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In a famous paper [J. Atmospheric Sci. 20 (1963), no. 2, 130-141],
the meteorologist E. N. Lorenz proposed a very simplified model for
thermal fluid convection. This model, a quadratic vector field in 3
dimensions:

T=—ar+ay
z=-—nz+uxy,

and the values o =10, 8 = 28, and v = 8/3 that he chose for the
parameters, were motivated by an attempt to understand the founda-
tions of weather forecasting. While it is unclear whether this simple
system of differential equations does model the features of thermal
convection, the observations of Lorenz came to attract a good deal
of attention from mathematicians and experimentalists alike. Indeed,
his numerical integration of equations (x) showed that the solutions
exhibit chaotic behavior, i.e., they are sensitive with respect to the
initial conditions. Moreover, such a behavior seemed to be robust,
meaning that it persists for all nearby parameter values.

However, Lorenz’s equations proved to be very resistant to rigorous
analysis, and also presented very serious obstacles to rigorous numeri-
cal study. A very successful approach was taken by V. S. Afraimovich,
V. V. Bykov and L. P. Shilnikov [Dokl. Akad. Nauk SSSR 234 (1977),
no. 2, 336-339; MR 57#2150] and by J. Guckenheimer and R. F.
Williams [Inst. Hautes Etudes Sci. Publ. Math. No. 50, (1979), 59-72;
MR 82b:58055a] independently: they constructed so-called geometric
models for the behavior observed by Lorenz. These models are flows
in 3 dimensions for which one can rigorously prove the existence of an
attractor (a bounded region in phase-space, invariant under time evo-
lution, such that the forward trajectories of most or even all points
nearby converge to it) that contains an equilibrium point of the flow,
together with regular solutions. Moreover, for almost every pair of
nearby initial conditions the corresponding solutions move away from
each other exponentially fast as they converge to the attractor. Most
remarkably, this attractor is robust: it cannot be destroyed by any
small perturbation of the original flow. It remained to prove that
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the original equations do contain such a strange (sensitive) robust
attractor.

Another approach was through rigorous numerics. In this way, it
could be proved, by B. D. Hassard et al. [Appl. Math. Lett. 7 (1994),
no. 1, 79-83; MR 96d:58082], S. P. Hastings and W. C. Troy [Bull.
Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 298-303; MR 93£:58150)]
and K. Mischaikow and M. Mrozek [Bull. Amer. Math. Soc. (N.S.) 32
(1995), no. 1, 66-72; MR 95e:58121; Math. Comp. 67 (1998), no. 223,
1023-1046; MR 98m:58095], that the equations exhibit a suspended
Smale horseshoe [S. Smale, Bull. Amer. Math. Soc. 73 (1967), 747—
817; MR 37#3598]. In particular, they have infinitely many closed
solutions. However, proving the existence of a strange attractor as
in the geometric models is an even harder task, because one cannot
avoid the main numerical difficulty posed by Lorenz’s equations, which
arises from the very presence of an equilibrium point: solutions slow
down as they pass near the origin, which means unbounded return
times and, thus, unbounded integration errors.

So, after numerous attempts for the last quarter of a century or
S0, it seemed that the problem of establishing Lorenz’s observations
on a rigorous basis remained out of reach. Yet, rather surprisingly, a
positive solution to this problem is announced by Tucker, in the paper
under review. Using a combination of rigorous numerics and normal
form theory, he proves that the Lorenz equations () support a robust
strange attractor A, for the classical parameter values o = 10, 5 = 28,
~v = 8/3. Furthermore, the flow admits a unique Sinai-Ruelle-Bowen
(SRB) measure pux with supp(pux) = A. This result corresponds to
his Ph.D. thesis under the guidance of L. Carleson.

An SRB measure p is characterized as being the limit time average
for a set of initial points xy with positive volume (Lebesgue measure):
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where ¢, is the Dirac measure on a point p and ¢ — 2 is the solution
with initial condition xg.

Sketch of the proof. Tucker’s proof is through a computer algorithm
(put into effect via a C language program) that estimates convenient
solutions of (%), keeping rigorous bounds on the errors. A successful
termination of the algorithm proves the presence of a robust strange
attractor in the equations. Existence of an SRB measure then follows
along well-understood lines. The algorithm incorporates two main
kinds of ingredients: a numerical integrator, which is used to compute
good approximations of trajectories of the flow far from the equilib-
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rium point sitting at the origin; and quantitative results from normal
form theory, which make it possible to handle trajectories close to the
origin.

The paper under review is an announcement of this re-
sult, containing only an outline of main ideas. The source
codes and list of initial data wused by the computer program
are available on the author’s web page for his Ph.D. thesis
[http://www.math.uu.se/~ warwick/thesis.html].

The author promises a complete proof in a paper that, in the mean-
time, has appeared as a preprint [“A rigorous ODE solver and Smale’s
14th problem”, http://www.math.uu.se/~warwick/rodes.html]. In
what follows we give a brief sketch of Tucker’s strategy, based on
the present paper, as well as on a survey of this and related topics
that has recently been published by M. Viana [Math. Intelligencer
22 (2000), no. 3, 6-19 ]. T am thankful to Viana for showing me his
paper before publication, and for helpful conversations on this topic.

To start with, Tucker rewrites (*) in new coordinates x1, xs, 3,
related to the original ones by a linear map and chosen so that the
expression of DX (0) in these new coordinates is diagonal. Also, the
local stable manifold W#(0) of the origin is contained in the plane
21 =0. Then he fixes a cross-section ¥ C {z3 =27} for the flow, and
restates the problem in terms of a first return map of the flow to the
cross-section 3. This return map P is not defined in I' = 3 N W*(0).
There are three fundamental facts to be proved: (a) There is N C
Y with P(N\T) C int(N), where int(A) means the interior of A.
(b) The first return map P admits a forward invariant cone field C,
e, forallz € N, DP(x)C(x) C €(P(x)). (c) There are constants a >
0 and A > 1 such that for every v € C(z) and n > 1, | DP"(z)v|| >
ax" o]l

Indeed, (a), (b), and (c) imply that the flow has a strange attractor.
Actually, one also needs a lower bound for the value of A, which is
also provided by the computer program, in order to conclude that the
attractor is dynamically indecomposable, that is, it contains dense
orbits.

Let us detail the main ingredients of the algorithm a bit more.

Near the equilibrium. Here “near the equilibrium” means “inside a
cube C of size 1/5 around the origin”. If a trajectory hits C', Tucker’s
algorithm estimates the exit point directly, using normal form theory
(instead of step-by-step integration), as follows.

The eigenvalues Ai, Ao, A3 of the original vector field at the origin
are far from being resonant: nyA; + noAs + n3Ag are not zero, or too
close to zero, for many values of n; > 0, ns > 0, ng > 0. Although the
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set of triples (ng, ng, n3) for which this fact is needed is infinite, it can
be dealt with through only a finite number of computations. Those
computations are done by an auxiliary computer program.

Having this, Tucker can prove a precise normal form theory es-
timate for the vector field inside C': there is a change of variables
y = (y1,Y2,y3) which transforms the Lorenz equations (x) into one
very close to being linear: (xx) X(y) = DX (0)y+ G(y), with |G(y)| <
Kly1|"(|y2] + |ys))!® and K a positive constant. Thus, in these coor-
dinates solutions of the flow look very much like solutions of a linear
flow (that can be obtained analytically), and so their exit point is
well approximated by that of those linear solutions. Most important,
(#x) also provides good rigorous bounds for the errors involved in this
approximation.

Rigorous integrations. In order to prove statement (a), Tucker
begins by finding a good candidate for the trapping region N, through
non-rigorous computations of the image of ¥ under the return map. He
covers the approximate locations of this image by 350 adjacent small
rectangles N; of size dy.x = 0.03 inside . The forward trajectories
of each of these small rectangles are then going to be estimated,
separately. The goal is to prove that, integration errors taken into
account, those trajectories are bound to hit again inside the region
N.

The algorithm deals with each N;, separately, as follows. Using
Euler’s method, the trajectory of the center of the rectangle is inte-
grated, until it hits another horizontal plane 3;, situated at distance
h =103 underneath 3. Taylor expansion gives an estimate of the po-
sition of the image inside ¥; of the whole N; under the corresponding
flow map, and one also has a rigorous upper bound for the integra-
tion error. Thus one may find some rectangle N/ inside ¥ that surely
contains the image of N;. Typically, N/ is much larger than N;. The
program subdivides it into subrectangles, small enough so that it can
use Taylor expansion for each one of them, in the next integration
step. Then it proceeds with each one of these rectangles in the place
of N;.

The whole algorithm consists in repeating this step, apart from
the following two observations. As we already explained, stretches
of solutions close to the origin are treated globally, not by step-by-
step integration. Moreover, there are regions where the vector field
is relatively close to the horizontal direction, which may cause large
errors when one integrates from one horizontal plane to another.
So, at each step wherever this happens, the program switches from
horizontal cross-sections to vertical ones, with rigorous bounds on the
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errors involved in this. Later, it may go back to horizontal planes, if
the vector field becomes nearly vertical again, and so on.

Integration proceeds until rectangles return to 3. Of course, due to
the subdivision, the program has to deal with an increasing number
of rectangles. If they all come back inside N, this proves that N is
indeed a trapping region as in (a).

An invariant expanding cone field. The verification of property (b)
is similar, albeit more subtle. Tucker starts by choosing a cone field €
on each rectangle N;. Each cone C; is represented by the two angles
«; and o] that its boundary vectors u” and v" make with the z;-axis.
He always takes 0¥ = o —a; = 7/18.

Then, in parallel to finding a rigorous upper bound for the image of
the rectangle N; under the flow, as explained above, the program also
computes a rigorous upper bound for the image of the cone C; under
the linearized flow. This linearized flow is described by a system of
nine equations. Integrating the trajectories of u and v°, and taking
integration errors into account, one obtains a new cone that certainly
contains the image of C;. Unlike the case in the previous part of the
proof, here subdivision is not necessary.

Again, one knows that the cone field € is invariant if, upon return
to X, every image cone lies inside the original one.

Finally, the program computes a rigorous lower bound for the
expansion of tangent vectors inside each C;. For this, the program
computes lowest possible expansions at each integration step, in the
following way. At each step where the cone becomes slimmer at that
step, the least expansion takes place on the boundary of the cone,
and so it may be estimated from the sizes of the boundary vectors
and their images. In the opposite case, this estimate is corrected by
a factor which differs from 1 by a term of second order on the size of
the cone.

The program keeps track of these successive expansion lower
bounds, so that property (¢) can be readily checked at the time
of return to X: the product is bigger than some constant A > 1.

Successful verification of all the inequalities involved shows that A
is a robust strange attractor for (x), and thus Lorenz’s conjecture is
proved. Maria Jose Pacifico (BR-FRJ)



