
J. Differential Equations 233 (2007) 181–198

www.elsevier.com/locate/jde

Interval analysis techniques for boundary value
problems of elasticity in two dimensions

Irina Mitrea a,1, Warwick Tucker b,∗,2

a Department of Mathematics, University of Virginia, Kerchof Hall, Charlottesville, VA 22904, USA
b Department of Mathematics, Uppsala University, Box 480, Uppsala, Sweden

Received 3 March 2006

Available online 17 November 2006

Abstract

In this paper we prove that the L2 spectral radius of the traction double layer potential operator associated
with the Lamé system on an infinite sector in R

2 is within 10−2 from a certain conjectured value which
depends explicitly on the aperture of the sector and the Lamé moduli of the system. This type of result
is relevant to the spectral radius conjecture, cf., e.g., Problem 3.2.12 in [C.E. Kenig, Harmonic Analysis
Techniques for Second Order Elliptic Boundary Value Problems, CBMS Reg. Conf. Ser. Math., vol. 83,
Amer. Math. Soc., Providence, RI, 1994]. The techniques employed in the paper are a blend of classical
tools such as Mellin transforms, and Calderón–Zygmund theory, as well as interval analysis—resulting in
a computer-aided proof.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The iterative approach for solving boundary value problems of mathematical physics which
lead to an equation of the form x −Lx = g is the method of successive approximations based on
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the scheme

xk+1 = L
(
xk

) + g. (1.1)

Here L is a bounded linear operator on a Banach space X and g ∈ X is given. The size of
ρ(L;X ), the spectral radius of L on X , is important in establishing the convergence of (1.1).
For instance, when

ρ(L;X ) < 1, (1.2)

and x0 = 0, the iteration (1.1) converges to a solution of x − Lx = g as the Neumann series∑∞
k=0 Lk converges to (I − L)−1 in the operator norm (I is the identity on X ).
An important question at the interface between harmonic analysis and partial differential equa-

tions is the so-called spectral radius conjecture for elliptic boundary layers on rough domains,
which is singled out as a challenging open problem in Kenig’s 1994 AMS CBMS book [10].
This problem asks whether (1.2) holds whenever L is a double layer potential operators as-
sociated with the Laplacian (or Lamé and Stokes systems) and X = Lp(∂Ω), for a Lipschitz
domain Ω , whenever I − L is invertible. This issue is relevant in the context of constructively
solving boundary value problems arising in the study of the Stokes flow and elastic deformations.

In this paper we consider the case when L is a singular integral operator naturally associated
with the traction boundary value problem for the system of elastostatics in an infinite sector
Ω ⊆ R

2,

{
μ��u + (λ + μ)∇ div �u = �0 in Ω,
∂ �u

∂Nμ
= �f ∈ L2(∂Ω),

(1.3)

where the Lamé moduli μ,λ satisfy μ > 0 and λ+μ � 0, and ∂
∂Nμ

denotes the traction conormal

derivative (2.3). More specifically, we take L in (1.1) to be K∗, the formal adjoint of the so-called
traction double layer potential operator K (introduced in Section 2.) We would like to point out
that the case under consideration is both physically relevant and, from a technical standpoint, the
most challenging among all Neumann-type boundary problems for the system of elastostatics.
Indeed, the spectral analysis of K undertaken here is considerably more difficult and subtle than
the one for the layer potential operator associated with the pseudo-stress conormal derivative,
considered previously in [17,18].

For α ∈ [0,π], κ ∈ [0,1] and x ∈ (0,1) we introduce

R(α,x, κ) := ∣∣{sin2(αx) + κ2 cos2(αx) − (
κ cos(πx) − (1 − κ)x sinα sin(αx)

)2}1/2

+ (1 − κ)x sinα cos(αx)
∣∣ · 1

sin(πx)
. (1.4)

Our main result gives estimates for ρ(K;L2(∂Ω)) (which equals ρ(K∗;L2(∂Ω))) for a fam-
ily of infinite sectors in Ω ⊂ R

2 which pin ρ(K;L2(∂Ω)) within 10−2 from a certain conjectured
value which depends explicitly on μ,λ and the aperture of Ω . Concretely we have
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Theorem 1.1. Let Ω ⊂ R
2 be an infinite sector of aperture θ ∈ (0,2π) and let K be the traction

double layer potential operator associated with (1.3) and set κ := μ/(2μ + λ) ∈ [ 1
40 , 9

10 ]. Then,
for θ ∈ [ π

200 ,2π − π
200 ], we have

R
(|π − θ |,1/2, κ

)
� ρ

(
K;L2(∂Ω)

)
� R

(|π − θ |,1/2, κ
) + 10−2. (1.5)

In fact, prior experiments with the problem led the present authors to conjecture the following.

Conjecture. If Ω ⊆ R
2 is an infinite sector of aperture θ ∈ (0,2π) and 1 < p < ∞, then

ρ
(
K;Lp(∂Ω)

) = R
(|π − θ |,1/p,κ

)
, (1.6)

where κ := μ/(2μ + λ) ∈ (0,1].

Traditionally, the major theoretical tools involved in the study of the spectra of singular inte-
gral operators are Calderón–Zygmund theory (for layer potential operators on Lipschitz domains;
see, e.g., the work of Fabes, Kenig, Verchota and Escauriaza in [4,6,28]) and Mellin transform
techniques (for layer potentials on domains with isolated singularities; see, e.g., the work of
Elschner, Fabes, Lewis, Maz’ya and collaborators and Shelepov in [5,7,8,11,12,15,16,24]). The
main novel aspect of our present work is the realization that the use of interval analysis and rig-
orous computations (employed by Tucker in [26,27] to prove Smale’s 14th problem concerning
the existence of the Lorenz attractor) can play a significant role in the study of spectral problems
of the type described above. Indeed, the proof of our main result combines Mellin transform and
interval analysis techniques.

The strategy for obtaining lower bounds for ρ(K;L2(∂Ω)) consists of the following steps.
First, the spectrum of the operator K on L2(∂Ω) can be expressed as an (explicit) parametric
curve in the plane, depending on the aperture of the sector θ and on κ := μ/(2μ + λ),

[−∞,∞] 	 y 
→ Σθ,κ(y) ∈ R
2. (1.7)

This is possible in the current geometrical context as the operator K is of Mellin convolution
type when Ω ⊂ R2 is an infinite sector. Second, one writes

ρ
(
K;L2(∂Ω)

) = sup
−∞�y�∞

∣∣Σθ,κ(y)
∣∣ �

∣∣Σθ,κ(0)
∣∣, (1.8)

and the last expression can be seen to match the left-hand sides in (1.5).
As for the upper bound for ρ(K;L2(∂Ω)) we show that for every y ∈ [−∞,∞], κ ∈ [ 1

40 , 9
10 ],

and θ ∈ [ π
200 ,2π − π

200 ], we have

∣∣Σθ,κ(y)
∣∣ < R

(|θ − π |,1/2, κ
) + 10−2. (1.9)

Somewhat more specifically, a rough analytic approach is taken for checking (1.9) for |y| > 104.
For the remaining part, i.e., y ∈ [−104,104], we use interval analysis techniques to rigorously
carry out—using the computer—this latter (more delicate) task. Interval analysis is based on the
idea that all computations using the computer should be carried out over sets rather than single
points in the traditional manner. As the name suggests, these sets are (closed) intervals of the real
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line, or boxes in higher dimensions. The main advantages of this approach are that all rounding
errors can easily (and automatically) be taken into account by switching the computer’s internal
rounding mode at run-time; and that all discretization errors can be taken into account since all
entities are set-valued.

In the present case, both the parametric curve |Σθ,κ |, and the function R(α,x, κ) will be made
interval-valued, and 10−2 will be taken as the upper bound on all errors made when evaluating
the distance between these two entities. The interval-based approach enables us then to check
using the computer that (1.9) holds on the compact domain in the parameter space given by θ ∈
[ π

200 ,2π − π
200 ], κ ∈ [ 1

40 , 9
10 ], y ∈ [−104,104]. We stress that, even though the proof is computer-

aided, it is rigorous in the mathematical sense. For a concise reference on the mathematics behind
interval analysis, see, e.g., [1,13,20,21], or [22].

The analytical part of the proof of the main result is carried out for all 1 < p < ∞ and allows
for 10−6 instead of 10−2 in (1.9). For the computational part of the proof, however, a better
accuracy and allowing for an interval of p′s instead of a single value increases tremendously
(at least by a factor of 103) the running time of the algorithms involved. As is, the computer-
aided part of the proof requires 16 hours of running time on 5 parallel processes. Nevertheless,
the spectral radius estimates (1.5) are, from the point of view of a large number of engineering
applications, as effective as (1.6).

The layout of the paper is as follows. Section 2 contains some preliminary notations and
definitions as well as known results. In Section 3 we take the first (analytical) step toward proving
the main result while in Section 4 we present the validated numerics part of the proof. Finally, in
Section 5, a connection with the spectral radius conjecture is made.

2. Preliminaries

In this section we introduce some basic notation and recall some known results used in the
rest of the paper. Hereafter Ω will be an infinite sector of aperture θ ∈ (0,2π), i.e., the domain in
R

2 consisting of the interior of an infinite angle of measure θ . We let dσ stand for the arc-length
measure on ∂Ω . Then the unit normal vector N = (N1,N2) to ∂Ω is well defined at almost every
point on ∂Ω with respect to dσ . We also use 〈·,·〉 to denote the canonical inner product in R

2.
Consider next the system of elastostatics

L�u = μ��u + (λ + μ)∇ div �u = 0 in Ω, (2.1)

where the so-called Lamé moduli μ,λ satisfy

μ > 0 and λ + μ � 0. (2.2)

The traction (stress) conormal derivative of a vector �u (cf., e.g., [4]) has the form

∂ �u
∂Nμ

:= μ
(∇�u + (∇�u)t

)
N + λ(div �u)N, (2.3)

where ∇�u = (∂ju
i)1�i,j�2, and the superscript t indicates transposition of matrices. Recall next

the Kelvin matrix valued fundamental solution for the system of elastostatics (2.1) given at each
X = (X1,X2) ∈ R

2 \ {0} by
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Gij (X) = 1

2μ(2μ + λ)π

[
3μ + λ

2
δij log|X|2 − (μ + λ)

XiXj

|X|2
]
, i, j = 1,2. (2.4)

See, e.g., (9.2) in Chapter 9 of [14]. In (2.4), δij denotes the Kronecker symbol. For j = 1,2, let
Gj be the j th column of the matrix G = (Gkl)k,l=1,2. A straightforward computation gives that

the ith component of ∂Gj

∂Nμ
is

(
∂Gj

∂Nμ

(X − ·)
)i

(Q) = −κδij

π
· 〈X − Q,N(Q)〉

|X − Q|2 + κ

π
· (Xi − Qi)Nj (Q) − (Xj − Qj)Ni(Q)

|X − Q|2

− 2(1 − κ)

π
· 〈X − Q,N(Q)〉(Xi − Qi)(Xj − Qj)

|X − Q|4 (2.5)

where

κ := μ

2μ + λ
. (2.6)

We denote by K the traction double layer potential operator associated with the system (2.1)
given by

(K �f )(P ) := p.v.
∫

∂Ω

[
∂G

∂Nμ

(P − ·)
]t

(Q) �f (Q)dσ(Q), P ∈ ∂Ω. (2.7)

For 1 < p < ∞, we denote by Lp(∂Ω) the space of p-integrable functions on ∂Ω . In the
sequel we make no notational distinction between Lp(∂Ω) and Lp(∂Ω)⊕Lp(∂Ω). Next, let X
be a Banach space and T :X → X be a linear and continuous operator. We denote by σ(T ;X )

the spectrum of the operator T given by

σ(T ;X ) := {z ∈ C: zI − T is not invertible on X }, (2.8)

and by ρ(T ;X ) the spectral radius of T , i.e.,

ρ(T ;X ) := sup
{|z|: z ∈ σ(T ;X )

}
. (2.9)

With the goal of explicitly describing the spectrum of the operator K as in (2.7) on Lp(∂Ω),
1 < p < ∞, we introduce

Aκ := (1 − κ)z sin θ, B := sin
(
(π − θ)z

)
, C := cos

(
(π − θ)z

)
,

D := sin(πz), E := cos(πz), (2.10)

where θ, κ ∈ R and z ∈ C. Next we record the following result established in [19] by employing
the pseudo-differential calculus of Mellin type.



186 I. Mitrea, W. Tucker / J. Differential Equations 233 (2007) 181–198
Theorem 2.1. Let Ω ⊂ R
2 be an infinite sector of aperture θ ∈ (0,2π) and let K be the traction

double layer potential operator associated with the system (2.1) with Lamé moduli λ,μ satisfying
(2.2). Then, for every 1 < p < ∞, we have

σ
(
K;Lp(∂Ω)

) =
{
w ∈ C: (wD ± AκC)2 = Qκ,∓ for some z ∈ 1

p
+ iR

}
∪ {κ,−κ}, (2.11)

where κ is as in (2.6) and Aκ , B , C, D (evaluated at z) are as in (2.10). Also

Qκ,± := B2 + κ2C2 − (κE ± AκB)2. (2.12)

In particular

σ
(
K;Lp(∂Ω)

) =
4⋃

i=1

Σi(θ,p, κ). (2.13)

Above [−∞,∞] 	 y 
→ Σi(θ,p, κ)(y) ∈ R
2 is a parametric closed curve in the plane, given by

Σ1(θ,p, κ)(y) :=
√

Qκ,− − AκC

D
, Σ2(θ,p, κ)(y) := −√

Qκ,− − AκC

D
,

Σ3(θ,p, κ)(y) :=
√

Qκ,+ + AκC

D
, Σ4(θ,p, κ)(y) := −√

Qκ,+ + AκC

D
, (2.14)

where Aκ , B , C, D, E are evaluated at z = 1
p

+ iy, y ∈ R.

We end this section with the simple, yet useful observation that for any 1 < p < ∞, y ∈ R

and θ ∈ R, we have

Σ1(2π − θ,p, κ)(y) = −Σ2(θ,p, κ)(y) and Σ3(2π − θ,p, κ)(y) = −Σ4(θ,p, κ)(y),

(2.15)

and

Σj(θ,p, κ)(−y) = Σj(θ,p, κ)(y), for j = 1, . . . ,4, (2.16)

where, if z ∈ C, z̄ denotes the complex conjugate of z.

3. Spectral radius estimates

Let Ω be an infinite sector in R
2 and assume that μ > 0, μ+λ � 0. Next we recall the traction

double layer potential operator K from (2.7) associated with the Lamé system (2.1) in Ω . Finally,
for α ∈ [0,π], x ∈ (0,1) and κ ∈ [0,1] introduce

R(α,x, κ) := ∣∣{sin2(αx) + κ2 cos2(αx) − (
κ cos(πx) − (1 − κ)x sinα sin(αx)

)2}1/2

+ (1 − κ)x sinα cos(αx)
∣∣ · 1

. (3.1)

sin(πx)
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Our main result here is

Theorem 3.1. Let Ω ⊆ R
2 be an infinite sector of aperture θ ∈ (0,2π). Consider μ,λ as in (2.2)

such that μ
2μ+λ

∈ [ 1
40 , 9

10 ] and let K be as in (2.7). Then, for any θ ∈ [ π
200 ,2π − π

200 ] we have

R

(
|π − θ |, 1

2
,

μ

2μ + λ

)
� ρ

(
K;L2(∂Ω)

)
< R

(
|π − θ |, 1

2
,

μ

2μ + λ

)
+ 10−2. (3.2)

Before presenting the proof of Theorem 3.1 we isolate first the main analytical ingredients.
As a preamble, we start with the following technical result.

Lemma 3.2. For any α ∈ [0,π], κ ∈ [0,1] and x ∈ (0, 1
2 ] we have

R(α,x, κ) � κ. (3.3)

Proof. Straightforward algebraic manipulations based on (3.1) show that for (3.3) the following
inequality suffices

E(α,x, κ) �
(
κ sin(πx) − x(1 − κ) sin(α) cos(αx)

)2
, ∀α ∈ [0,π], x ∈

(
0,

1

2

]
, κ ∈ [0,1],

(3.4)

where

E(α,x, κ) := sin2(αx) + κ2 cos2(αx) − (
κ cos(πx) − x(1 − κ) sin(α) cos(αx)

)2
. (3.5)

Expanding the square and using the Pythagorean identity we rewrite the latter inequality in the
equivalent form

(1 − κ)f (α, x, κ) � 0, (3.6)

where

f (α, x, κ) := (1 + κ) sin2(αx) − x2(1 − κ) sin2(α) + 2xκ sin(α) sin
(
(π + α)x

)
, (3.7)

for α,x and κ as in (3.4). Notice next that the partial derivative with respect to κ of f (α, x, κ)

equals sin2(αx) + x2 sin2(α) + 2x sin(α) sin((π + α)x) which is positive whenever α ∈ [0,π]
and x ∈ [0, 1

2 ]. Therefore for α and x as above and κ � 0 we have

f (α, x, κ) � f (α, x,0) = sin2(αx) − x2 sin2(α) � 0, (3.8)

where the inequality in (3.8) follows from squaring (5.2) and the observation that sin(αx) and
x sin(α) are positive for α and x as in (3.4). Finally, (3.6) immediately follows from (3.8). �
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Proposition 3.3. Let θ ∈ [0,π], x ∈ (0,1], κ ∈ [0,1], |y| ∈ [1,∞) and recall Aκ , B , C, D, E

from (2.10). Then the following hold

max

{ |C|
|D| ,

|B|
|D| ,

|AκB|
|D| ,

|AκC|
|D| ,2κ

|EAκB|
|D2| ,

κ

|D|
}

� 50|y|e−θ |y|. (3.9)

In particular, if θ ∈ [ π
200 ,π] and |y| � 104, we have

max

{ |C|
|D| ,

|B|
|D| ,

|AκB|
|D| ,

|AκC|
|D| ,2κ

|EAκB|
|D2| ,

κ

|D|
}

� 10−14. (3.10)

Proof. Fix θ ∈ [0,π], x ∈ (0,1], κ ∈ [0,1] and |y| ∈ [1,∞). Then, based on (2.10) we have

|Aκ | = ∣∣(1 − κ)(x + iy) sin(θ)
∣∣ � |x + iy| � √

2|y|. (3.11)

Also

4|D|2 = e2πy + e−2πy − 2 cos(2πx) �
(
eπy − e−πy

)2
,

4|E|2 = e2πy + e−2πy + 2 cos(2πx) �
(
eπy + e−πy

)2
. (3.12)

Therefore

|D| � eπ |y| − e−π |y|

2
� 1

4
eπ |y| and |E| � eπ |y| + e−π |y|

2
� eπ |y|. (3.13)

Going further, 4|B|2 = e2αy + e−2αy −2 cos(2αx) � (eαy + e−αy)2, where α := π − θ . This, and
a similar analysis for |C| give

max
{|B|, |C|} � eα|y| + e−α|y|

2
� eα|y|. (3.14)

Now, (3.9) follows from (3.11), (3.13) and (3.14) and straightforward algebraic manipulations.
Next fix θ ∈ [ π

200 ,π] and consider F : [0,∞) → R given by F(t) := te−θt . A simple analysis
reveals that F is decreasing on the interval [ 1

θ
,∞). Since for θ � π

200 and |y| � 104 we have
|y| � 100

θ
> 1

θ
, using the monotonicity of F we conclude

|y|e−θ |y| = F
(|y|) � F

(
100

θ

)
= 100

θ · e100
� 2 × 104

π · e100
� 10−16. (3.15)

Now, (3.10) follows from (3.9) and (3.15) and the proof of Proposition 3.3 is finished. �
Corollary 3.4. Let μ, λ be as in (2.2) and recall the parametric curves Σi(θ,p, κ), i = 1, . . . ,4,
introduced in (2.14) where κ is as in (2.6). Then, for all 1 < p < ∞, θ ∈ [ π

200 ,2π − π
200 ] and

|y| � 104, we have

∣∣Σi(θ,p, κ)(y)
∣∣ < R

(
|π − θ |, 1

p
,κ

)
+ 10−6. (3.16)
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Proof. In the light of (2.15) matters can be reduced, without loss of generality, to the case θ ∈
[ π

200 ,π]. In this scenario, fix μ, λ, and p as in the hypothesis and set w(y) := Σ1(θ,p, κ)(y)

where κ is as in (2.6). Using the triangle inequality in (2.14) it immediately follows that

∣∣w(y)
∣∣ �

|√Qκ,− |
|D| + |AκC|

|D| . (3.17)

Next, using (2.10) and the fact that D2 + E2 = 1 we obtain

∣∣∣∣Qκ,− − κ2D2

D2

∣∣∣∣ =
∣∣∣∣B2 + κ2C2 − 2κEAκB − A2

κB2 − κ2

D2

∣∣∣∣. (3.18)

Recall here that κ := μ
2μ+λ

∈ [0,1]. Moreover, if |y| � 104, by (3.10) and the triangle inequality

we have that the right-hand side in (3.18) does not exceed 4 × 10−28 + 10−14. In particular,

∣∣∣∣Qκ,− − κ2D2

D2

∣∣∣∣ < 10−13 and

∣∣∣∣
√

Qκ,−
D

∣∣∣∣ �
√

10−13 + κ2 < 2. (3.19)

On the other hand, since (w(y)D + AκC)2 = Q− we obtain(
w2(y) − κ2)D2 = Qκ,− − κ2D2 − 2w(y)AκCD − A2

κC2. (3.20)

Using the triangle inequality we further infer that

∣∣w2(y) − κ2
∣∣ � |Qκ,− − κ2D2|

|D|2 + 2
∣∣w(y)

∣∣ |AκC|
|D| + |AκC|2

|D|2 , (3.21)

and therefore by (3.17), (3.19) and (3.10) we have∣∣w2(y) − κ2
∣∣ < 10−13 + 2 × 10−14(2 + 10−14) + 10−28 < 10−12. (3.22)

Finally from (3.22), employing again the triangle inequality, we have that |w2(y)| � κ2 +
10−12 � (κ + 10−6)2. Taking square root in both sides of the previous inequality further gives

∣∣w(y)
∣∣ � κ + 10−6 < R

(
π − θ,

1

p
,κ

)
+ 10−6, (3.23)

where the last inequality is a consequence of (3.3) from Lemma 3.2. This gives (3.16) when i = 1
and the cases i ∈ {2,3,4} follow in a similar manner. �
4. Validated numerics

In this section we describe how the computer-assisted part of the proof of Theorem 3.1 is
structured. We start with a brief introduction of the underlying mathematics that enables the
computer to rigorously verify that

∣∣Σi(θ,2, κ)(y)
∣∣ < R

(
|π − θ |, 1

, κ

)
+ 10−2, i = 1, . . . ,4, (4.1)
2
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for all μ,λ as in (2.2) such that κ := μ
2μ+λ

∈ [ 1
40 , 9

10 ], y ∈ [−104,104] and θ ∈ [ π
200 ,2π − π

200 ].
This, in concert with (3.16) in Corollary 3.4, finishes the proof of Theorem 3.1.

4.1. Interval analysis

The foundation of most computer-aided proofs dealing with continuous problems is the ability
to compute with set-valued functions. This not only allows for all rounding errors to be taken into
account, but—more importantly—all discretization errors too. Here, we will briefly describe the
fundamentals of interval analysis. For a concise reference on this topic, see, e.g. [1,13,20,21],
or [22].

Let IR denote the set of closed intervals. For any element A ∈ IR, we adopt the notation
A = [A,A], where A,A ∈ R. If � is one of the operators +, −, ×, ÷, we define the arithmetic
on elements of IR by

A � B = {a � b: a ∈ A, b ∈ B},
except that A ÷ B is undefined if 0 ∈ B. Working exclusively with closed intervals, we can
describe the resulting interval in terms of the endpoints of the operands:

A + B = [A + B,A + B],
A − B = [A − B,A − B ],

A × B = [
min(AB,AB,AB,AB),max(AB,AB,AB,AB)

]
,

A ÷ B = A × [1/B,1/B ], if 0 /∈ B. (4.2)

Note that the identities (4.2) reduce to ordinary real arithmetic when the intervals are thin, i.e.,
when A = A and B = B. When computing with finite precision, however, directed rounding
must also be taken into account, see, e.g., [20,21]. A key feature of interval arithmetic is that it
is inclusion monotonic, i.e., if A ⊆ X, and B ⊆ Y, then

A � B ⊆ X � Y, (4.3)

where we demand that 0 /∈ Y for division.
One of the main reasons for passing to the interval arithmetic is that this approach provides a

simple way of enclosing the range of a function f , denoted by range(f ;D) := {f (x): x ∈ D}.
Except for the most trivial cases, classical mathematics provides few tools to accurately bound the
range of a function. To achieve this latter goal, we extend the real functions to interval functions
which take and return intervals rather than real numbers. Based on (4.2) we extend rational
functions to their interval versions by simply substituting all occurrences of the real variable x

with the interval variable X (and the real arithmetic operators with their interval counterparts).
This produces a rational interval function F(X), called the natural interval extension of f . As
long as no singularities are encountered, we have the inclusion

range(f ;X) ⊆ F(X), (4.4)

by property (4.3). In fact, this type of range enclosure can be achieved for any reasonable
function. Higher-dimensional functions f : Rn → R can be extended to an interval function
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F : IRn → IR in a similar manner. The function argument is then an interval-vector X =
(X1, . . . ,Xn), which we also refer to as a box. In particular, functions acting in the complex
plane f : C → C can be extended, although finding good quality range enclosures of the elemen-
tary functions is much more complicated than in the real-valued setting.3

There exist several open source programming packages for interval analysis [3,9,23], as well
as commercial products such as [25].

4.2. The main algorithm

The aim of the computational part of the proof of Theorem 3.1 is to show that (4.1) holds. To
achieve this objective, the four branches of the spectrum Σ1, . . . ,Σ4 from (2.14) are extended
to accept entire boxes B of parameters as input, and to return rectangles in the complex plane
containing the range of the original functions:

range(Σi;B) ⊆ Σi(B).

We will work with the global parameter domain

(θ, κ, x, y) ∈
([

π

200
,π

]
,

[
1

40
,

9

10

]
,

{
1

2

}
, [0,10000]

)
,

which corresponds to fixing p = 2 (again, in the light of (2.15)–(2.16) there is no loss of gener-
ality in assuming that θ ∈ [ π

200 ,π] and y ∈ [0,104]). This domain will be adaptively partitioned
until (3.2) holds true on each subdomain. On each subdomain B, we compute

ρ = ρ(B) := max
{∣∣Σi(B)

∣∣: i = 1, . . . ,4
}
,

which gives an upper bound on spectral radius. We also compute R = R(B) via an interval ex-
tension of (3.1). Note that the function R is real-valued and does not depend on the parameter y.
The main algorithm driving the program is presented in Algorithm 4.1.

Algorithm 4.1.

searchList += initialDomain; // Add one box to the search list.
while ( !IsEmpty(searchList) ) {
BOX param = Pop(searchList); // The current parameter box.
real rho = MaxReal; // The modulus to be computed.
if ( !computeModulus(rho, param) || !conjectureTrue(rho, param) )
splitAndStore(param, searchList);

else
verifiedList += param; // Just for bookkeeping.

}
}

This algorithm uses some special features of the C/C++ programming languages. On the row

3 We thank Markus Neher and Ingo Eble for developing CoStLy—Complex interval Standard functions Library, and
for their valuable assistance with interfacing it to the CXSC library [3].
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if ( !computeModulus(rho, param) || !conjectureTrue(rho, param) )

the symbols ! and || mean not and or, respectively. When determining whether the if-
statement should be performed or not, the boolean function computeModulus is executed
first. If this fails to compute the modulus ρ, it returns the value false, and the parameter
box is partitioned and stored in searchList. The computation can fail due to overestimation
when the parameter boxes are still quite large. Only if we succeed in computing the modulus
is the second part of the if-statement executed. This part, illustrated in Algorithm 4.3, simply
computes a lower bound for the spectral radius R (based (1.4)), and checks whether or not ρ �
R + ε, for some given ε > 0.

The boolean function computeModulus (listed in Algorithm 4.2) attempts to compute an
upper bound ρ of the spectral radius, using the parametric representations of the spectrum (2.14).

Algorithm 4.2.

bool computeModulus(real &rho, BOX param)
{

CRECT A, B, C, D, E;
computeCmplABCDE(A,B,C,D,E,param);
interval L = param[2];
CRECT Qpos = sqr(B) + sqr(L*C) - sqr(L*E + A*B);
CRECT Qneg = sqr(B) + sqr(L*C) - sqr(L*E - A*B);

CRECT nominator = sqrt(Qpos) + A*C;
rho = Sup(abs(nominator/D)); // Branch #1.
nominator = sqrt(Qpos) - A*C;
rho = max(rho, Sup(abs(nominator/D))); // Branch #2.
nominator = sqrt(Qneg) + A*C;
rho = max(rho, Sup(abs(nominator/D))); // Branch #3.
nominator = sqrt(Qneg) - A*C;
rho = max(rho, Sup(abs(nominator/D))); // Branch #4.
return true;

}

When carrying out the computations, the actual implementation of Algorithm 4.2 is adapted to
minimize the number of arithmetic operations. Finally, the simple module conjectureTrue
checks whether or not the computed bounds are good enough to (locally) verify (4.1).

Algorithm 4.3.

bool conjectureTrue(real rho, BOX param)
{

real R = Inf(spectralRadius(param)); // Compute R via (3.1).
if ( rho <= R + eps )

return true; // The conjecture is true.
else

return false; // The conjecture is unproven.
}

4.3. Computational results

The algorithms described above were coded into a C++ program using the CXSC interval
package [3]. The code was executed through five processes, running in parallel on a dual 1.5 GHz
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Fig. 1. The final partition of the (θ, κ)-plane with x = 1
2 and Y = [2000,10 000].

Fig. 2. A region satisfying R(θ,1/2, κ) + 10−2 < 1.

AMD Athlon MP 1800+, and a dual 3.2 GHz Intel Xeon processor, both having 3072 Mb RAM.
Proving then the inequality (4.1) for (θ, κ, x, y) ∈ ([ π

200 ,π], [ 1
40 , 9

10 ], { 1
2 }, [0,10 000]), which

corresponds to taking ε = 0.01 in the Algorithm 4.3, took 16 hours.
The computations were most intense for small values of y. This is in agreement with the con-

jecture that the spectral radius is attained for y = 0, and then coincides with the corresponding
value of R. As a consequence, only small y-slices (of width 1 × 10−3) could be handled for
small y, whereas the final y-slice could be taken as Y = [2000,10 000]! Regarding the parame-
ters θ and κ , the conjecture proved most challenging for θ near π , and κ large, see Fig. 1.

Next, we computed the region in the (θ, κ)-space for which the inequality R(θ,1/2, κ) +
10−2 < 1 holds. This was done by finding all parameter boxes for which R + ε < 1. Setting the
stopping tolerance (i.e., the smallest acceptable side length of a parameter box) to 10−2 produced
the set illustrated in Fig. 2. See Theorems 5.1 and 5.5 for related results.

5. The connection with the spectral radius conjecture

Recall that Ω is an infinite sector in R
2 with aperture θ ∈ (0,2π). In this section we show that

the conjectured value for ρ(K;Lp(∂Ω)) is < 1 for all θ ∈ (0,2π), μ > 0 and λ + μ > 0, and
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p ∈ [2,∞), and we identify a class of curvilinear polygons in R
2 for which the spectral radius

conjecture holds. We have

Theorem 5.1. For any α ∈ [0,π), x ∈ (0, 1
2 ] and κ ∈ (0,1) the following holds

R(α,x, κ) < 1, (5.1)

where R(α,x, κ) is as in (3.1).

We start by presenting a series of technical lemmas useful in the proof of Theorem 5.1.

Lemma 5.2. The following two inequalities hold:

sin(γ x) > x sin(γ ), ∀x ∈ (0,1), γ ∈ (0,π), (5.2)

and

sin
(
(π + γ )x

)
> x sin(γ ), ∀x ∈

(
0,

1

2

)
, γ ∈ (0,π). (5.3)

Proof. Fix x ∈ (0,1) and consider h : (0,π) → R given by h(γ ) := sin(γ x) − x sin(γ ). Then
h′(γ ) = x[cos(γ x) − cos(γ )] > 0, where the inequality follows from the fact that cosine is
monotonically decreasing on the interval (0,π) and 0 < γx < γ < π . Then, h(γ ) > h(0) = 0
and the proof of (5.2) is completed.

Next, our goal is to prove (5.3). To this end, fix x ∈ (0, 1
2 ) and consider the function

g : (0,π) → R given by g(γ ) := sin((π + γ )x) − x sin(γ ). Differentiating with respect to the
variable γ we obtain g′(γ ) = x[cos((π + γ )x) − cos(γ )]. Now, using again the monotonicity
of the cosine function on the interval (0,π) and the hypothesis, a simple analysis reveals that
f ′(γ ) < 0 for γ ∈ (0, γ0), f ′(γ ) > 0 for γ ∈ (γ0,π), and f ′(γ0) = 0, where

γ0 := πx

1 − x
∈ (0,π). (5.4)

Therefore, for any γ ∈ [0,π) we have that f (γ ) � f (γ0) = (1 −x) sin(γ0) > 0. This gives (5.3),
as desired. �
Lemma 5.3. For any α ∈ [0,π), x ∈ (0, 1

2 ] and κ ∈ (0,1) we have

sin(πx) − (1 − κ)x sin(α) cos(αx) > 0. (5.5)

Proof. Notice that x sin(α) cos(αx) � 0 whenever α ∈ [0,π) and x ∈ (0, 1
2 ] as all the trigono-

metric functions involved yield positive values. Therefore

sin(πx) − (1 − κ)x sin(α) cos(αx) � sin(πx) − x sin(α) cos(αx). (5.6)

Now, using the identities sin(πx) = sin(αx) cos((π − α)x) + cos(αx) sin((π − α)x) together
with sin(α) = sin(π − α), the right-hand side of (5.6) can be rewritten as

sin(αx) cos
(
(π − α)x

) + [
sin

(
(π − α)x

) − x sin(π − α)
]

cos(αx). (5.7)
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Invoking next (5.2) for γ = π − α ∈ (0,π] we conclude that sin((π − α)x) − x sin(π − α) > 0
for x and α as in the hypothesis. This, together with sin(αx) � 0, cos((π − α)x) � 0, and
cos(αx) > 0 for x ∈ (0, 1

2 ] and α ∈ [0,π), allow us to conclude that the expression in (5.7)
is strictly positive. This gives (5.5). �
Lemma 5.4. For any x ∈ (0, 1

2 ] and α ∈ [0,π) the following inequalities hold:

cos2(αx) − cos2(πx) − x2 sin2(α) − 2x sin(α) sin(αx) cos(πx) > 0, (5.8)

and

cos2(αx) − cos2(πx) + x2 sin2(α) − 2x sin(α) cos(αx) sin(πx) > 0. (5.9)

Proof. The case α = 0 follows immediately. For the remaining of the proof we consider the case
α ∈ (0,π). Set

g(y) := ay2 + by + c, where

⎧⎪⎨
⎪⎩

a := − sin2(α),

b := −2 sin(α) sin(αx) cos(πx),

c := cos2(αx) − cos2(πx).

(5.10)

Straightforward algebraic manipulations show that the discriminant � of the quadratic expres-
sion in (5.10) and its two roots y1 and y2 are given by

� = 4 sin2(α) cos2(αx) sin2(πx), y1 = − sin(π + αx)

sin(α)
, y2 = sin((π − α)x)

sin(α)
. (5.11)

Next, for x ∈ (0, 1
2 ] and α ∈ [0,π) we have y1 < 0 and y2 � 0 and y1 < x < y2, where the fact

that x < y2 follows from (5.2). Consequently, since a < 0, we obtain that g(x) > 0 and this
finishes the proof of (5.8) in Lemma 5.4.

Turning attention to (5.9), we consider the quadratic function

h(y) := ãy2 + b̃y + c̃, where

⎧⎪⎨
⎪⎩

ã := sin2(α),

b̃ := −2 sin(α) cos(αx) sin(πx),

c̃ := cos2(αx) − cos2(πx).

(5.12)

Denoting by �̃ the discriminant associated with (5.12) and by ỹ1 and ỹ2 the roots of the polyno-
mial h, straightforward computations give

�̃ = 4 sin2(α) sin2(αx) cos2(πx), ỹ1 = sin((π + α)x)

sin(α)
, ỹ2 = sin((π − α)x)

sin(α)
. (5.13)

Appealing to (5.2)–(5.3) and using that sin(α) > 0 for α ∈ (0,π) we conclude that ỹi > x for
i = 1,2. Since ã > 0, this implies h(x) > 0 and the proof of (5.9) is now finished. �

After this preamble, we are ready to present the
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Proof of Theorem 5.1. Recall that R(α,x, κ) = {√E(α,x, κ)+(1−κ)x sin(α) cos(αx)} 1
sin(πx)

,
where E(α,x, κ) is as in (3.5). Then, it is immediate that (5.1) can be reformulated in the equiv-
alent form

√
E(α,x, κ) < sin(πx) − (1 − κ)x sin(α) cos(αx), (5.14)

for all α,x and κ as in the hypothesis. To prove (5.14), fix α ∈ [0,π), x ∈ (0, 1
2 ] and κ ∈ (0,1),

and notice that, by invoking Lemma 5.3 matters are reduced to proving that

0 <
(
sin(πx) − (1 − κ)x sin(α) cos(αx)

)2 − E(α,x, κ) =: (1 − κ)g(α, x, κ). (5.15)

Straightforward algebraic manipulations based on (3.5) give that

g(α, x, κ) = (1 + κ)
[
cos2(αx) − cos2(πx)

] + (1 − κ)x2 sin2(α)

− 2x sin(α)
[
κ sin(αx) cos(πx) + cos(αx) sin(πx)

]
. (5.16)

Differentiating with respect to κ in the expression above, we obtain that

∂g

∂κ
(α, x, κ) equals the left-hand side of (5.8). (5.17)

Now, using Lemma 5.4, this further implies that g(α, x, κ) � g(α, x,0) > 0. The last inequality
follows from the fact that g(α, x,0) equals the expression in the left-hand side of (5.9), which
by Lemma 5.4, is strictly positive. This gives (5.15) and the proof of the Theorem 5.1 is com-
pleted. �

Next, let Ψ denote the space of vector valued functions ψ on R
2 satisfying the equations

∂iψ
j + ∂jψ

i = 0, i, j = 1,2, restricted to ∂Ω . Then, the rigorous computations carried out for
producing Fig. 2 have the following consequence.

Theorem 5.5. Let Ω be a curvilinear polygon in R
2 with angles in the interval [ 23π

50 ,2π − 23π
50 ]

and assume that the Lamé moduli μ,λ satisfy κ := μ
2μ+λ

∈ [ 1
40 , 9

10 ]. Then

ρ
(
K;L2(∂Ω)/Ψ

)
< 1. (5.18)

Moreover,

ρ
(
K;Lp(∂Ω)/Ψ

)
< 1 for all 2 � p < ∞. (5.19)

Proof. In the light of Theorem 6.1 in [19] and (2.15) matters reduce to showing (5.18) when Ω

is an infinite sector of aperture θ ∈ [ 23π
50 ,π]. However, using Theorem 3.1 in this scenario (for θ

and κ as in the hypothesis) gives

ρ
(
K;L2(∂Ω)

)
< R(θ,1/2, κ) + 10−2 < 1. (5.20)
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Fig. 3. The final subdivision for verifying R(θ,1/2, κ) + 10−2 < 1.

Figure 3 illustrates how the region [ 23π
50 ,π]× [ 1

40 , 9
10 ] was subdivided when rigorously checking

using the computer (see the discussion at the end of Section 4) that the last inequality in (5.20)
holds.

As for (5.19), this immediately follows from (5.18) and Theorem 5.6 in [19]. �
Finally, let us point out that the condition κ := μ

2μ+λ
∈ [ 1

40 , 9
10 ] is satisfied for the follow-

ing common elastic materials (see [2, p. 129]; here the Lamé moduli λ and μ are given in
105 kg/cm2) (see Table 1).

Table 1

Elastic material λ μ κ Elastic material λ μ κ

Iron 9.9 7.8 0.3059 Copper 8.7 4.1 0.2426
Bronze 6.2 3.8 0.2754 Aluminum 5.6 2.6 0.2407
Nickel 1.3 0.85 0.2833 Rubber 0.40 0.012 0.0283
Glass 2.2 2.2 1/3 Lead 4.6 0.63 0.0467
Steel 10 8.2 0.3106
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