eat®) = S @D,
i

see, e.g[2]. HereK; is the Lipschitz constant of / f;
[f»
i) /)

ands(A) denotes the slope error, which is known to satisfy the bat@ < CAP. The constantC depends
on the particular integration method we choose, and involves bounds of the vectof ffelahd its derivatives.

Kizmin{K.‘

H < 1€||x—y||},

132 W. Tucker/Physica D 171 (2002) 127-137

B e e —

——— C

Fig. 3. Region C: a forbidden transition of typé — —1.

Following a trajectory from2 until its full return, one will travel only a finite distance, 30, |xi(k)| is bounded by
some constanf. Therefore the global error at the return can be estimated by

CAP -
E(A) < T(eKTS —1)=CA’.
1

It follows that the step-sizél should be proportional to theth root of the maximally acceptable global error. Of
course, we know little about the constahtwithout more information regarding the explicit nature of the vector
field f.

An easy way to detect a too large step-size is the following: whenever the dominating coordimatges, we
make sure that the transition

0, — .0
takes place. If this is not the case, we may suspect that we are progressing too far in the dominating direction, i.e.,
our step-size is too large. The motivation for this requirement is simply one of continuity: all trajectories must be
continuous, and so the first and second largest components of the vector field along a trajectory must also chang
in a continuous fashion.
In order to detect a more subtle situation, we may equip the dominating coortliwétea + sign, reflecting
the sign of the associated vector field component. With this extended notation, we should decrease the step-siz:

whenever a transitiott — F1is detected. This situation would indicate that the trajectory just made a very sharp
180 turn within one step. Clearly, this is not an acceptable situationf-igee.

5. Computing partial derivatives

In many situations we are interested in not only the propagation of a single initial ypdintt rather a whole
neighbourhood ok in ¥. Such information allows us to make predictions about the future @fcorporating a
limited amount of uncertainty in its measurement. In almost any physical application, this is very desirable, if not
an absolute necessity. This prompts us to compute the matrix of partial derivat/es fhe Poincaré map.
Once we know [, we can compute its eigenvalues and eigenvectoesdv;, i € {1,...,n}\ {i}, respectively.
When classifying periodic orbits, we distinguish between three cases: (1) if an eigenvalue satistied, then
we say that the directiony is contractingunder the return magp; (2) if |1;| > 1, the directiorw; is expanding
(3)if |1;| = 1, the directiory; is neutral In terms of stability, an expanding directiopindicates that errors made
in that same direction will be magnified by the factoy| at each return. Unfortunately, we seldom can predict in
what directions the initial errors are distributed. Thus the existena¢ leiistone expanding direction suffices to
render the orbit unstable. If, on the other haaltldirections are contracting, the orbit is said to be stable. Indeed,
any reasonably small initial error will be contracted on its return.

From a local point of view, a Poincaré ma&pcan be thought of as a composition of maps between very close
codimension-one surfaceg® : ¥® — x*+1 where we define€ @ = x. If the two surfaces ® and x *+D
are at a distancé from each other, we can interpret the local Poincaré ép as a distancé map. Recall that

W. Tucker/Physica D 171 (2002) 127-137 133

we denote the flow ofl) by ¢(x, t). Thus, if we assume that®) e ¥®, we may define a local Poincaré map
o x® _, 5+ py

H(k)(x(k)) — (p(x(k), ‘E(x(k), E(k+l))),

wherer (x®, ¥ *+D) is the time it takes fox) to flow betweenz ® and ¥ *+1 . Here we are keeping with our
strategy to always flow in the dominating direction of the flow. We will now provide an algorithm for computing the
partial derivatives of the local Poincaré magX . Once we have the ability to compute these local maps, we can form
the partial Poincaré mags® : ¥©@ — x® py a simple series of composition®®) (x) = T*Do...oc 1O (x).
In what follows, we will suppress the superscripj for clarity.

Consider the partial derivatives of

M) = Y gt 7] = 22t + 2) W, 7 (1)= 22 x, () + 2 (0 i (0, 7))
axjx _axjgolx,rx _BXj x, T(x ijx o x, T(x _ax]- x, T(x axjxflgox,rx
0p; 0 ..
= ai(x, 1)) + () ;T) (G j=1.....n). (4)
Xj an

The partial derivatives of (x) are obtained by noting thdT;(x) is constant. Thus

oll; 0 0
0=-—(n= A)+ —) UTT) G =1.....m),
x.,' 3Xj 3Xj

and solving fordr /dx; yields
0 ¢,
3 ") = —[ATT] D x, t () (=1,...,n),
Xj 8Xj

Inserting this expression in{d) gives

JitI(x))
fillI(x))

Note that the components with= T vanish, just as desired.

Since we have already comput&dx), we can easily evaluate the right-most factafGh We have also computed
the flow timet (x) as our extended variahlg 1. The partial derivatives of the flow still require some work, though.
First, we need the differential equations for the partial derivatives. These are attained simply by differentiating the
equations for the flowd/dr)g; (x, t) = fi(p(x, 1)) (i = 1,...,n), and changing the order of differentiation. On
component level, this gives

ogi
3)(]'

a1T; a ..
) = S T) = S (. T(0) (i j="L1....n). (5)
)Cj ax]'

n

d dgi N O gk .
EWJ-(X’ t) = /; e (p(x, t))axj x,t) G j=1....n), (6)

or, in matrix form,(d/dr) De(x, t) = Df(¢(x, t)) De(x, t), with the initial condition v (x, 0) = I, wherel is
the identity matrix. This is a linear differential equation, and is thus readily solved by standard numerical methods.
Having done this, we simply insert the obtained values into the expre@giorhis gives us the approximation of
the partial derivatives of the local Poincaré map.

Returning to the task of computing the derivatives of the partial Poincaré mépsit is simply a matter of
multiplying the matrices D7 ®) in the correct order

DPO) =Dn*Vpa*=2...0mO).

134 W. Tucker/Physica D 171 (2002) 127-137

This information can be updated at each integration step by the rélé€8@) = 1 and DP* D (x) = DIT® DP® (x),
k=>0.
We can summarize the entire process by the following algorithm.

Algorithm 2.

e Input: the vector fieldf (x) and initial valuex©.

0: Setk =0, DX@ = J, and computé = {(x@).
1: SetH(x) = 1/fi(x), and consider the system

d);n+1 = H(), % =Hx)fi(x) (=1...,n).
X7 dx;

2: Selecta step-sizﬂxi("). If this step-size will cause the trajectory to craSsshorten it so that D will
land exactly onX.
3: Taking the step-size derived in Step 2, compute the next integrationxdbirt using the system derived

in Step 1.
4: Using the local flow timexr®) = x,(l'fll) —xgj:l, compute the matrix P(x®, Ar®) with De(x®,0) = 1
from the systent6).

5. Recompute the dominating coordinate at the peffitD: T = f(x*+D).
6: Compute O7® (x®) according to(5).
7: Update the matrix of accumulated partial derivatives:

DX(k+l) — Dn(k) (x(k)) DX(k).
8: If we do not have a return, skt= k + 1, and return to Step 1.

e Outputx®+D Dx*+D,

Let us briefly comment on a few differences betwédgorithms 1 and 2We have now added the computation
of the matrices of partial derivatives of the partial Poincaré map%x). The approximations are denote&3.
Note that we also update the dominating coordifigtest before computing B*+D . This is because the two
consecutive local planes® and ¥*+1D need not be parallel. Indeed, this will be the case wherigv&?) and
T(x*+D) differ. By usingi(x*+1) in Step 6, we ensure that the correct partial derivatives are computed (recall that
the elements on thigh row of DIT® vanish).

Atthis point, one may argue that the outlined algorithm is not faithful to our general approach, where we work with
x;-derivatives rather than time-derivatives. Itis, however, very easy to make the necessary arrangements required t
meet our needs. Séf(x) = 1/f(x), and consider the system

d)(;n+1 = H(x), di =HX)fi(x) (i=1,...,n). @
X dXT

Let ¢ (x, s) denote the solution to thefirst variables o{7), i.e.
Yi(x,s) =HWx,) fi(x,s) (=1...,n).

Thusv (x, s) is the image of the poing(x, 0) = x after having flowed the distancein thei-coordinate. If we
consider the matrix of all partial derivatives ¢f we have

AXT
Dy (x, Axp) =1 +/O D[H () (x,9)) f (¥ (x,s)]DY(x, 5)ds. 8

W. Tucker/Physica D 171 (2002) 127-137 135

The partial derivatives of the local Poincaré map are now readily available
aIl; oV; oV
—l(x) — ﬂ(x’ Ax;) — ﬂ

3)Cj d

5 (A HUIT () filI(x)) G, j=1,....n), ©)
Xj Xj

whereAx; = Ii(x) — x;.

Algorithm 3.

e Input: the vector fieldf (x) and initial valuex©.
0: Setk =0, DX© = 1, and computé = i(x©).
1: SetH(x) = 1/fi(x), and consider the system

dx,4+1 dx;
=H —
de (X) ’ de

=HX)fix) ((=1,...,n).

2: Selecta step-sizﬁxi(k). If this step-size will cause the trajectory to craSsshorten it so that 1 will
land exactly on¥.

3: Taking the step-size derived in Step 2, compute the next integrationadbit using the system derived
in Step 1.

4: Using the local step-sizax
Dy (x®,0)=1.

5: Recompute the dominating coordinate at the poffitD: T = i(x*+D),

Compute D7%® (x®) according ta9).

7: Update the matrix of accumulated partial derivatives:

i(") = xi(k“) — xi(k), use(8) to compute the matrix P (x®, Axi(k)) with

.

Dx*+D _ DH(k)(x(k)) Dx®
8: If we do not have a return, set= k + 1, and return to Step 1.

e Outputx**+D pDxK*+D,

6. Examples

The ideas discussed in this paper have been implemented-ntagtogram. Below, we present the outcome of
a few examples.
Example 1 (The Volterra system). Consider the system of differential equations
X1 = +ax1 — Bxixz, X2 = —yx2 + dx1x2,

which models a simple predator—prey system. Here the paramefgrg ands are all positive numbers, and we are
only concerned with non-negative solutions. The exact solutions are implicitly given by level curves of the function

F(x1, x2) = |x1]” |xp|* e~ ®2+hx2), (10)

Since all level curves dfL0) in the first quadrant are closed, we should h&ye) = x for all initial pointsx € X,
where we may choosE = {x € R? : x; = C}. Furthermore, since the solutions form a continuous family of closed
curves, the only relevant partial derivative of the Poincaré map must satisfy

9P) R
a—(X) =1 ({1, 2\ {1)
Xi

136 W. Tucker/Physica D 171 (2002) 127-137

Table 1

The Volterra system with = (1.5, 14) and step-sizé\x = 278 ~ 3.9 x 103

Method I1P(x@) —x© (P, — 1l Flow time Number of steps
Euler 3.21411E2 6.25192E-2 2.44847E-1 8579

Midpoint Euler 4.11446E5 2.92632E-4 2.44472E-1 8569
Runge—Kutta 4 2.05751E10 9.20541E-8 2.44471E-1 8569

for all x. In Table 1, we present the results of our method with initial conditié® = (1.5, 14) andX = {x € R?:
x2 = 14}. This set-up corresponds to the outmost orbiiig. 4.

Example 2 (The Lorenz equations). The following system of differential equations:
X1 = —0x1+ 0ox2, X2 = 0X1 — X2 — X1X3, X3 = —px3 + x1x2, (11)

was introduced in 1963 by Lorenz, §8¢. As a crude model of atmospheric dynamics, these equations led Lorenz to
the discovery of sensitive dependence of initial conditions—an essential factor of unpredictability in many systems.
Numerical simulations for an open neighbourhood of the classical parameter watud$), 8 = 8/3 andp = 28
suggest that almost all points in phase space tend to a strange attriwtdrerenz attractgrseerig. 5a). Recently,
the author rigorously proved that this was not only a numerical mirage, but that the {dtandeed supports a
strange attractor, s¢g,6].

For non-standard parameters, however, the system no longer displays chaotic dynamics. Instead almost all tra
jectories tend to a single, attracting periodic orbit, Bag 5b). In Table 2 we present the results of our method
with initial condition

x© = (16.21325444114593-55.7814024337393249)

x'=+Ax-Bxy A=04 B=0.1
y’=-Cy+Dxy C=03 D=
T

Fig. 4. A few closed orbits of the Volterra system.

W. Tucker/Physica D 171 (2002) 127-137 137

340 T T T T T T T T

3201 1

3001 -1

280 &

2601 &

~

240 -

2201 &

200 4

180 4

a0 a0 20 =T [10 20 20 20 50

Fig. 5. The Lorenz system for (a)= 28 and (by = 250.

Table 2

The Lorenz system witlw, o,) = (10, 250, 8/3) and step-sizé\x = 24

Method I1Px©@) —x©@ Az — A3 A2 — A3l Flow time

Euler 4.71619E 1 2.08078E-4 1.01347E-2 4.587117410E1
Midpoint Euler 6.22800E5 5.12994E-7 1.71648E-5 4.600939402E1
Runge—Kutta 4 2.15409E10 2.43777E-12 9.68147E-11 4.600941506E1

and¥ = {x € R3: x3 = 249. The surfaceX is pierced four times before the orbit re-connects with itself,
so we had to modify the stopping condition accordingly. Simply looking at the partial derivatives of the Poincaré
map is not very informative: instead we usex(?) to compute the corresponding eigenvaliesand x,. To
get an idea of the convergence rate, we first computed the eigenvalues) = (—6.217323621724878E3,
—2.989324529670951F1) using the Runge—Kutta method with step-sizé%2All subsequent computations were
carried out with step-size 2 = 0.0625.

The number of required integration steps were 9818 for the Euler method, and 9861 for both the midpoint Euler
and the Runge—Kutta methods. Note that we indeed have contraction in both directions.

References

[1] M. Hénon, On the numerical computation of Poincaré maps, Pay3i6 (1982) 412—-414.

[2] J.H. Hubbard, B.H. West, Differential Equations: A Dynamical Systems Approach, TAM 5, Springer, New York, 1991.
[3] E.N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci. 20 (1963) 130-141.

[4] R.E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.

[5] W. Tucker, The Lorenz attractor exists, C.R. Acad. Sci. Paris, Part 328, Sér. | (1999) 1197-1202.

[6] W. Tucker, A rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math. 2 (1) (2002) 53-117.

	Computing accurate Poincare maps
	Introduction
	Classical numerical methods
	A new approach
	Adaptive control
	Computing partial derivatives
	Examples
	References

