
Physica D 171 (2002) 127–137

Computing accurate Poincaré maps

Warwick Tucker∗
Department of Mathematics, Uppsala University, Box 480, 751 06 Uppsala, Sweden

Received 27 August 2001; received in revised form 9 July 2002; accepted 12 July 2002
Communicated by E. Ott

Abstract

We present a numerical method particularly suited for computing Poincaré maps for systems of ordinary differential
equations. The method is a generalization of a stopping procedure described by Hénon [Physica D 5 (1982) 412], and it
applies to a wide family of systems.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords:Poincaré maps; Numerical method; Differential equations

1. Introduction

In this paper, we will consider an autonomous system of differential equations

ẋ = f (x), x ∈ R
n. (1)

Throughout the text, we will assume that the vector fieldf is sufficiently smooth (C1 will do nicely). Using standard
notation, letϕ(x, t) denote the solution of(1) satisfyingϕ(x,0) = x. The curve O(x) = {ϕ(x, t) : t ∈ R} is called
theorbit or trajectorypassing through the pointx.

Traditionally, when an orbit of(1) is to be approximated via a numerical method, it is done in small time
increments. Given an initial value(x(0), t (0)), the numerical approximation yields successive grid points(x(k), t (k)),
k ≥ 1, which hopefully satisfyx(k) ≈ ϕ(x(0), t (k)). Thus, thephase variablesx(k) can be plotted against discrete
time valuest (k), and an approximation of the graph ofϕ(x, t) with respect tot is obtained.

Quite often, however, one is oftennot interested in following the phase variables with respect to the time variable
t , but rather with respect to another phase variablexi . For example, it is very common that stopping conditions are
expressed in terms of phase variables, and not the time variable.

In many physical applications and particularly in the theory of dynamical systems, one is often interested in
computing aPoincaré mapP (also known as afirst return map) of a system such as(1). This map is produced by
considering successive intersections of a trajectory with a codimension-one surfaceΣ—a Poincaré section—of the
phase spaceRn.

∗ Tel.: +46-18-471-32-00; fax:+46-18-471-32-01.
E-mail address:warwick@math.uu.se (W. Tucker).

0167-2789/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-2789(02)00603-6

128 W. Tucker / Physica D 171 (2002) 127–137

Fig. 1. The surfaceΣ and two trajectories.

Given a system(1), the existence of a Poincaré map is far from obvious, and in many cases it simply does not
exist. One important occasion, however, where the Poincaré mapis well defined is when the system admits periodic
solutions. Indeed, letx(0) be a point on such a solution. Then there exists a positive numberT , called theperiodof
the orbit, such thatϕ(x(0), T + t) = ϕ(x(0), t) for all t ∈ R. In particular,ϕ(x(0), T) = ϕ(x(0),0) = x(0), so the
pointx(0) returns to itself after having flowed forT time units. Now we consider a surfaceΣ that is transversal to
the flow, i.e., the surface normal atx(0) satisfies〈nΣ(x(0)), f (x(0))〉 �= 0, where〈·〉 denotes the inner product. By
the implicit function theorem we can find an open neighbourhoodU ⊂ Σ of x(0) such that for allx ∈ U , there
exists a positive numberτ(x) such that ifz = ϕ(x, τ (x)), then:

(a) z ∈ Σ (x returns to the planeΣ after timeτ(x));
(b) sign〈nΣ(x), f (x)〉 = sign〈nΣ(z), f (z)〉 (Σ is passed from the same direction).

The functionτ : R
n → R+ is continuous, and represents the time it takes for the pointx to return toΣ according to

condition (b). The pointz = ϕ(x, τ (x)) is called thefirst returnof x, and the Poincaré mapP : U → Σ is defined
by P(x) = ϕ(x, τ (x)). Note that, by definition, we haveτ(x(0)) = T andP(x(0)) = x(0) (Fig. 1).

The use of Poincaré maps reduces the study of flows to the study of maps—a topic that is more well understood,
and therefore has a richer flora of theorems. It also reduces the dimension of the problem by 1: we may restrict
our attention to points exclusively lying in the Poincaré sectionΣ . Unfortunately, except under the most trivial
circumstances, the Poincaré map cannot be expressed by explicit equations. Instead, it is implicitly defined by the
vector fieldf and the sectionΣ . Obtaining information about the Poincaré map thus requires both solving the
system of differential equations, and detecting when a point has returned to the Poincaré section. In what follows,
we will propose a numerical algorithm that addresses both requirements.

2. Classical numerical methods

As mentioned inSection 1, the approach usually taken consists of two parts: first one solves(1) using a suitable
integration algorithm

t (k+1) = t (k) + �t(k), x
(k+1)
i = x

(k)
i + �t(k)Gi(x

(k),�t(k)) (i = 1, . . . , n),

where, e.g.Gi(x, h) = fi(x + (h/2)f (x)) in the case of the midpoint Euler method. This will produce a set of
numerically computed grid points(t(0), x(0)), (t (1), x(1)), . . . , (t (k), x(k)) along an approximate trajectory. There is
a vast literature on this topic, so we shall not discuss the various choices ofG.

Secondly, one tries to determine when the surfaceΣ is intersected. SinceΣ is defined in terms of the phase
variablesx1, . . . , xn and not in terms of the independent variablet , this is not an entirely trivial task. One can,

W. Tucker / Physica D 171 (2002) 127–137 129

however, easily detect when the surface has been crossed. Assuming1 thatΣ is defined by{x ∈ R
n : xi0 = C},

one simply has to check for a sign change in the quantityC − x
(k)
i0

. Also, as one is only interested in returns

to the surface flowing in the same direction as the initial point, one wants the signs of〈nΣ(x(0)), fi0(x
(0))〉 and

〈nΣ(x(k)), fi0(x
(k))〉 to coincide. Once such a crossing ofΣ has been detected, the actual intersectionP(x(0)) can

be approximated by an interpolation scheme, e.g. a bisection- or a Newton algorithm. Such an iterative ending may
require many vector field evaluations, as well as a diminishing step-size�t . This complicates any attempt to make
a rigorous, global error estimate. Furthermore, as pointed out in[1], it is at this final stage the largest computational
error usually occurs.

3. A new approach

Following the spirit of Hénon[1], we will transform one of the dependent variablesx1, . . . , xn into an independent
one. As described in the above-mentioned paper, this provides a set-up allowing us to make the final approach toΣ

in one single step, thereby avoiding the error accumulation associated with classical methods. The novelty of our
approach is that, instead of applying this transformation only at the last stage, we will always ensure that one of
the phase variables is independent. Not only does this take care of the problematic last step described above, it also
facilitates a very powerful adaptive control which will be described later.

Given a pointx ∈ R
n, consider the dominating component of the vector field

|fı̂(x)| = max
i=1,...,n

{|fi(x)|}.

Assuming that we are bounded away from fixed points of the system, the dominating component will always be
bounded from below by a positive constant. Therefore, we can divide all components of the vector field by the
numberfı̂(x). Using the notationxn+1 = t , we first embed the original system(1) into an(n + 1)-dimensional
system

dxn+1

dt
= 1,

dxi
dt

= fi(x) (i = 1, . . . , n). (2)

By dividing each component of(2) by fı̂(x), we get the rescaled system

dxn+1

dxı̂
= 1

fı̂(x)
,

dxi
dxı̂

= fi(x)

fı̂(x)
(i = 1, . . . , n). (3)

We shall from here on use the notationẋ andx′ to denote differentiation with respect tot andxı̂, respectively.
Note that sincex′

ı̂ = 1, the variablexı̂ now is independent in(3). On the other hand, the formerly independent
variablexn+1 has now become dependent. In view of this, we should take integration steps in terms of�xı̂

x
(k+1)
ı̂ = x

(k)

ı̂ + �x
(k)

ı̂ , x
(k+1)
i = x

(k)
i + �x

(k)

ı̂ Gi(x
(k),�x

(k)

ı̂) (i ∈ {1, . . . , n + 1} \ {ı̂}).
Here, we would take

Gi(x, h) = fi(x + (h/2)f (x)/fı̂(x))

fı̂(x + (h/2)f (x)/fı̂(x))

in the case of the midpoint Euler method. Applying such an integration scheme will now produce a sequence
of (n + 1)-dimensional grid pointsx(1), x(2), . . . , x(k), where we can explicitly specify the phase space step-size
�x

(k)

ı̂ = x
(k+1)
ı̂ − x

(k)

ı̂ .

1 The more general situation whereΣ is defined byS(x) = 0 can be treated with minor modifications.

130 W. Tucker / Physica D 171 (2002) 127–137

This integration procedure can be continued as long as theı̂th component of the original vector field does not
vanish. For topological reasons, however, this degenerate situationmustoccur if we are to return toΣ . When
approaching such an instance, we simply change the independent coordinate according to the rule

|fı̂(x)| = max
i=1,...,n

{|fi(x)|}.

By our assumption that we stay away from fixed points, there is always at least one non-zero vector field component
at any given pointx ∈ R

n. Therefore the rescaled vector field(3) is always well defined.
The algorithmic implementation is actually quite simple. Using a high-level approach, the main stages can be

described as follows.

Algorithm 1.

• Input: the vector fieldf (x) and initial valuex(0).

0: Setk = 0.
1: At the pointx(k), compute the dominating coordinate:ı̂ = ı̂(x(k)).
2: SetH(x) = 1/fı̂(x), and consider the system

dxn+1

dxı̂
= H(x),

dxi
dxı̂

= H(x)fi(x) (i = 1, . . . , n).

3: Select a step-size�x
(k)

ı̂ . If this step-size will cause the trajectory to crossΣ , shorten it so thatx(k+1) will
land exactly onΣ .

4: Taking the step-size derived in Step 3, compute the next integration pointx(k+1) using the system derived
in Step 2.

5: If we do not have a return, setk = k + 1, and return to Step 1.

• Outputx(k+1).

Recall that we are assuming thatΣ is defined by{x ∈ R
n : xi0 = C}. To simplify matters further, we are also

assuming that all first returns toΣ have the same dominating coefficientı̂ = i0. This second assumption covers
the most common applications, and allows us to make the exposition clear. A more general situation can naturally
be handled, but at the expense of a more complicated algorithm. For example, if the variablexi0 definingΣ is not
dominating at the final stage, we can always force the algorithm to take a�xi0 step, which will complete the return
toΣ .

4. Adaptive control

A question that naturally arises is how to choose the step-size�x
(k)

ı̂ appearing in Step 3 ofAlgorithm 1. Of course,
we cannot give a completely satisfactory answer to this question without resorting to the theory of auto-validating
algorithms. This would involve a move from computing with floating point numbers to computer representable
intervals, where all arithmetic operations are carried out with directed rounding. A nice exposition of such methods
is given in, e.g.[4]. Remaining in the realm of ordinary floating point computations, we will nevertheless attempt
to give a partial answer to the posed question. Let us introduce the following notation:

|f̂ (x)| = max
i∈{1,...,n}\{ı̂}

{|fi(x)|}.

W. Tucker / Physica D 171 (2002) 127–137 131

Fig. 2. Region A:|fı̂(x)| � |f̂ (x)|; region B:|fı̂(x)| ≈ |f̂ (x)|.

The coordinatê is thus the second largest component off . We can now give a qualitative estimate of the step-size
in terms offı̂ andf̂ : if |fı̂(x

(k))| � |f̂ (x(k))|, we should be able to take�x
(k)

ı̂ relatively large. This is because at
the pointx(k), the flow is moving almost exclusively in thexı̂-direction. In other words, in a neighbourhood ofx(k),
the remaining components of the trajectory are almost constant. If, on the other hand, the two components|fı̂(x

(k))|
and|f̂ (x(k))| are of the same order of magnitude, this is no longer the case. Instead, in a neighbourhood ofx(k),
the trajectory is arching at a considerable angle in the(xı̂, x̂)-plane. In order to remain on the arch, we must now

choose�x
(k)

ı̂ relatively small, seeFig. 2.
But how large is “relatively large”, and how small is “relatively small”? Again, we cannot expect to give a

complete answer to this question. There are, however, some rules of thumb that are useful in most situations. First,
we note that none of then first components of the system(3) has an absolute value greater than 1. The last variable
(the former time variable), however, may have a large modulus. Even if this happens to be the case, this particular
variable is special in that it does not affect the other variables. Thus, if we are not too concerned about computing an
accurate flow time, we can use the fact that the remaining components of the vector field are bounded by 1. Bearing
this in mind, we may introduce the following quantity:

Γ (x) = |f̂ (x)|
|fı̂(x)|

,

which satisfiesΓ (x) ∈ [0,1] for all x ∈ R
n. If we predefine∆− and∆+ to be the smallest resp. largest allowed

step sizes, one natural choice would be

|�x
(k)

ı̂ | = Γ (x
(k)

ı̂)∆− + (1 − Γ (x
(k)

ı̂))∆+.

Here∆− and∆+ would depend on the global error that is acceptable. In addition,∆− should also depend on the
machine precision available. Both constants will also depend onp, the order of the integration method used in Step
4 of Algorithm 1. Indeed, assuming that the selected method is of orderp, and that the step-size|�x

(k)

ı̂ | is chosen

to be∆ at every integration step, the global errorE∆(x
(k)

ı̂) can be bounded from above according to

E∆(x
(k)

ı̂) ≤ ε(∆)

Kı̂
(eKı̂

∑
k |x(k)ı̂ | − 1),

see, e.g.[2]. HereKı̂ is the Lipschitz constant off/fı̂

Kı̂ = min

{
K̃ :

∥∥∥∥ f (x)fı̂(x)
− f (y)

fı̂(y)

∥∥∥∥ ≤ K̃‖x − y‖
}
,

andε(∆) denotes the slope error, which is known to satisfy the boundε(∆) ≤ C∆p. The constantC depends
on the particular integration method we choose, and involves bounds of the vector fieldf/fı̂ and its derivatives.

132 W. Tucker / Physica D 171 (2002) 127–137

Fig. 3. Region C: a forbidden transition of type+ı̂ → −ı̂.

Following a trajectory fromΣ until its full return, one will travel only a finite distance, so
∑

k |x(k)ı̂ | is bounded by
some constantS. Therefore the global error at the return can be estimated by

E(∆) ≤ C∆p

Kı̂
(eKı̂S − 1) = C̃∆p.

It follows that the step-size∆ should be proportional to thepth root of the maximally acceptable global error. Of
course, we know little about the constantC̃ without more information regarding the explicit nature of the vector
field f .

An easy way to detect a too large step-size is the following: whenever the dominating coordinateı̂ changes, we
make sure that the transition

(ı̂, ̂) → (̂ , ı̂)

takes place. If this is not the case, we may suspect that we are progressing too far in the dominating direction, i.e.,
our step-size is too large. The motivation for this requirement is simply one of continuity: all trajectories must be
continuous, and so the first and second largest components of the vector field along a trajectory must also change
in a continuous fashion.

In order to detect a more subtle situation, we may equip the dominating coordinateı̂ with a ± sign, reflecting
the sign of the associated vector field component. With this extended notation, we should decrease the step-size
whenever a transition±ı̂ → ∓ı̂ is detected. This situation would indicate that the trajectory just made a very sharp
180◦ turn within one step. Clearly, this is not an acceptable situation, seeFig. 3.

5. Computing partial derivatives

In many situations we are interested in not only the propagation of a single initial pointx, but rather a whole
neighbourhood ofx in Σ . Such information allows us to make predictions about the future ofx, incorporating a
limited amount of uncertainty in its measurement. In almost any physical application, this is very desirable, if not
an absolute necessity. This prompts us to compute the matrix of partial derivatives DP of the Poincaré mapP .
Once we know DP , we can compute its eigenvalues and eigenvectorsλi andvi , i ∈ {1, . . . , n} \ {ı̂}, respectively.
When classifying periodic orbits, we distinguish between three cases: (1) if an eigenvalue satisfies|λi | < 1, then
we say that the directionvi is contractingunder the return mapP ; (2) if |λi | > 1, the directionvi is expanding;
(3) if |λi | = 1, the directionvi is neutral. In terms of stability, an expanding directionvi indicates that errors made
in that same direction will be magnified by the factor|λi | at each return. Unfortunately, we seldom can predict in
what directions the initial errors are distributed. Thus the existence ofat leastone expanding direction suffices to
render the orbit unstable. If, on the other hand,all directions are contracting, the orbit is said to be stable. Indeed,
any reasonably small initial error will be contracted on its return.

From a local point of view, a Poincaré mapP can be thought of as a composition of maps between very close
codimension-one surfaces,Π(k) : Σ(k) → Σ(k+1), where we defineΣ(0) = Σ . If the two surfacesΣ(k) andΣ(k+1)

are at a distanced from each other, we can interpret the local Poincaré mapΠ(k) as a distanced map. Recall that

W. Tucker / Physica D 171 (2002) 127–137 133

we denote the flow of(1) by ϕ(x, t). Thus, if we assume thatx(k) ∈ Σ(k), we may define a local Poincaré map
Π(k) : Σ(k) → Σ(k+1) by

Π(k)(x(k)) = ϕ(x(k), τ (x(k),Σ(k+1))),

whereτ(x(k),Σ(k+1)) is the time it takes forx(k) to flow betweenΣ(k) andΣ(k+1). Here we are keeping with our
strategy to always flow in the dominating direction of the flow. We will now provide an algorithm for computing the
partial derivatives of the local Poincaré mapΠ(k). Once we have the ability to compute these local maps, we can form
the partial Poincaré mapsP (k) : Σ(0) → Σ(k) by a simple series of compositions:P (k)(x) = Π(k−1)◦· · ·◦Π(0)(x).
In what follows, we will suppress the superscript(k) for clarity.

Consider the partial derivatives ofΠ

∂Πi

∂xj
(x) = ∂

∂xj
[ϕi(x, τ (x))] = ∂ϕi

∂xj
(x, τ (x)) + ∂τ

∂xj
(x)

dϕi
dt

(x, τ (x))= ∂ϕi

∂xj
(x, τ (x))+ ∂τ

∂xj
(x)fi(ϕ(x, τ (x)))

= ∂ϕi

∂xj
(x, τ (x)) + ∂τ

∂xj
(x)fi(Π(x)) (i, j = 1, . . . , n). (4)

The partial derivatives ofτ(x) are obtained by noting thatΠı̂(x) is constant. Thus

0 = ∂Πı̂

∂xj
(x) = ∂ϕı̂

∂xj
(x, τ (x)) + ∂τ

∂xj
(x)fı̂(Π(x)) (j = 1, . . . , n),

and solving for∂τ/∂xj yields

∂τ

∂xj
(x) = −[fı̂(Π(x))]−1 ∂ϕı̂

∂xj
(x, τ (x)) (j = 1, . . . , n).

Inserting this expression into(4) gives

∂Πi

∂xj
(x) = ∂ϕi

∂xj
(x, τ (x)) − ∂ϕı̂

∂xj
(x, τ (x))

fi(Π(x))

fı̂(Π(x))
(i, j = 1, . . . , n). (5)

Note that the components withi = ı̂ vanish, just as desired.
Since we have already computedΠ(x), we can easily evaluate the right-most factor in(5). We have also computed

the flow timeτ(x) as our extended variablexn+1. The partial derivatives of the flow still require some work, though.
First, we need the differential equations for the partial derivatives. These are attained simply by differentiating the
equations for the flow,(d/dt)ϕi(x, t) = fi(ϕ(x, t)) (i = 1, . . . , n), and changing the order of differentiation. On
component level, this gives

d

dt

∂ϕi

∂xj
(x, t) =

n∑
k=1

∂fi

∂xk
(ϕ(x, t))

∂ϕk

∂xj
(x, t) (i, j = 1, . . . , n), (6)

or, in matrix form,(d/dt)Dϕ(x, t) = Df (ϕ(x, t))Dϕ(x, t), with the initial condition Dϕ(x,0) = I , whereI is
the identity matrix. This is a linear differential equation, and is thus readily solved by standard numerical methods.
Having done this, we simply insert the obtained values into the expression(5). This gives us the approximation of
the partial derivatives of the local Poincaré map.

Returning to the task of computing the derivatives of the partial Poincaré mapsP (k), it is simply a matter of
multiplying the matrices DΠ(k) in the correct order

DP (k)(x) = DΠ(k−1) DΠ(k−2) · · · DΠ(0)(x).

134 W. Tucker / Physica D 171 (2002) 127–137

This information can be updated at each integration step by the rules DP (0)(x) = I and DP (k+1)(x) = DΠ(k) DP (k)(x),
k ≥ 0.

We can summarize the entire process by the following algorithm.

Algorithm 2.

• Input: the vector fieldf (x) and initial valuex(0).

0: Setk = 0, DX(0) = I , and computêı = ı̂(x(0)).
1: SetH(x) = 1/fı̂(x), and consider the system

dxn+1

dxı̂
= H(x),

dxi
dxı̂

= H(x)fi(x) (i = 1, . . . , n).

2: Select a step-size�x
(k)

ı̂ . If this step-size will cause the trajectory to crossΣ , shorten it so thatx(k+1) will
land exactly onΣ .

3: Taking the step-size derived in Step 2, compute the next integration pointx(k+1) using the system derived
in Step 1.

4: Using the local flow time�t(k) = x
(k+1)
n+1 −x

(k)
n+1, compute the matrix Dϕ(x(k),�t(k)) with Dϕ(x(k),0) = I

from the system(6).
5: Recompute the dominating coordinate at the pointx(k+1): ı̂ = ı̂(x(k+1)).
6: Compute DΠ(k)(x(k)) according to(5).
7: Update the matrix of accumulated partial derivatives:

DX(k+1) = DΠ(k)(x(k))DX(k).

8: If we do not have a return, setk = k + 1, and return to Step 1.

• Outputx(k+1), DX(k+1).

Let us briefly comment on a few differences betweenAlgorithms 1 and 2. We have now added the computation
of the matrices of partial derivatives of the partial Poincaré maps DP (k)(x). The approximations are denoted DX(k).
Note that we also update the dominating coordinateı̂ just before computing DX(k+1). This is because the two
consecutive local planesΣ(k) andΣ(k+1) need not be parallel. Indeed, this will be the case wheneverı̂(x(k)) and
ı̂(x(k+1)) differ. By usingı̂(x(k+1)) in Step 6, we ensure that the correct partial derivatives are computed (recall that
the elements on thêıth row of DΠ(k) vanish).

At this point, one may argue that the outlined algorithm is not faithful to our general approach, where we work with
xı̂-derivatives rather than time-derivatives. It is, however, very easy to make the necessary arrangements required to
meet our needs. SetH(x) = 1/fı̂(x), and consider the system

dxn+1

dxı̂
= H(x),

dxi
dxı̂

= H(x)fi(x) (i = 1, . . . , n). (7)

Letψ(x, s) denote the solution to then first variables of(7), i.e.

ψ ′
i (x, s) = H(ψ(x, s))fi(ψ(x, s)) (i = 1, . . . , n).

Thusψ(x, s) is the image of the pointψ(x,0) = x after having flowed the distances in the ı̂-coordinate. If we
consider the matrix of all partial derivatives ofψ , we have

Dψ(x,�xı̂) = I +
∫ �xı̂

0
D[H(ψ(x, s))f (ψ(x, s))] Dψ(x, s)ds. (8)

W. Tucker / Physica D 171 (2002) 127–137 135

The partial derivatives of the local Poincaré map are now readily available

∂Πi

∂xj
(x) = ∂ψi

∂xj
(x,�xı̂) − ∂ψı̂

∂xj
(x,�xı̂)H(Π(x))fi(Π(x)) (i, j = 1, . . . , n), (9)

where�xı̂ = Πı̂(x) − xı̂.

Algorithm 3.

• Input: the vector fieldf (x) and initial valuex(0).

0: Setk = 0, DX(0) = I , and computêı = ı̂(x(0)).
1: SetH(x) = 1/fı̂(x), and consider the system

dxn+1

dxı̂
= H(x),

dxi
dxı̂

= H(x)fi(x) (i = 1, . . . , n).

2: Select a step-size�x
(k)

ı̂ . If this step-size will cause the trajectory to crossΣ , shorten it so thatx(k+1) will
land exactly onΣ .

3: Taking the step-size derived in Step 2, compute the next integration pointx(k+1) using the system derived
in Step 1.

4: Using the local step-size�x
(k)

ı̂ = x
(k+1)
ı̂ − x

(k)

ı̂ , use(8) to compute the matrix Dψ(x(k),�x
(k)

ı̂) with
Dψ(x(k),0) = I .

5: Recompute the dominating coordinate at the pointx(k+1): ı̂ = ı̂(x(k+1)).
6: Compute DΠ(k)(x(k)) according to(9).
7: Update the matrix of accumulated partial derivatives:

DX(k+1) = DΠ(k)(x(k))DX(k).

8: If we do not have a return, setk = k + 1, and return to Step 1.

• Outputx(k+1), DX(k+1).

6. Examples

The ideas discussed in this paper have been implemented in a C++ program. Below, we present the outcome of
a few examples.

Example 1 (The Volterra system). Consider the system of differential equations

ẋ1 = +αx1 − βx1x2, ẋ2 = −γ x2 + δx1x2,

which models a simple predator–prey system. Here the parametersα, β, γ andδ are all positive numbers, and we are
only concerned with non-negative solutions. The exact solutions are implicitly given by level curves of the function

F(x1, x2) = |x1|γ |x2|α e−(δx1+βx2). (10)

Since all level curves of(10) in the first quadrant are closed, we should haveP(x) = x for all initial pointsx ∈ Σ ,
where we may chooseΣ = {x ∈ R

2 : xı̂ = C}. Furthermore, since the solutions form a continuous family of closed
curves, the only relevant partial derivative of the Poincaré map must satisfy

∂Pi

∂xi
(x) = 1 (i ∈ {1,2} \ {ı̂})

136 W. Tucker / Physica D 171 (2002) 127–137

Table 1
The Volterra system withx = (1.5,14) and step-size�x = 2−8 ≈ 3.9 × 10−3

Method ‖P(x(0)) − x(0)‖ ‖(P1)
′
x1

− 1‖ Flow time Number of steps

Euler 3.21411E−2 6.25192E−2 2.44847E+1 8579
Midpoint Euler 4.11446E−5 2.92632E−4 2.44472E+1 8569
Runge–Kutta 4 2.05751E−10 9.20541E−8 2.44471E+1 8569

for all x. In Table 1, we present the results of our method with initial conditionx(0) = (1.5,14) andΣ = {x ∈ R
2 :

x2 = 14}. This set-up corresponds to the outmost orbit inFig. 4.

Example 2 (The Lorenz equations). The following system of differential equations:

ẋ1 = −σx1 + σx2, ẋ2 = 4x1 − x2 − x1x3, ẋ3 = −βx3 + x1x2, (11)

was introduced in 1963 by Lorenz, see[3]. As a crude model of atmospheric dynamics, these equations led Lorenz to
the discovery of sensitive dependence of initial conditions—an essential factor of unpredictability in many systems.
Numerical simulations for an open neighbourhood of the classical parameter valuesσ = 10, β = 8/3 and4 = 28
suggest that almost all points in phase space tend to a strange attractor—the Lorenz attractor, seeFig. 5(a). Recently,
the author rigorously proved that this was not only a numerical mirage, but that the system(11) indeed supports a
strange attractor, see[5,6].

For non-standard parameters, however, the system no longer displays chaotic dynamics. Instead almost all tra-
jectories tend to a single, attracting periodic orbit, seeFig. 5(b). In Table 2, we present the results of our method
with initial condition

x(0) = (16.21325444114593,−55.78140243373939,249)

Fig. 4. A few closed orbits of the Volterra system.

W. Tucker / Physica D 171 (2002) 127–137 137

Fig. 5. The Lorenz system for (a)r = 28 and (b)r = 250.

Table 2
The Lorenz system with(σ, 4, β) = (10,250,8/3) and step-size�x = 2−4

Method ‖P(x(0)) − x(0)‖ ‖λ1 − λ∗
1‖ ‖λ2 − λ∗

2‖ Flow time

Euler 4.71619E−1 2.08078E−4 1.01347E−2 4.587117410E−1
Midpoint Euler 6.22800E−5 5.12994E−7 1.71648E−5 4.600939402E−1
Runge–Kutta 4 2.15409E−10 2.43777E−12 9.68147E−11 4.600941506E−1

andΣ = {x ∈ R
3 : x3 = 249}. The surfaceΣ is pierced four times before the orbit re-connects with itself,

so we had to modify the stopping condition accordingly. Simply looking at the partial derivatives of the Poincaré
map is not very informative: instead we use DP(x(0)) to compute the corresponding eigenvaluesλ1 andλ2. To
get an idea of the convergence rate, we first computed the eigenvalues(λ∗

1, λ
∗
2) = (−6.217323621724878E−3,

−2.989324529670951E−1) using the Runge–Kutta method with step-size 2−10. All subsequent computations were
carried out with step-size 2−4 = 0.0625.

The number of required integration steps were 9818 for the Euler method, and 9861 for both the midpoint Euler
and the Runge–Kutta methods. Note that we indeed have contraction in both directions.

References

[1] M. Hénon, On the numerical computation of Poincaré maps, Physica D 5 (1982) 412–414.
[2] J.H. Hubbard, B.H. West, Differential Equations: A Dynamical Systems Approach, TAM 5, Springer, New York, 1991.
[3] E.N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci. 20 (1963) 130–141.
[4] R.E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[5] W. Tucker, The Lorenz attractor exists, C.R. Acad. Sci. Paris, Part 328, Sér. I (1999) 1197–1202.
[6] W. Tucker, A rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math. 2 (1) (2002) 53–117.

	Computing accurate Poincare maps
	Introduction
	Classical numerical methods
	A new approach
	Adaptive control
	Computing partial derivatives
	Examples
	References

