
Reliable Computing (2006) 12: 389–402

Parameter Reconstruction for Biochemical
Networks Using Interval Analysis

WARWICK TUCKER
Department of Mathematics, Uppsala University, Box 480, Uppsala, Sweden,
e-mail: warwick@math.uu.se

and

VINCENT MOULTON
School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK,
e-mail: Vincent.Moulton@cmp.uea.ac.uk

(Received: 9 September 2005; accepted: 19 February 2006)

Abstract. In recent years, the modeling and simulation of biochemical networks has attracted increas-
ing attention. Such networks are commonly modeled by systems of ordinary differential equations,
a special class of which are known as S-systems. These systems are specifically designed to mimic
kinetic reactions, and are sufficiently general to model genetic networks, metabolic networks, and
signal transduction cascades. The parameters of an S-system correspond to various kinetic rates of
the underlying reactions, and one of the main challenges is to determine approximate values of these
parameters, given measured (or simulated) time traces of the involved reactants.

Due to the high dimensionality of the problem, a straight-forward optimization strategy will rarely
produce correct parameter values. Instead, almost all methods available utilize genetic/evolutionary
algorithms to perform the non-linear parameter fitting. We propose a completely deterministic
approach, which is based on interval analysis. This allows us to examine entire sets of parame-
ters, and thus to exhaust the global search within a finite number of steps. The proposed method
can in principle be applied to any system of finitely parameterized differential equations, and, as we
demonstrate, yields encouraging results for low dimensional S-systems.

1. Introduction

A typical, and very general, problem in applied mathematics is that of parameter
reconstruction. The goal of parameter reconstruction is to choose values for the
parameters in a model to best describe some given set of data.

In the context of differential equations, the model can be a system of ordinary dif-
ferential equations ẋ = ƒ(x; p), where the right-hand side (the vector field) depends
on a (multi-dimensional) parameter p. The task is then to search for a particular p�

within a parameter space P such that the solutions of the system ẋ = ƒ(x; p�) match
the given data set, in some pre-specified manner.

Typically, the data set consists of samples along one or several trajectories of
the target system ẋ = ƒ(x; p�), see Figure 1. A trajectory of a d-dimensional system,
sampled at N distinct times (excluding the initial point, which is assumed to be
known at time t0), produces the data set {x(tj)}N

j= 0, where x(tj) = (x1(tj), …, xd(tj)).

c© Springer 2006DOI: 10.1007/s11155-006-9009-2

390 WARWICK TUCKER AND VINCENT MOULTON

(a) (b)

Figure 1. (a) One component of a trajectory. (b) Its sample data.

In what follows, we will use the short-hand notation xij = xi(tj). We will also
assume that the problem of reconstructing the parameters is overdetermined, that
is, the cardinality of the data set is greater than the number of parameters to be
determined.

1.1. SIMULTANEOUS RECONSTRUCTION VIA ODE SOLVING

Given a set of samples, one approach is to try to locate a point p ∈ P that minimizes
the data error:

E (data)(p) =
d∑

i= 1

E (data)
i (p)

def
=

d∑

i= 1

N∑

j= 0

�
(

ϕi
(
tj, x(t0); p

)
, xij

)
, (1.1)

for some convenient metric �(⋅, ⋅). Here, ϕ solves the differential equation:

d
dt

ϕ(t, x; p) = ƒ
(
ϕ(t, x; p); p

)
, ϕ(0, x; p) = x, (1.2)

and can thus be approximated by numerical means, given the parameter p. This
approach is expensive seeing that, for each p, the entire system of differential
equations must be solved to compute the component errors E (data)

i (p).

1.2. COMPONENT-WISE RECONSTRUCTION VIA SLOPES

Rather than attempting to reconstruct the parameter by solving the entire system
of differential equations, it may prove wiser to obtain more detailed information
localized at the individual sample points. One possibility is to use the samples
to reconstruct the trajectories (e.g. via piece-wise splines) with some degree of
smoothness. This enables us to compute an approximation of the vector field at
each sample point:

sij ≈ ƒi
(
x(tj); p�), i = 1, …, d; j = 0, …, N. (1.3)

PARAMETER RECONSTRUCTION FOR BIOCHEMICAL NETWORKS... 391

(a) (b)

Figure 2. (a) One component of a trajectory. (b) Its enhanced sample data.

The number sij corresponds to the slope of the trajectory’s ith component at time tj,
see Figure 2.

Equipped with this enhanced sample data, we can try to locate a point p ∈ P that
minimizes the slope error:

E (slope)(p) =
d∑

i= 1

E (slope)
i (p)

def
=

d∑

i= 1

N∑

j= 0

�
(

ƒi
(
x(tj); p

)
, sij

)
, (1.4)

for some convenient metric �(⋅, ⋅). The major advantage with this approach is that
the system decouples, that is, the computation of each E (slope)

i (p) depends only on a
fraction of the total number of parameters: E (slope)

i (p) = E (slope)
i (pi), where pi ∈ P i,

and P = P 1 ⊕ · · · ⊕ P d.
Assuming that each pi has at most k non-zero components, the total dimension

of the entire search space P is dk. Rather than searching through a dk-dimensional
space, access to the enhanced sample data allows us to perform d independent
searches in k-dimensions. The gain is immediate: introducing M grid-points in
each component produces Mdk points in the first case, but only dMk points in the
latter. This gives a speed-up factor of Md / d.

Remark 1.1. As we only use approximations sij ≈ ƒi(x(tj); p�), we can not claim to be
able to reconstruct the target parameter p� with mathematical rigor. This limitation,
however, is mild compared to the underlying assumption that the true trajectories
are well-described by the data set {x(tj)}N

j= 0. In practice, given a reasonable amount
of data, a good approximation of the target parameter is obtained. Poorly estimated
slopes sij will result in our algorithm dismissing all parameters at a very early stage,
and are thus easily spotted.

Remark 1.2. When decoupling the system, information whether several components
of the vector field share a common parameter is lost. Although it is possible to re-
inject this information in the parameter reconstruction (e.g. communication between

392 WARWICK TUCKER AND VINCENT MOULTON

parallel processes), it is not a trivial task. We use no such information in our
algorithm.

1.3. INTERVAL-VALUED SLOPES

Our approach is a modification of the enhanced data method, and therefore shares
the same attractive decoupling property of the system, as described above. The
major improvement is that we now compute ranges of slopes for entire domains
of parameters. In essence, we extend the vector field ƒ to a set-valued function F,
accepting solid boxes in parameter space as input. The mathematical justification
for this type of extension is based on the theory of interval analysis. For a concise
reference on this topic, see e.g. [1], [7]–[10]. For early papers, see [12], [15],
and [16].

Let [pi] denote a box in P i, that is, each component of [pi] is an interval. Then,
for any point pi ∈ [pi], we have

ƒi
(
x(tj); pi

)
∈ Fi

(
x(tj); [pi]

)
, (1.5)

that is, the set Fi(x(tj); [pi]) contains all possible slopes corresponding to parameters
taken from the box [pi]. This fact gives us a simple criterion for discarding portions
of the search space P i: if a box [pi], at a sample point x(tj), produces a range of
slopes such that sij �∈ Fi

(
x(tj); [pi]

)
, then no parameter in [pi] can have generated

the sample data. If this situation occurs, we say that the parameter box [pi] violates
the cone condition at time tj, see Figure 3.

Our strategy in reconstructing the target parameter p� is to adaptively partition
each space P i into successively smaller sub-cubes, retaining only those who satisfy
the cone condition at all times. At some level of resolution, we terminate the
process, and are left with a collection of boxes [p(1)

i], …, [p(n)
i], each of which

satisfies I([p(j)
i]) = true, where

I([pi])
def
=

N∧

j= 0

(
sij ∈ Fi

(
x(tj); [pi]

))
(1.6)

is a boolean function that returns true if [pi] ∈ P i satisfies the cone condition at
all sample times, and false otherwise.

The strategy of dismissing subsets that are inconsistent with some constraint
lies at the heart of many interval methods. In the context of ODEs, see e.g. [3] and
references within.

In Section 2, we will introduce a particular family of differential equations
whose parameters we will reconstruct using the method described above.

PARAMETER RECONSTRUCTION FOR BIOCHEMICAL NETWORKS... 393

(a) (b)

Figure 3. (a) Cone condition satisfied at t0, t1, t2, and t3. (b) Violated at time t2.

2. S-systems

An S-system is a system of ordinary differential equations on the form:

ẋi = αi

d∏

j= 1

x
gij
j − βi

d∏

j= 1

x
hij
j (i = 1, …, d). (2.1)

These systems are designed to model quite general biochemical networks, see [13],
and have been extensively studied, see e.g. [2], [4]–[6], and [14]. Each variable xi

represents the concentration of some reactant, and ẋi denotes the time derivative
of xi. In a biochemical context, the non-negative parameters αi and βi are called
rate constants. The real-valued parameters gij and hij are referred to as the kinetic
orders. Thus each component of an S-system is made up of one positive and one
negative term, corresponding to the production and consumption of the substance
xi, respectively.

Using the following short-hand notation for the parameters

pi = (αi, gi1, …, gid , βi, hi1, …, hid) (i = 1, …, d), (2.2)

we can express (2.1) more compactly as ẋi = ƒi(x; pi). The entire S-system then
becomes ẋ = ƒ(x; p). Two typical trajectories of a 5-dimensional S-system are
illustrated in Figure 4.

The general problem of parameter reconstruction can be divided into two smaller
tasks: first, one may determine the network topology. This is a qualitative property
of the system that describes whether a reactant suppresses/induces the synthe-
sis/degradation of another reactant. A key step in this stage is to determine which
parameters are non-zero. Second, one is interested in the rate at which the syn-
thesis/degradation occurs. This corresponds to finding approximate values of the
non-zero parameters.

A d-dimensional S-system has 2d(d+1) parameters, so already for small systems
the number of parameters becomes unwieldy, see Table 1.

394 WARWICK TUCKER AND VINCENT MOULTON

0 0.05 0.1 0.15 0.2 0.25
0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25
0.2

0.4

0.6

Figure 4. Typical trajectories of a 5-dimensional S-system.

Table 1. The total number of parameters in a
d-dimensional S-system.

d 1 2 3 4 5 10 15

2d(d + 1) 4 12 24 40 60 220 480

We will reduce the number of parameters by assuming that no reactant xj both
produces and consumes another reactant xi. This assumption can be reformulated
more succinctly as:

gij �= 0 ⇒ hij = 0, (2.3)

and reduces the total number of non-zero parameters to d(d + 2), although we now
must consider 2d different parameter configurations for each component of the
vector field. Nevertheless, this is a good trade: filling each of the 2(d + 1) parameter
domains of ƒi with M grid-points produces M2(d +1) points, compared to 2dMd +2

points when using (2.3). This gives a speed-up factor of (M / 2)d.

2.1. SET-VALUED S-SYSTEMS

Extending the right-hand side of (2.1) to accept parameter boxes as input is a simple
matter, and produces a set-valued vector field whose components are interval-
valued:

ẋi ∈ Fi(x; [pi]) = [αi]
d∏

j= 1

x[gij]
j − [βi]

d∏

j= 1

x[hij]
j (i = 1, …, d). (2.4)

Since each parameter occurs only once in (2.4), it follows that this extension is
sharp, that is,

R
(
ƒi(x; ⋅); [pi]

) def
= {ƒi(x; pi): pi ∈ [pi]} = Fi(x; [pi]). (2.5)

PARAMETER RECONSTRUCTION FOR BIOCHEMICAL NETWORKS... 395

This sharpness property is not necessary for our method to work, but makes it more
effective.�

3. The Main Algorithm

Given a collection of sample data {xij; sij}i, j generated from some target S-system
with parameter p� = (p�

1 , …, p�
d), the search is divided into d independent

component-wise searches for p�
1 , …, p�

d . These (d + 2)-dimensional�� searches can
be performed as d parallel processes, seeing that they are completely independent.
In what follows we fill focus on a single such search. For clarity, we will suppress
the component index i.

Each search takes place within a global parameter region P , which is initial-
ized as a box P = ([p1], …, [p2(d +1)]). The bounds for this box are determined by
biochemical knowledge, see e.g. [13]. Utilizing the constraints (2.3), we initial-
ize 2d different parameter configurations P̃ 1, …, P̃ 2d , each having d + 2 non-zero
parameters, and corresponding to different network topologies. Having done this,
we examine each P̃ i separately (or all P̃ i in parallel). As a first step, we initialize a
list parameterList with the unique element P̃ i. This list is then passed on to
the main loop of our search algorithm:

while(isEmpty(parameterList) == false) {

parameter = getCurrent(parameterList);

if (coneCondition(parameter) == true) {

if (diameter(parameter) > Tol)

splitAndStore(parameter, parameterList);

else

store(parameter, resultList);

}

}

Within this loop, each member of parameterList is tested via the cone
condition (1.6). If the condition is satisfied, there are two possibilities: either the
diameter of the parameter box is smaller than some pre-assigned tolerance Tol,
in which case the box is stored in a second list resultList; otherwise it is
bisected along its widest component, and the two resulting sub-boxes are returned
toparameterList for further investigation. If, however, the cone condition is not
satisfied, the current parameter box is excluded from the remaining search. When the
search terminates, resultList contains all sub-boxes of size ≈ Tol satisfying
the cone condition. If this list is empty, we have established that the corresponding
network topology does not match our data at this level of resolution.

� We have recently obtained encouraging preliminary results for a more general class of ODEs in
which a parameter can occur several times.
�� Using (2.3), there are d non-zero kinetic rates, and two rate constants per component of ƒ.

396 WARWICK TUCKER AND VINCENT MOULTON

It is not unusual to have access to sample data from several trajectories, that is,
trajectories emanating from different initial points x(1)(t0), …, x(M)(t0). We can then
augment the cone condition (1.6) to take this additional information into account:

I([pi])
def
=

N∧

j= 0

M∧

k = 1

(
s(k)

ij ∈ Fi
(
x(k)(tj); [pi]

))
. (3.1)

This additional data improves our method, seeing that it becomes easier to discard
parameter regions. It is often wiser to extend the sample data by adding samples
from new trajectories, rather than increasing the number of samples points on
already existing trajectories.

4. Computational Results

We have tested our method on three S-systems, and obtained encouraging results
on all occasions.

Starting with the sample data {tj; xij}i, j generated from some target S-system
with parameter p�, we first generate the additional slope data {sij}i, j, as described
in Section 1.2. These computations are performed by a collection of MATLAB
scripts, utilizing its built-in spline functionality. This allows us to differentiate the
reconstructed trajectories, and recover the slopes.

It should be pointed out that the data itself is generated within MATLAB, and that
the sample times t0, …, tN are non-uniformly distributed. We choose a logarithmic
distribution of the sample times, in order to capture the more vivid motion occurring
for small times, see Figure 4. In the examples presented below we use noise-free
sample data {xij}i, j.

The actual parameter reconstruction was carried out by a prototype C++ pro-
gram, utilizing a modified version of the PROFIL/BIAS interval package [11]. The
computations� were performed on a single 1200 MHz Intel Pentium M processor
using 384 MB of RAM.

4.1. A 4-DIMENSIONAL S-SYSTEM

The following S-system is taken from [14]:

ẋ1 = 12x−0.8
3 − 10x0.5

1 ,

ẋ2 = 8x0.5
1 − 3x0.75

2 ,
(4.1)ẋ3 = 3x0.75

2 − 5x0.5
3 x0.2

4 ,
ẋ4 = 2x0.5

1 − 6x0.8
4 .

� We used directed rounding which, in light of Remark 1.1 of Section 1.2, is probably not called
for. Swithing off the rounding reduces the reported CPU-times by roughly 25%.

PARAMETER RECONSTRUCTION FOR BIOCHEMICAL NETWORKS... 397

Table 2. The parameter values (and their reconstructions) of the S-system (4.1).

i αi gi1 gi2 gi3 gi4 βi hi1 hi2 hi3 hi4

Original
1 12 0.0 0.0 −0.8 0.0 10 0.5 0.0 0.0 0.0
2 8 0.5 0.0 0.0 0.0 3 0.0 0.75 0.0 0.0
3 3 0.0 0.75 0.0 0.0 5 0.0 0.0 0.5 0.2
4 2 0.5 0.0 0.0 0.0 6 0.0 0.0 0.0 0.8

Reconstructed
1 12.00 0.0 0.0 −0.802 0.0 9.98 0.501 0.0 0.0 0.0
2 7.96 0.502 0.0 0.0 0.0 2.96 0.0 0.757 0.0 0.0
3 2.95 0.0 0.759 0.0 0.0 4.95 0.0 0.0 0.504 0.202
4 2.00 0.501 0.0 0.0 0.0 6.00 0.0 0.0 0.0 0.800

We remind the reader that we do not know the topology of the S-system. This
means that each component of the ODE is only known to have the following
shape:

ẋi = αix
gi1
1 xgi2

2 xgi3
3 xgi4

4 − βix
hi1
1 xhi2

2 xhi3
3 xhi4

4 i = 1, …, 4.

For the computations, we used five sets of initial conditions, and each trajectory
was sampled at 20 points in time. The search region for each of the kinetic orders
gij, and hij was set to contain [−1, +1], whereas the rate orders αi and βi were sought
for within [0, 20]. The stopping tolerance was set to 2 × 10−3. Note that, although
each component of the vector field has 10 parameters to be determined, we use the
constraints (2.3) to bring the number of non-zero parameter values down to six,
which can be arranged in 16 different network topologies.

In Table 2, we present the target parameters together with the final result of our
reconstruction. The agreement is seen to be quite satisfactory.

The reconstructed parameters appearing in Table 2 were obtained as follows:
when the global search has terminated, we are left with a collection of parameter
boxes [p1], …, [pK], all satisfying the cone condition. We may reduce these boxes to
one single box [P �] by forming the hull—the smallest box containing all parameter
boxes [p1], …, [pK]. We then have an enclosure of the target parameter p� ∈ [P �].
Of course, taking the hull of all parameter boxes is a rather crude measure. We get
a better feeling for where the center of mass of the boxes is located by forming
the average of the collection of parameter boxes. In order to get a single point in
parameter space as our “best guess,” we take the midpoint of the average, and set
any number less than 5 × 10−4 to zero:

P
�

= trunc

(
mid

(
1
K

K∑

i= 1

[pi]
)

; 5 × 10−4

)
. (4.2)

398 WARWICK TUCKER AND VINCENT MOULTON

Table 3. The computational effort for the S-system (4.1)
with Tol = 2 × 10−3.

component boxes F-evaluations CPU-time

1 83,987 5,620,510 1h 21m 33s
2 7,609 2,976,928 42m 23s
3 777 3,768,046 53m 36s
4 7,085 3,378,982 48m 36s

Here, we use the truncation function

trunc(x; ε) =

{
0 if |x| ≤ ε,

x if |x| > ε.
(4.3)

It is the components of the resulting P
�

that are presented in Table 2. Note, however,
that any choice of parameters from one of the resulting boxes [p1], …, [pK] is
consistent with our sample data.

The computational effort is presented in Table 3, where we list the number of final
parameter boxes together with the number of required vector field evaluations.

This system was also studied in [14], in which the reconstruction was per-
formed by a data smoothing followed by a non-linear regression combined with
some simplifying assumptions not present in our method. The reported timings
(≈ 15 minutes) were based on a much more powerful computer (dual 2.4 GHz
CPUs with 4 GB RAM). Also, some of the reported parameter values were off by
more than 9%, whereas our values are correct to 1%.

4.2. A 5-DIMENSIONAL S-SYSTEM

The following S-system is a slight modification of that studied in [4] and [6]:

ẋ1 = 5x3x−1
5 − 10x2

1 ,

ẋ2 = 10x2
1 − 10x2

2 ,
ẋ3 = 10x−1

2 − 10x2
3 , (4.4)

ẋ4 = 8x2
3x−1

5 − 10x2
4 ,

ẋ5 = 10x2
4 − 10x2

5 .

For the computations, we used 10 sets of initial conditions, and each trajectory
was sampled at 20 points in time. The search region for each of the kinetic orders
gij, and hij was set to contain [−3, +3], whereas the rate orders αi and βi were sought
for within [0, 15]. The stopping tolerance was set to 2 × 10−2. Note that, although
each component of the vector field has 12 parameters to be determined, we use the
constraints (2.3) to bring the number of non-zero parameter values down to seven,
which can be arranged in 32 different network topologies.

PARAMETER RECONSTRUCTION FOR BIOCHEMICAL NETWORKS... 399

Table 4. The parameter values of the S-system (4.4), and their reconstructions.

i αi gi1 gi2 gi3 gi4 gi5 βi hi1 hi2 hi3 hi4 hi5

Original
1 5 0 0 1 0 −1 10 2 0 0 0 0
2 10 2 0 0 0 0 10 0 2 0 0 0
3 10 0 −1 0 0 0 10 0 0 2 0 0
4 8 0 0 2 0 −1 10 0 0 0 2 0
5 10 0 0 0 2 0 10 0 0 0 0 2

Reconstructed
1 5.00 0.0 0.0 0.999 0.0 −1.00 10.00 2.00 0.0 0.0 0.0 0.0
2 9.99 2.00 0.0 0.0 0.0 0.0 9.99 0.0 2.00 0.0 0.0 0.0
3 10.00 0.0 −1.00 0.0 0.0 0.0 10.00 0.0 0.0 2.00 0.0 0.0
4 7.99 0.0 0.0 2.00 0.0 −1.00 9.98 0.0 0.0 0.0 2.00 0.0
5 10.00 0.0 0.0 0.0 2.00 0.0 10.00 0.0 0.0 0.0 0.0 1.99

Table 5. The computational effort for the S-system (4.4)
with Tol = 2 × 10−2.

component boxes F-evaluations CPU-time

1 5,789 1,635,320 49m 30s
2 4,528 1,906,320 56m 13s
3 13,132 2,091,374 1h 9m 11s
4 1,627 690,578 20m 26s
5 906 889,318 27m 5s

In Table 4, we present the target parameters together with the final result of our
reconstruction. We used the average/truncation procedure described in the previous
section, with truncation level 5 × 10−3. Again, the agreement is seen to be very
good. The computational effort is presented in Table 5.

A very similar system was studied in [6], in which the reconstruction was
performed via a modified least-squares fit. The resulting optimization problem was
solved by a genetic algorithm. The reported timings (several days) were based on a
AIST CBRC Magi Cluster with 1040 CPUs (pentium III 933 MHz). Also, some of
the reported parameter values were off by more than 18%, whereas our values are
correct to 0.2%.

4.3. A FIXED-TOPOLOGY CASCADE

Our final example deals with a cascade mechanism. These appear in e.g. gene
regulation and immunology.

400 WARWICK TUCKER AND VINCENT MOULTON

Table 6. The parameter values (and their reconstructions) of the S-system (4.5).

i αi gi1 gi2 gi3 βi hi1 hi2 hi3

Original
1 7.5 — −0.1 −0.05 5.0 0.5 — —
2 2.0 0.5 — — 1.44 — 0.5 —
3 3.0 — 0.5 — 7.2 — — 0.5

Reconstructed
1 7.49 — −0.100 −0.0503 4.99 0.501 — —
2 2.00 0.501 — — 1.44 — 0.502 —
3 3.00 — 0.500 — 7.20 — — 0.500

Table 7. The computational effort for the fixed-
topology S-system (4.5) with Tol = 1 × 10−3.

component boxes F-evaluations CPU-time

1 905 83,595 54s
2 34 11,073 7s
3 83 8,733 6s

ẋ1 = 7.5x−0.1
2 x−0.05

3 − 5x0.5
1 ,

ẋ2 = 2x0.5
1 − 1.44x0.5

2 , (4.5)

ẋ3 = 3x0.5
2 − 7.2x0.5

3 .

This particular model is treated in [13], and differs from the two previous examples
in that we are given, a priori, the network topology. This reduces the computational
complexity significantly.

In Table 6, we present the target parameters together with the final result of our
reconstruction. The reconstructed parameter values are simply the midpoint of the
average over all parameter boxes produced by our search. We use the notation “—”
to indicate a non-present parameter.

For the computations, we used five sets of initial conditions, and each trajectory
was sampled at 20 points in time. The search region for each of the kinetic orders
gij, and hij was set to contain [−1, +1], whereas the rate orders αi and βi were
sought for within [0, 15]. The stopping tolerance was set to 1 × 10−3. Once again,
the agreement is seen to be a good match. The computational effort is presented in
Table 7.

5. Conclusions

We have presented a novel method for reconstructing parameters using interval
analysis. In particular, we have applied it to reconstruct metabolic networks using
S-systems, and obtained encouraging results. We stress that the proposed method

PARAMETER RECONSTRUCTION FOR BIOCHEMICAL NETWORKS... 401

is quite general, and can (in principle) be applied to any system of finitely parame-
terized differential equations.

Our method differs in a fundamental way from the main-stream reconstruction
methods in that we solve the problem by a pruning scheme based on a boolean
function (the cone condition), rather than recasting the parameter reconstruction as
a global minimization problem. This has several advantages: first, it is well-known
that global minimization is an intractable problem, in the sense that numerical
solutions often converge to a local, rather than a global, minimum, and there is no
way of telling the two cases apart. Second, the quantity to be minimized is often
chosen to be a (weighted) least-square error. This implicitly pre-assumes rather
strong statistical properties of the underlying data, assumptions that can not easily
be verified. Our method simply discards the parameters that are inconsistent with
the underlying data, avoiding both above-mentioned problems.

The transition to set-valued vector fields also allows us to dismiss unrealistic
network topologies. In particular, this allows us to detect when the model we are
trying to fit to the provided data is not appropriate. With a sufficiently low stopping
tolerance, our method would then discard all parameter values.

In future work, we will refine the process of parameter exclusion, and exploit
the problem’s great potential for parallelization. This is an essential step towards
exploring the scalability of our proposed method. We will also allow for noisy
sample data, using statistical pre-processing in the generation of the slopes. We also
plan to put our method to test on a larger class of problems (including generalized
mass action models).

References

1. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New
York, 1983.

2. Alves, R. and Savageau, M. A.: Comparing Systemic Properties of Ensembles of Biological
Networks by Graphical and Statistical Methods, Bioinformatics 16 (6) (2000), pp. 527–533.

3. Deville, Y., Janssen, M., and van Hentenryck, P.: Consistency Techniques in Ordinary Differential
Equations, Constraints 7 (2002), pp. 289–315.

4. Hlavacek, W. S. and Savageau, M. A.: Rules for Coupled Expressions of Regulator and Effector
Genes in Inducible Circuits, J. Mol. Biol. 255 (1996), pp. 121–139.

5. de Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature Review,
J. Comp. Biol. 9 (1) (2002), pp. 67–103.

6. Kikuchi, S. et al.: Dynamic Modeling of Genetic Networks Using Genetic Algorithm and
S-System, Bioinformatics 19 (5) (2003), pp. 643–650.

7. Kulisch, U. W. and Miranker, W. L.: Computer Arithmetic in Theory and Practice, Academic
Press, 1981.

8. Moore, R. E.: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.
9. Moore, R. E.: Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathe-

matics, Philadelphia, 1979.
10. Neumaier, A.: Interval Methods for Systems of Equations, Encyclopedia of Mathematics and Its

Applications 37, Cambridge Univ. Press, Cambridge, 1990
11. PROFIL/BIAS—Programmer’s Runtime Optimized Fast Interval Library/Basic Interval Arith-

metic Subroutines,
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

402 WARWICK TUCKER AND VINCENT MOULTON

12. Sunaga, T.: Theory of an Interval Algebra and Its Application to Numerical Analysis, RAAG
Memoirs 2 (1958), pp. 29–46.

13. Voit, E. O.: Computational Analysis of Biochemical Systems, Cambridge University Press, 2000.
14. Voit, E. O. and Almeida, J.: Decoupling Dynamical Systems for Pathway Identification from

Metabolic Profiles, Bioinformatics 20 (11) (2004), pp. 1670–1681.
15. Warmus, M.: Calculus of Approximations, Bulletin de l’Academie Polonaise de Sciences 4:5

(1956), pp. 253–257.
16. Young, R. C.: The Algebra of Multi-Valued Quantities, Mathematische Annalen 104 (1931),

pp. 260–290.

