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CORRECTION OF NONLINEAR ORTHOGONAL REGRESSION ESTIMATOR

I. Fazekas,1  A. Kukush,2  and  S. Zwanzig 
3 UDC 519.21

For any nonlinear regression function, it is shown that the orthogonal regression procedure deliv-
ers an inconsistent estimator.  A new technical approach to the proof of inconsistency based on
the implicit-function theorem is presented.  For small measurement errors, the leading term of the
asymptotic expansion of the estimator is derived.  We construct a corrected estimator, which has
a smaller asymptotic deviation for small measurement errors. 

Introduction

We consider the nonlinear errors-in-variables model 

yi  =  g
 
(

 
ξi  

, β
 

0
 
)  +  ε1i  

, (1)

xi  =  ξi  
  +  ε2i  

, (2)

where  i = 1, … , n.  The design points or variables  {
 
ξ1 

, … , ξn 
} ⊂ R  are unknown and fixed.  In this model, the

application of the least-squares method is often called orthogonal regression because the sum of orthogonal dis-
tances between the observations and the regression curve has to be minimized. 

This method is also known in numerical literature under the name of total least squares (see the works of
Boggs, Byrd and Schnabel [1] and Schwetlick and Tiller [2] and the references therein).  The numerical algo-
rithms are globally and locally convergent and already implemented in ODRPACK, FUNKE, and GaussFit soft-
ware packages, as discussed by Boggs and Rogers in [3] (ODRPACK) and by Strebel, Sourlier and Gander in [4]
(FUNKE).  The application of the nonlinear orthogonal distance estimator and the use of these packages are rec-
ommended in meteorology by Strebel, Sourlier and Gander [4], in astronomy by Branham [5] and Jefferys [6]
(GaussFit), in biology by Van Huffel [7], and in robotics by Mallick [8]. 

For linear errors-in-variables models, this estimation procedure is consistent.  In the case of normally dis-
tributed errors, the least-squares estimator is the maximum-likelihood one and is also efficient.  An excellent and
thorough survey of linear errors-in-variables models was given by Fuller in [9]. 

In the nonlinear case, the consistency of the least-squares estimator is only given under additional condi-
tions that guarantee that the unknown design points are consistently estimable.  This is the case, e.g., under the
entropy condition on the set of design points [10], or in the case of repeated observations [11], or in an asymp-
totic inference with respect to a vanishing error variance [9, p. 240]. 

In statistical literature, the inconsistency of the unrestricted nonlinear orthogonal distance estimator has
been known for a long time, and several adjusting proposals were given by Wolter and Fuller [11], Stefanski
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[12], Stefanski and Carroll [13], Nagelkerke [14], Armstrong [15], Schafer [16], Hillegers [17], Amemiya [18],
Gleser [19], and Kukush and Zwanzig [20]. 

Nevertheless, inconsistency results are proved only for special cases.  Carroll et al. [21] assumed, instead of
(1), that  yi  is a Bernoulli variable with expected value 

G i
Tξ β( ) (3)

and that, in (2), the error term is normally distributed with known covariance matrix.  They argued that the maxi-

mum likelihood estimator for  β  is not consistent and advised to consult the authors in this point.  Stefanski [22]

gave the proof of inconsistency for the above binary regression model with logistic link function  G
 
(

 
t

 
) = (

 
1 +

exp (
 
–

 
t

 
)

 
)

 

–
 

1  in (3).  Stefanski [12] proposed  M-estimators  β   defined as a measurable solution of the estimating
equation 

i

n

i i ix y
=
∑ ( )

1

ψ β, ,   =  0. (4)

The main point is that the estimating functions  ψi  in (4) have to be unbiased, i.e., 

E x y
i

n

i i iξ β ψ β, , ,
=
∑ ( )



1

  =  o
 
(

 
1

 
), (5)

to obtain the consistency of the  M-estimator  β .  Stefanski [22] argued that if (5) fails, then the  M-estimator for

β  in inconsistent.  The fact that (5) is violated is established only in special cases, like for the exponential re-
gression function. 

In this paper, we give a general proof of the inconsistency of the orthogonal regression procedure for arbi-
trary nonlinear smooth regression functions.  The main idea is to use the technique of implicitly defined func-
tions and to derive an expansion of the corresponding score functions 

i

n

i i ix y
=
∑ ( )

1

ψ β, , .

This expansion includes terms that do not vanish in the nonlinear case with fixed error variances.  This is also a
new technical approach for such inconsistency proof in statistics. 

Under mild additional assumptions, we consider the asymptotic deviation of the orthogonal distance esti-
mator.  We derive the leading term of the asymptotic expansion for small measurement errors and present a cor-
rected estimator, which has a smaller asymptotic deviation.  Our new estimator is different from the adjusted es-
timator proposed by Amemiya and Fuller in [23], where an asymptotic expansion of the estimator is given in a
replication-type model.  In particular, they required that the variances decrease faster than the sample sizes in-
crease and obtained another nonvanishing leading term within the framework of their asymptotic approach. 

The paper is organized as follows:  In Sec. 2, model assumptions and the orthogonal regression estimator
are given.  In Sec. 3, the inconsistency of the orthogonal regression estimator and related results are formulated.
In Sec. 4, a leading term of the asymptotic expansion is presented, and, in Sec. 5, the corrected estimator is con-
structed.  Section 6 contains conclusions.  The proofs are given in Appendices 1 and 2. 
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2.  Model

Assume that we have observations  ( y1 
, x1 

), … , ( yn 
, xn 

)  that are independently and, in general, not identi-

cally distributed and are generated by (1) and (2).  The errors  {
 
εji }  are 

εji  ∼  N
 
(

 
0, σ

 

2
 
)   i.i.d.,      i  =  1, … , n,     j  =  1, 2. (6)

This assumption is made for convenience.  In [24], the proof of inconsistency is given for arbitrary error distri-

butions with moment condition and weak dependence between the variables  εji . 

The regression function  g
 
(

 
⋅, ⋅

 
)  is known.  The unknown parameters are  β

 

0,  ξ i  
,  i = 1, … , n,  and  σ

 

2.

The parameter of interest is  β
 

0 ∈ Θ ⊂ R
 

p.  The variables  ξ1 
, … , ξ

 n  are the nuisance parameters, whose num-

ber grows up with the sample size  n. 

We assume that the variables  ξ1 
, … , ξ

 n  come from a product set 

[
 
–

 
a, a

 
]

 

n, (7)

where  a  is fixed but unknown and  β
 

0  lies in the interior of a compact set: 

β
 

0  ∈  int Θ,     Θ ⊂ R
 

p   is compact. (8)

We also assume the smoothness condition 

g  ∈  C
 

3
 
(

 
R × U

 
)    for some open   U ⊃ Θ. (9)

Derivatives are denoted by superscripts, e.g., 

g
 

ξ
 
(

 
ξ, β

 
)  =  

∂
∂ξ

ξ βg( , ),      g
 

ξξ
 
(

 
ξ, β

 
)  =  

∂
∂

2

2ξ
ξ βg( , ).

The orthogonal regression estimator  β̂   of  β0  is defined as a measurable solution of the optimization problem: 

β̂   ∈  arg min min ( , ) ( )
β ξ

ξ β ξ
∈ = ∈

∑ −( ) + −[ ]
Θ

1

1

2 2

n
y g x

i

n

i i
R

.

3.  Inconsistency Results

In this section, we use an asymptotic approach for an increasing sample size  n →  ∞   and arbitrary small

fixed variances.  We show that, under this setup,  β̂   is inconsistent. 
The sum of the projected squares is denoted by 



CORRECTION OF NONLINEAR ORTHOGONAL REGRESSION ESTIMATOR 1311

QProj 
(

 
β

 
)  =  

1

1

2 2

n
y g x

i

n

i i
= ∈
∑ −( ) + −[ ]min ( , ) ( )

ξ
ξ β ξ

R

      for all    β ∈ Θ. (10)

The function  QProj 
(

 
β

 
)  is our estimating criterion for the parameter of interest  β,  where the nuisance parame-

ters are eliminated.  Note that, under (6), the orthogonal regression estimator coincides with the maximum likeli-
hood one. 

We have 

QProj 
(

 
β

 
)  =  

1

1n
q x y

i

n

i i
=
∑ ( , , )β ,

where 

q
 
(

 
x, y, β

 
)  =  y g h x y− ( )[ ]( , , ),β β 2   +  x h x y−[ ]( , , )β 2 (11)

and  h
 
(

 
x, y, β

 
)  is the minimum point of the function 

f ( 
ξ

 
)  =  ( y – g

 
(

 
ξ, β

 
)

 
)

 

2  +  (
 
x – ξ

 
)

 

2.

Then the function  h
 
(

 
x, y, β

 
)  is implicitly defined by the normal equation 

F
 
(

 
x, y, β, h

 
)  =  ( y – g

 
(

 
h, β

 
)

 
)

 
g

 

ξ
 
(

 
h, β

 
)  +  x  –  h  =  0     for all   x,  y,  and  β (12)

with the initial condition 

h
 
(

 
ξ, g

 
(

 
ξ, β

 
), β

 
)  =  ξ      for all    β ∈ Θ.

Since 

F
 

h
 
(

 
x, y, β, h

 
)  =  –

 
1  –  (

 
g

 

ξ
 
(

 
h, β

 
)

 
)

 

2  +  ( y – g
 
(

 
h, β

 
)

 
)

 
g

 

ξξ
 
(

 
h, β

 
)

with 

F
 

h
 
(

 
ξ, g

 
(

 
ξ, β

 
), β, ξ

 
)  =  –

 
1  –  (

 
g

 

ξ
 
(

 
ξ, β

 
)

 
)

 

2  ≠  0,

the implicit-function theorem implies the following:  Under the smoothness condition (9), there exist a constant

ν0  and an  ε-neighborhood  Uε 
(

 
β

 

0
 
)  of  β

 

0  such that 

h
 
(

 
⋅, ⋅, ⋅

 
) :  [ ξ – ν0 

, ξ + ν0 
] × [

 
g

 
(

 
ξ, β

 

0
 
) – ν0 

, g
 
(

 
ξ, β

 

0
 
) + ν0 

] × Uε 
(

 
β

 

0
 
)  →  R (13)

and  h
 
(

 
⋅, ⋅, ⋅

 
)  is a uniquely defined twice differentiable function.  For the derivative  

∂
∂

h x y( , , )β
β

  =  h
 

β
 
(

 
x, y, β

 
),

we have 
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h
 

β
 
(

 
x, y, β

 
)  =  

1

1 2+ − −
− −( )

( ) ( )
( )

g y g g
y g g g gξ ξξ

ξβ ξ β , (14)

where the regression function  g  and its derivatives are taken at the point  (
 
h, β

 
). 

For illustration, consider the simple linear model 

g
 
(

 
ξ, β

 
)  =  β

 
ξ .

In this case, we know that  h
 
(

 
x, y, β

 
) = ( y 

β + x
 
) / ( 

β
 

2 + 1
 
)  and  h

 

β
 
(

 
x, y, β

 
) = ( y – y

 
β

 

2 – 2
 
x

 
β

 
) / ( 

β
 

2 + 1
 
)

 

2. 

In the theorem below, we derive a stochastic expansion of the first derivatives of the leading term  QLead 
(

 
β

 
)

of the estimation criterion  QProj 
(

 
β

 
)  defined in (10). 

Theorem 1.  Suppose that, for model (1), (2), assumptions (6)–(9) are satisfied.  Then, for every positive

constant  ν ≤ ν0 
,  where  ν0  is from (13), one has 

QProj 
(

 
β

 
)  =  QLead 

(
 
β

 
)  +  σ

 

4
 
rest

 ( 1 ) 
(

 
n, β, ν, σ

 

2
 
), (15)

QLead
β β( )0   =  σ

 

2
 
κn  +  νσ σ2 1+



n

OP( )  +  σ
 

4
 
rest

 ( 2 ) 
(

 
n, ν, σ

 

2
 
), (16)

where 

κn  =  
1

11

0

0 2 2
0

n

g

g
g

i

n
i

i

i
=
∑

+ ( )( )
ξξ

ξ

βξ β

ξ β
ξ β( , )

( , )
( , ) , (17)

and, for all constants  c > 0, 

lim sup sup ( , , , )
, , , ( )

σ ξ ξ β
β

β ν σ
→ ≥

…
∈

>



0 1

1
2

1
0

n
P n c

n Θ
rest   =  0, (18)

lim sup ( , , )
, , , ( )

σ ξ ξ β ν σ
→ ≥

… >( )
0 1

2
2

1
0

n
P n c

n
rest   =  0, (19)

where  OP  
(

 
1

 
)  denotes the remainder, which is uniformly bounded in probability  P

nξ ξ β1
0, , ,…   with respect to

all  n,  ν ≤ ν0,  and  σ > 0. 

The leading term  κn  is related to the curvature of the regression function.  Recall that the curvature of the

graph  Γβ = ξ ξ β ξ, ( , ) ,g( ) ∈{ }R   at the point  (
 
ξ

 

0, g
 
(

 
ξ

 

0, β
 
)

 
)  is given by  (

 
g

 

ξξ
 
(

 
ξ

 

0, β
 
)) 1 0 2 3 2

+ ( )( )
− /

gξ ξ β( , ) . 
Theorem 1 implies the main result of this paper, which states that the orthogonal regression estimator is in-

consistent if the leading term in expansion (16) is nonvanishing.  Actually, Theorem 2 below states much more
than inconsistency. 
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Theorem 2.  Suppose that, for model (1), (2), the conditions of Theorem 1 are satisfied.  Also assume that 

lim inf
n

n
→∞

κ   >  0, (20)

where  κn  is given in (17).  Then, for every  ε > 0,  there exist  τ > 0  and  σε > 0  such that, for any  σ  ∈
(

 
0, σε 

] , 

lim inf ˆ
, , ,

n
P

n→∞
… − >( )ξ ξ β β β σ τ

1
0

0 2   ≥  1  –  ε.

Corollary 1.  Suppose that condition (20) in Theorem 2 is replaced by the condition 

limsup
n

n
→∞

κ   >  0,

where  κn  is given in (17).  Then, for every  ε > 0,  there exist  τ > 0  and  σε > 0  such that, for any  σ  ∈
(

 
0, σε 

] , 

limsup ˆ
, , ,

n
P

n→∞
… − >( )ξ ξ β β β σ τ

1
0

0 2   ≥  1  –  ε.

Remark 1.  Theorem 2 states inconsistency for small enough but fixed variances  σ
 

2.  The case  σ
 

2  →  0  is
excluded in Theorem 2. 

Remark 2.  We have no inconsistency in the case where the regression function is linear in the design

points because  
 
g

 

ξξ ≡ 0  and, hence,  κn ≡ 0.  We also have  κn ≡  0  if the regression function is independent of

β.  But then the necessary contrast condition for the consistency of the orthogonal regression estimator is not sat-
isfied. 

Example 1.  Consider model (1), (2) with  g
 
(

 
ξ, β

 
) = exp ( 

β
 
ξ

 
),  ξ ∈ R,  β  ∈ R.  For the exponential model,

we have 

κn  =  
( )

( )

β ξ

β

β ξ

β ξ

0 2

1

2

0 2 2
2

0

0

1n

e

ei

n
i

i

i=
∑

+( )
.

If  β
 

0 ≠ 0  and the design points  ξi  are positive, bounded, and separated from zero, then (20) holds, and, under

assumption (6), the orthogonal regression estimator is inconsistent for small enough but fixed variances  σ
 

2. 

4.  Asymptotic Deviation

Definition 1.  Let  ηn = ηn 
(

 
σ

 

2
 
)  be a sequence of random vectors depending on  σ

 

2,  σ  > 0.  Then we

write  ηn = oPσ
( )1   if, for every  ε > 0  and  γ > 0,  there exists  σε γ > 0  such that, for all  σ ∈ (

 
0, σε γ 

] , 

lim inf ( )
n

nP
→∞

≤( )η σ γ2   ≥  1 – ε.
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Definition 2.  Let  ηn = ηn 
(

 
σ

 

2
 
)  be a sequence of random vectors depending on  σ

 

2,  σ  > 0.  Then we

write  ηn = OPσ
( )1   if, for every  ε > 0,  there exist  Cε  and  σε > 0  such that, for any  σ ∈ (

 
0, σε 

] , 

lim inf
n

nP C
→∞

≤( )η ε   ≥  1  –  ε.

Further, we need the following contrast condition:  For every  δ > 0, 

lim inf inf ,
n i

n

in
P

→∞ − ≥ =
∑ ( )

β β δ
βρ

0

1

1

2 0 Γ   >  0, (21)

where  ρ β
2 0Pi , Γ( )  is the distance between the point  Pi

0  = (
 
ξi  

, g
 
(

 
ξi  

, β
 

0
 
)

 
)  and the graph  Γβ = ξ ξ β, ( , ) :g( ){

ξ ∈ }R . 
The result presented below is very close to Lemma 1 in [23].  We give it without proof.  Recall that the esti-

mator  β̂   is a random vector depending on the sample size  n  and the error variance  σ
 

2. 

Lemma 1.  Suppose that, for model (1), (2), assumptions (6), (7), (8), and (21) are satisfied and  g ∈
C

 
(

 
R × Θ

 
).  Then 

β̂ β− 0   =  oPσ
( )1 .

We introduce the matrix 

Vn  =  
1 1

11
0 2

0 0

n g
g g

i

n

i

i i
T

=
∑

+ ( )ξ
β β

ξ β
ξ β ξ β

( , )
( , ) ( , ) .

Note that  Vn
−1  corresponds to the asymptotic covariance matrix of  β̂  – β

 

0  in the setup of Amemiya and Fuller
[23]. 

Then we can show that the total least-squares estimator  β̂   is with high probability near the point  β
 

0 –

σ κ2 1 2Vn n
− / .

Theorem 3.  Suppose that, for model (1), (2), the conditions of Theorem 2 are satisfied.  Also assume that
condition (21) is satisfied and 

lim inf ( )min
n

nV
→∞

λ   >  0, (22)

where  λmin  denotes the smallest eigenvalue.  Then 

β̂   =  β
 

0  –  
σ κ

2
1

2
Vn n
−   +  σ

 

2 oPσ
( )1 . (23)
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Definition 2, the fact that  κn  is bounded, and Theorem 3 yield 

β̂   =  β
 

0  +  σ
 

2OPσ
( )1 . (24)

5.  Corrected Estimator

Relation (23) enables us to define a corrected estimator  β̃   as follows: 

β̃   =  β̂   +  
ˆ ˆ ˆσ κ

2
1

2
Vn n
− , (25)

where  σ̂2  is the corrected variance estimator given by 

σ̂2  =  
1

1
1

1

2

1

2
1

n
y g x

n
g x

i

n

i i
i

n

i
= =

−

∑ ∑− ( )( )





+ ( )( )





, ˆ , ˆβ βξ , (26)

V̂n  is the estimate of the matrix  Vn  determined as 

V̂n  =  
1 1

11
2n g x

g x g x
i

n

i

i i
T

=
∑

+ ( )( ) ( ) ( )ξ
β β

β
β β

, ˆ
, ˆ , ˆ ,

and  κ̂n   is the estimate of  κn  occurring in Theorem 1: 

κ̂n   =  
1

11
2 2n

g x

g x
g x

i

n
i

i

i
=
∑ ( )

+ ( )( )[ ] ( )
ξξ

ξ

ββ

β
β

, ˆ

, ˆ
, ˆ .

Lemma 2.  Suppose that the conditions of Lemma 1 are satisfied.  Consider a function  F ∈ C
 

1
 
(

 
R ×  U

 
)

for some open  U ⊃ Θ.  Assume that, for some fixed  C > 0  and  A > 0,

Fξ ξ β( , )   ≤  C Aexp ξ( ) ,      ξ ∈ R,      β ∈ U. (27)

Then, for model (1), (2), 

1

1n
F x

i

n

i
=
∑ ( ), β̂   =  

1

1

0

n
F

i

n

i
=
∑ ( , )ξ β   +  oPσ

( )1 .

Using Lemma 2, we obtain 

V̂n  =  Vn  +  oPσ
( )1 , (28)

κ̂n   =  κn  +  oPσ
( )1 (29)
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if 

i

i

i g
=
∑ ∂

∂1

3

ξ
ξ β( , )   +  || g

 

β
 
(

 
ξ, β

 
) ||  +  || g

 

ξ
 

β
 
(

 
ξ, β

 
) ||  ≤  C Aexp ξ( ) (30)

for some fixed  C > 0  and  A > 0  and for all  ξ ∈ R  and  β ∈ U. 

Lemma 3.  Suppose that the conditions of Theorem 3 hold.  Also assume that inequality (30) is satisfied

with omitting the terms  ∂ ∂/3 3g( , )ξ β ξ   and  g
 

ξ
 

β
 
(

 
ξ, β

 
).  Then 

σ̂2  =  σ
 

2  +  σ
 

2 oPσ
( )1 . (31)

Summarizing (28), (29), and (31), we obtain the following result: 

Theorem 4.  Suppose that condition (30) and the assumptions of Theorem 3 are satisfied.  Then the cor-

rected estimator  β̃   in (25) has the representation 

β̃   =  β
 

0  +  σ
 

2 oPσ
( )1 .

Remark 3.  If the variances are different, i.e.,  D
 

2
 
ε1 i ≠ D

 

2
 
ε2 i 

,  but their ratio is known, then one can
transform (1) and (2) to obtain equal variances. 

Remark 4.  It is also possible to find a correction of the naive estimator of  β
 

0  defined by 

β̂naive   ∈  argmin ( , )
β

β
∈ =

∑ −( )
Θ

1

1

2

n
y g x

i

n

i i .

The naive estimator is also inconsistent, and its asymptotic expansion has the leading term of order  σ
 

2  involv-

ing  g
 

β
 

β.  The correction demands stronger restrictions than (30) on the derivatives of  g.  For example, a bound

for the third derivative with respect to  β  is needed.  Recall that, in a linear model,  β̂naive   is inconsistent,

whereas  β̂   is consistent. 

6.  Conclusions

We considered an orthogonal regression estimator  β̂   in a nonlinear functional errors-in-variables model.
In the situation where the model is strictly separated from a linear model, we gave a mathematical proof of the

inconsistency of  β̂ .  The proof relies on the implicit-function theorem. 
Moreover, we derived an expansion of the asymptotic deviation for small measurement errors and con-

structed a new corrected estimator  β̃ ,  which has smaller asymptotic deviation for small errors. 

It would be interesting to derive the next term of order  σ
 

4  in the expansion of  β̂  – β
 

0  and to construct a
correction of higher order.
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7.  Appendix 1: Proof of Inconsistency

7.1. Proof of Theorem 1.  The proof is divided into several steps. 

Truncation.  Let  ν0  be the constant introduced in (13).  For an arbitrary positive constant  ν,  ν ≤ ν0 
,  we

define the index set 

Bn 
(

 
ν

 
)  =  i i n i i: , ,1 1 2≤ ≤ ≤ ≤{ }ε ν ε ν . (32)

We decompose the projected sum of squares  QProj 
(

 
β

 
)  into two parts 

QProj 
(

 
β

 
)  =  

1
n

q x y
i B

i i

n∈
∑

( )

( , , )
ν

β   +  
1
n

q x y
i B

i i

n∉
∑

( )

( , , )
ν

β

and define the leading term 

QLead 
(

 
β

 
)  =  

1
n

q x y
i B

i i

n∈
∑

( )

( , , )
ν

β .

We now show that 

1
n

q x y
i B

i i

n∉
∑

( )

( , , )
ν

β   =  σ
 

2
 
rest(1) 

(
 
n, β, ν, σ

 

2
 
), (33)

where the remainder  rest(1)  satisfies (18).  By virtue of (11), we have 

q
 
(

 
xi 

, yi 
, β

 
)  ≤  ( yi – g

 
(

 
ξi  

, β
 
)

 
)

 

2  +  (
 
xi 

 – ξi  
)

 

2

=  (
 
ε1 i + g

 
(

 
ξi  

, β
 

0
 
) – g

 
(

 
ξi  

, β
 
)

 
)

 

2  +  ε2
2

i   ≤  2 ε1
2
i   +  ε2

2
i   +  const

for some constant  const  because  g
 
(

 
⋅, ⋅

 
)  is continuous and, therefore, bounded on the compact set  [

 
–

 
a, a

 
] × Θ. 

Hence, 

1
n

q x y
i B

i i

n∉
∑

( )

( , , )
ν

β   ≤  
2

1
2

2
2

n i B
i i

n∉
∑ + +( )

( )ν
ε ε const   ≤  

2

1
1
2

2
2

1 2n
I I

i

n

i i i i
=
∑ + +[ ] ≥( ) + ≥( )[ ]ε ε ε ν ε νconst ,

where  I ( A )  is the indicator function of the set  A.  The typical terms of the expectation of the above expression

are  E Ii iε ε ν1
2

1 ≥( )( ),  E I iε ν1 ≥( )( ),  and  E Ii iε ε ν1
2

2 ≥( )( ) .  We can now use inequalities of the form 

E Ii iε ε ν1
2

1 ≥( )( )  ≤  
σ
ν

ε
σ

ε
σ

ν
σ

4

2
1
2

4
1E Ii i ≥











,

where  ε1 i / σ  is standard normally distributed.  Therefore, by using the Chebyshev inequality, we obtain 
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P
n

q x y
i B

i i

n

1

∉
∑ >











( )

( , , )
ν

β ε   ≤  const ε 

–
 

1
 
(

 
σ

 

4
 
(

 
ν–

 

2 + ν
 

–
 

4
 
)

 
o

 
(

 
1

 
)

 
) (34)

as  σ
 

2 → 0.  Inequality (34) yields (33) with  rest(1)  satisfying (18). 

Taylor Expansions.  Now consider the case  i ∈  Bn 
(

 
ν

 
).  Then, under the assumptions made above, all ob-

servations  yi 
,  xi  belong to a compact set.  Let us omit the index  i  and set  ε1 =

 
: δ  and  ε2 =

 
: ε.  We have 

x  =  ξ  +  ε (35)

and 

y  =  g
 
(

 
ξ, β

 

0
 
)  +  δ, (36)

where 

| ε |  ≤  ν,      | δ |  ≤  ν. (37)

We introduce  ∆  by the equality 

h
 
(

 
x, y, β

 

0
 
)  =  ξ  +  ∆,

where  h
 
(

 
x, y, β

 

0
 
)  is defined in (12).  Under assumptions (7)–(9), the expansions of the regression function and

of its derivatives at the point  h = h
 
(

 
x, y, β

 

0
 
)  are as follows: 

g
 
(

 
h, β

 

0
 
)  =  g

 
(

 
ξ, β

 

0
 
)  +  ∆

 
g

 

ξ
 
(
 
ξ, β

 

0
 
)  +  

1
2
∆

 

2
 
g

 

ξ
 

ξ
 
(
 
ξ, β

 

0
 
)  +  O

 
(

 
∆

 

3
 
), (38)

g
 

ξ
 
(

 
h, β

 

0
 
)  =  g

 

ξ
 
(

 
ξ, β

 

0
 
)  +  ∆

 
g

 

ξ
 

ξ
 
(
 
ξ, β

 

0
 
)  +  O

 
(

 
∆

 

2
 
), (39)

g
 

β
 
(

 
h, β

 

0
 
)  =  g

 

β
 
(

 
ξ, β

 

0
 
)  +  ∆

 
g

 

β
 

ξ
 
(

 
ξ, β

 

0
 
)  +  O

 
(

 
∆

 

2
 
). (40)

By virtue of (37), all variables in (38) – (40) belong to some compact set.  Thus, relation (9) implies that, for  k =
2, 3,  the remainders satisfy the inequality 

sup
( )

, ,x y

k

k

O

ξ

∆
∆

  ≤  const.

We insert (35)–(39) into (12) and obtain 

∆
 

2
 
A  +  ∆

 
δ

 
B  +  ∆

 
C  –  δ

 
g

 

ξ
 
  –  ε  =  O ∆ ∆3 2+( )δ (41)
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with 

A  =  3
2

( )g gξ ξξ ,      B  =  –
 
g

 

ξ
 

ξ,      C  =  1  +  
 
(

 
g

 

ξ
 
)

 

2, (42)

where the regression function  g  and its derivatives are taken at the point  (
 
ξ, β

 

0
 
).  Further, let

∆1  =  
δ εξg

C

+
.

Note that 

∆1  =  O ε δ+( ). (43)

Using the definition of  ∆  and  h
 
(

 
x, y, β

 
),  we obtain 

∆  =  O ε δ+( ). (44)

Relation (41) now yields 

∆  =  ∆1  –  ∆δB

C
  –  ∆2 A

C
  +  O ε δ3 3+( ).

Thus, 

∆  =  ∆1  +  
1
2 2∆   +  O ε δ3 3+( ), (45)

where  ∆2  is of order  O ε δ2 2+( ).  Substituting this into (41), we obtain 

∆2  =  −
+( )2 1

2
1∆ ∆A B

C

δ
,

or, more explicitly, 

∆2  =  
g

C
g g g g

ξξ
ξ ξ ξ ξδ ε εδ3

2 3 2 22 3 2 4−( ) − + −( )( )( ) ( ) . (46)

Proof of (16).  We now consider

QLead
β β( )0   =  

1 0

n
q x y

i B
i i

n∈
∑

( )

( , , )
ν

β β . (47)

Using (11), we get 

q x yi i
β β( , , )  =  – 2 h x h y g g y g gβ ξ β( ) ( ) ( )− + −[ ] + −( ) ,
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where the regression function  g  and its derivatives are taken at the point  (
 
h

 
(

 
x, y, β

 
), β

 
).  Since  h

 
(

 
x, y, β

 
)  sat-

isfies the normal equation (12), we have 

q
 

β
 
(

 
x, y, β

 
)  =  − − ( )( ) ( )2 y g h x y g h x y( , , ), ( , , ),β β β ββ . (48)

We insert (38) and (40) into (48) and use (44).  Thus, we get 

q
 

β
 
(

 
x, y, β

 

0
 
)  =  –

 
2

 
δ

 
g

 

β  +  2
 
∆

 
(

 
g

 

βg
 

ξ – δ
 
g

 

ξ
 

β
 
)  +  ∆

 

2
 
(

 
2

 
g

 

ξ
 

βg
 

ξ + g
 

ξ
 

ξg
 

β
 
)  +  O ε δ3 3+( ), (49)

where all derivatives are taken at the point  (
 
ξ, β

 

0
 
).  Using (45) with (43) and (46), we obtain 

i B
i i

n

q x y
∈
∑

( )

( , , )
ν

β β0   =  L  +  V  +  R. (50)

Here,  L  is the linear term, which has the form 

L  =  
i B

i i i i

n

a b
∈
∑ +

( )

( )
ν

ε ε1 2

and  V  is the quadratic term, which has the form 

V  =  
i B

i i i i i i i

n

c d m
∈
∑ + +( )

( )ν
ε ε ε ε1

2
2
2

1 2 ,

where 

di  =  
−3

3
2

C
g g gξξ ξ β( )   +  

2
2C

g gξ ξβ   +  
1
2C

g gξξ β

and 

ci  =  
3
3

2

C
g g gξξ ξ β( )   –  

2
2C

g gξ ξβ .

The coefficients  ai  
,  bi 

,  ci 
,  di 

,  and  mi  
  depend only on bounded partial derivatives of the regression function. 

In (50),  R  is the remainder consisting of terms with orders of  ε1i  and  ε2i  higher than  2,  and 

R  ≤  
1

1
3

2
3

n
r

i B
i i i

n∈
∑ +( )

( )ν
ε ε ,

where  ri  
  depends only on bounds of partial derivatives of the regression function and  max , ,i n ir= …1  ≤ const.

Then 

E | R |  ≤  const E Iε ε ν11
3

11 ≤( )( )   ≤  const ν 
σ

 

2.
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Therefore, 

R  =  ν
 
σ

 

2OP 
(1).

Here and in what follows,  OP 
(1)  is uniformly bounded in probability  P

nξ ξ β1
0, , ,…   with respect to all  n,  ν ≤ ν0,

and  σ > 0. 
Using (47) and (50), we get 

QLead
β β( )0   =  

1 0

n
q x y

i B
i i

n∈
∑

( )

( , , )
ν

β β   =  S1  –  S2  +  ν
 
σ

 

2OP 
(1), (51)

where 

S1  =  
1

1
1 2 1

2
2
2

1 2n
a b c d m

i

n

i i i i i i i i i i i
=
∑ + + + +( )ε ε ε ε ε ε

and 

S2  =  
1

1 2 1
2

2
2

1 2n
a b c d m

i B
i i i i i i i i i i i

n∉
∑ + + + +( )

( )ν
ε ε ε ε ε ε .

Similarly to (34), we have 

S2  =  σ
 

4
 
rest(2) 

(
 
n, ν, σ

 

2
 
), (52)

where  rest(2)  satisfies (19).  According to (6), we get 

S1  =  
1

1

2

n
c d

i

n

i i
=
∑ +( )σ   +  

σ
n

OP( )1 (53)

and, furthermore, 

1

1

2

n
c d

i

n

i i
=
∑ +( )σ   =  

1 1

11

2

2 2n g
g g

i

n

=
∑

+( )
σ

ξ
ξξ β

( )
  =  σ

 

2κn 
,

where the derivatives are taken at  (
 
ξi  

, β
 

0
 
)  and  κn  is introduced in (17).  Using (51)

 
–

 
(53), we obtain expansion

(16) for  QLead
β β( )0 . 

Theorem 1 is proved. 

7.2.  Proof of Theorem 2.  QLead( )ββββ ββ   is Bounded.  Let 

G
 
(

 
x, y, β, u

 
)  =  ( y – g

 
(

 
u, β

 
)

 
)

 

2  +  (
 
x – u

 
)

 

2,
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where  x, y, u ∈ R  and  β ∈ Θ.  Then, by virtue of (11), 

q
 
(

 
x, y, β

 
)  =  G

 
(x, y,  β, h

 
(

 
x, y, β

 
)

 
).

Since  h
 
(

 
x, y, β

 
)  is the minimum point, we have  Gu

u h x y= ( , , )β  = 0  for  x,  y,  and  β  in the neighborhood of

(ξ, g
 
(

 
ξ, β

 

0
 
), β

 

0
 
).  Using  ξ

 

β
 
(

 
x, y, β

 
) = G

 

β + G
 

u h
 

β,  we get 

ξ
 

β
 
(

 
x, y, β

 
)  =  G x y u u h x y

β
ββ( , , , ) ( , , )= .

The second derivative is 

ξ
 

ββ
 
(

 
x, y, β

 
)  =  G x y u u h x y

ββ
ββ( , , , ) ( , , )=   +  G x y uu

u h x y
β

ββ( , , , ) ( , , )= h
 

β
 
(

 
x, y, β

 
). (54)

Using formulas (54) and (14), we establish that, under condition (9), for  γ  and  ν  small enough but positive,

 sup ( )
β β γ

ββ β
− <0

QLead   ≤  Λ  <  ∞, (55)

where  Λ  is a deterministic constant depending only on  γ  and  ν. 

Representation of  QProj 
(

 
β

 
).  Denote 

Uγ 
(

 
β

 

0
 
)  =  β β β γ: − <{ }0 .

Taking (8) and (9) into account, for  β ∈ Uγ 
(

 
β

 

0
 
)  and  ∆

 
β = β – β

 

0  we get 

QLead 
(

 
β

 
)  =  QLead 

(
 
β

 

0
 
)  +  QLead

β β( )0 ∆
 
β  +  

1
2
∆ ∆β β βββTQLead( ) , (56)

where  β   is an intermediate point between  β  and  β
 

0.  It follows from Theorem 1 that, for  β ∈ Uγ 
(

 
β

 

0
 
), 

QProj 
(

 
β

 
)  –  QProj 

(
 
β

 

0
 
)  =  QLead 

(
 
β

 
)  –  QLead 

(
 
β

 

0
 
)  +  σ

 

4
 
rest(3),

where 

rest(3)  =  rest(3) 
(
 
n, β, ν, σ

 

2
 
)  =  rest(1) 

(
 
n, β, ν, σ

 

2
 
)  –  rest(1) 

(
 
n, β

 

0, ν, σ
 

2
 
).

Relation (56) with  ∆
 
ϕ = σ

 

–
 

2
 
∆

 
β,  assertion (16) of Theorem 1, and the boundedness of  QLead

ββ β( )  yield 

  QProj 
(

 
β

 
)  –  QProj 

(
 
β

 

0
 
)  =  σ κ ν

σ
σ ϕ4 2

2
1

1n Pn
O+ +



 +





( ) ( )rest ∆   +  O
 
(

 
1

 
)

 
σ

 

4
 || ∆

 
ϕ ||

 

2
 
  +  σ

 

4
 
rest(3). (57)
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Inconsistency.  Let us show that  ∆ϕ̂  = σ
 

–
 

2 β̂ β−( )0   is separated from zero with large probability.  We fix

σ0 > 0  and consider  0 < σ ≤ σ0 
.  Since  κn  is bounded, one can find  t > 0  such that, for all  n ≥ 1, 

βt  =  β
 

0
 
  +  σ

 

2
 
(

 
–

 
t

 
κn 

) ∈ Uγ 
(

 
β

 

0
 
)  ⊂  Θ.

We insert both  ∆
 
ϕ = –

 
t

 
κn  and  ∆ϕ̂   into (57) and recall that  QProj β̂( )  ≤ QProj 

(
 
βt  

).  We obtain 

0  ≤  σ
 

–
 

4 Q QtProj Projβ β( ) − ( )( )ˆ   =  p ∆ϕ̂( )  
  +  R1 

(
 
t

 
)

 
  +  R2 

(
 
n

 
)

 
  +  R3 

(
 
σ

 
), (58)

where 

p ∆ϕ̂( )  =  –
 
κn∆ϕ̂  

  +  ν
 
OP 

(
 
1

 
)

 
∆ϕ̂   +  O

 
(

 
1

 
)

 
∆ϕ̂ 2

is a polynomial in  ∆ϕ̂   and 

R1 
(

 
t

 
)  =  – || κn ||

 

2
 
t  +  ν

 
OP 

(
 
1

 
) || κn || t  +  O

 
(

 
1

 
) || κn ||

 

2
 
t

 

2,

R2 
(

 
n

 
)  =  

1
1

σ
ϕ κ

n
O tP n( ) ˆ∆ +( ),

R3 
(

 
σ

 
)  =  rest(3) 

(
 
n, βt  

, ν, σ
 

2
 
)  –  rest(3) 

(
 
n, β̂ , ν, σ

 

2
 
)  –  σ

 

2
 
rest(2) 

(
 
n, ν, σ

 

2
 
)∆ϕ̂   –  σ

 

2
 
rest(2) 

(
 
n, ν, σ

 

2
 
)

 
κn 

t.

Now let  κ ∈ (
 
0, 1

 
).  (In what follows,  κ  can be different in different statements, but it can be chosen to be arbi-

trary close to 1.)  By using (20), one can choose  ν > 0  and  n0  such that, for  n > n0 
, 

P OP
nν κ

( )1
2

<



   >  κ. (59)

At the same time, one can find  t0 > 0  such that, for suitable small positive  t,  for  ν  chosen above, and for
n > n0,  we have 

R1 
(

 
t

 
)  ≤  –

 
t0

with probability greater than  κ.  There is an  nσ ≥ n0  such that, for  n ≥ nσ 
, 

R2 
(

 
n

 
)  ≤  

t0
4

with probability greater than  κ.  Moreover, we can find and fix a suitable small positive  σ0  such that, for all

σ ∈ (
 
0, σ0 

]  and  n ≥ 1, 

R3 
(

 
σ

 
)  ≤  

t0
4
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with probability greater than  κ.  Therefore, relation (58) implies that, for  n ≥ nσ  and  σ < σ0 
, 

t0
2

  ≤  p ∆ϕ̂( )

with probability greater than  κ.  Since the coefficients of the polynomial  p  are stochastically bounded,  ∆ϕ̂ 2

cannot be arbitrarily close in probability to  0.  This implies Theorem 2. 

7.3.  Proof of Corollary 1.  In the proof of Theorem 2, we have used (20) to prove (59).  If 

lim sup
n

n
→∞

κ   >  0,

then we can choose a subsequence  n
 
(

 
m

 
)  such that 

lim ( )
m

m n
→∞

κ   >  0.

For this subsequence, relation (59) and the statement of Theorem 2 remain valid.  This proves Corollary 1. 

8.  Appendix 2: Proofs for Correction

8.1.  Proof of Theorem 3.  According to Lemma 1, we can consider  σ ∈ (
 
0, σε γ 

]  and  n ≥ nε γ  such that

β̂  ∈ Uγ 
(

 
β

 

0
 
).  (It has probability greater than  1 – ε.) 

First, we prove the following:  For some  ν0 > 0,  if  0 < ν ≤ ν0 
,  then 

QLead
ββ β( )0   =  2

 
Vn  +  σ

 

4 oPσ
( )1   +  rest4 

, (60)

where  | rest4 | ≤ const ν.  Here,  ν  comes from (32).  To obtain this, recall that 

QLead
ββ β( )0   =  

1 0

n
q x y

i B
i i

n∈
∑

( )

( , , )
ν

ββ β . (61)

Using (48), we obtain 

1
2

qββ  =  
 
(

 
g

 

β
 
g

 

β
 

T + g
 

ξ
 
g

 

βh
 

β
 

T
 
)  +  ( y – g

 
)

 
(

 
g

 

β
 

ξ
 
h

 

β
 

T + g
 

β
 

β
 
), (62)

where  h
 

β  is given in (14).  For the first summand in (62), we have 

1

1
0 02n

g g g g h g g g g
g g

gi B

T T
x y

T
T

n
i i i∈

∑ +[ ] − + −
+



















( )
( , , ) ( , )( )ν

β β ξ β β
β

β β ξ β
ξ β

ξ ξ β
  ≤  const ν. (63)
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We get 

g
 

β
 
g

 

β
 

T  –  g g
g g

g

T
ξ β

ξ β

ξ1 2+ ( )
  =  

g g

g

Tβ β

ξ1 2+ ( )
. (64)

Since  || g
 

β
 
(

 
ξ, β

 

0
 
) || ≤ const  and  | β | ≤ a,  we obtain 

1

1 2 0n

g g

gi B

T

n i∈
∑ +











( ) ( , )( )ν

β β

ξ
ξ β

  =  Vn  +  σ
 

4 oPσ
( )1 . (65)

For  i ∈ Bn 
(

 
ν

 
),  we have  | yi – g

 
(

 
xi 

, β
 

0
 
) | ≤ const ν.  Therefore, 

1
0

n
y g g h g

i B

T
x y

n
i i∈

∑ − +
( )

( , , )
( )( )

ν

βξ β ββ
β   ≤  const ν. (66)

Relations (62)
 
–

 
(66) now yield (61). 

By virtue of the smoothness condition (9), for  β ∈ Uγ 
(

 
β

 

0
 
)  the third derivative  QLead

βββ β( )  satisfies the
boundedness relation 

QLead
βββ β( )   <  const

for small positive  γ  and  ν. 

For  β ∈ Uγ 
(

 
β

 

0
 
),  we use the Taylor expansion 

QLead 
(

 
β

 
)  =  QLead 

(
 
β

 

0
 
)  +  Q T

Lead
β β( )0 ∆

 
β  +  

1
2

0∆ ∆β β βββT QLead( )   +  
1
6 1i j k

p

i j kQ i j k

, , =
∑ ( )Lead

β β β β β β β∆ ∆ ∆ , (67)

where  β   is an intermediate point between  β
 

0  and  β.  Using relations (15) and (16) of Theorem 1 and relations
(60) and (67), we get 

QProj 
(

 
β

 
)  =  QProj 

(
 
β

 

0
 
)  +  σ

 

2κn
T∆

 
β  +  ∆

 
β

 

T
 
Vn 
∆

 
β  +  rest,

where 

rest  =  ν
 
σ

 

2
 
OP 

(
 
1

 
) || ∆

 
β ||  +  σ

 

4 oPσ
( )1   +  ν

 
O

 
(

 
1

 
) || ∆

 
β ||

 

2  +  O
 
(

 
1

 
) || ∆

 
β ||

 

3.

We set  β = βϕ = β
 

0 + σ
 

2∆
 
ϕ.  Then 

QProj 
(

 
βϕ 

)  =  QProj 
(

 
β

 

0
 
)  +  σ

 

4 κ ϕ ϕ ϕn
T T

nV∆ ∆ ∆+( )   +  rest ( 
ϕ

 
), (68)

where 

rest ( 
ϕ

 
)  =  ν

 
σ

 

4
 
OP 

(
 
1

 
) || ∆

 
ϕ ||  +  σ

 

4 oPσ
( )1   +  ν

 
σ

 

4
 
O

 
(

 
1

 
) || ∆

 
ϕ ||

 

2  +  σ
 

6
 
O

 
(

 
1

 
) || ∆

 
ϕ ||

 

3.
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Let  β̂  = β
 

0 + σ
 

2∆ϕ̂ .  By Lemma 1, we have  σ
 

2
 
∆ϕ̂  = oPσ

( )1 .  Recall that we consider  β̂  ∈ Uγ 
(

 
β

 

0
 
).  Using

(68) and the inequality  QProj β̂( )  ≤ QProj 
(

 
β

 

0
 
),  we obtain 

κ ϕn
T ∆ ˆ   +  ∆ ∆ˆ ˆϕ ϕT

nV   +  σ
 

–
 

4 rest ϕ̂( )  ≤  0, (69)

where 

σ
 

–
 

4 rest ϕ̂( )  =  oPσ
( )1 ∆ϕ̂ 2  +  ν

 
OP 

(
 
1

 
)

 
∆ϕ̂   +  oPσ

( )1   +  ν
 
O

 
(

 
1

 
)

 
∆ϕ̂ 2.

Consider  ν > 0  such that  ν | O
 
(

 
1

 
) | ≤ lim inf ( )minn nV→∞( )λ  / 2  in the last summand.  Then, using the bounded-

ness condition for  κn  and relations (22) and (69), we get  ∆ϕ̂  = OPσ
( )1 .  This yields  σ

 

2
 
∆ϕ̂ 3  = oPσ

( )1   and

ν
 
O

 
(

 
1

 
)

 
∆ϕ̂ 2 = νOPσ

( )1
 
∆ϕ̂ .  Therefore, it follows from (68) that 

QProj β̂( )   =  QProj 
(

 
β

 

0
 
)  +  σ

 

4 κ ϕ ϕ ϕ ν ϕ
σn

T T
n PV O∆ ∆ ∆ ∆ˆ ˆ ˆ ( ) ˆ+ +( )1   +  σ

 

4 oPσ
( )1 . (70)

Let  zn = – Vn n
−( )1 2κ

  
.  According to (20) and (22),  || zn ||  is bounded and separated from zero.  By the defini-

tion of  β̂ ,  we have  QProj β̂( )  ≤ QProj 
(

 
β

 

0 + 
 
σ

 

2
 
zn 

).  Therefore, relations (70) and (68) yield 

V zn n
1 2 2/ −( )∆ ϕ̂   +  ν ϕ

σ
OP ( ) ˆ1 ∆   ≤  ν

 
OP 

(1)  +  oPσ
( )1 . (71)

Taking into account that the value  ν  in (32) can be chosen small enough and using relations (71) and (22), we
obtain  ∆ϕ̂ −( )zn  = oPσ

( )1 ,  which proves (23). 

8.2.  Proof of Lemma 2.  We have 

1

1

0

n
F x F

i

n

i i
=
∑ ( ) −( ), ˆ ( , )β ξ β   =  r1  +  r2, (72)

where 

r1  =  
1

1n
F x F

i

n

i i
=
∑ ( ) − ( )( ), ˆ , ˆβ ξ β ,

r2  =  
1

1

0

n
F F

i

n

i i
=
∑ ( ) −( )ξ β ξ β, ˆ ( , ) .

By virtue of the mean-value theorem, we have 

r1  =  
1

1
2n

F
i

n

i i
=
∑ ( )ξ ξ β ε, ˆ ,
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where  ξi   is an intermediate point between  ξi  and  xi = ξi + ε2i  
.  Therefore, by virtue of (27), we get 

| r1 |  ≤  
1

1
2n

c A
i

n

i i
=
∑ ( )exp ξ ε   ≤  c Aa

n
A

i

n
i iσ σ ε

σ
ε
σ

exp( ) exp
1

1

2 2

=
∑ ( )  ,

where  ε2i / σ,  i = 1, … , n,  are i.i.d. standard normal.  Therefore, the expectation of  exp σ ε
σ

ε
σ

A i i2 2( )   is

bounded by  ( )expc c A
A

1 2

2 2

2
+ 



σ σ

.  Using the law of large numbers, we establish that 

limsup
n

r
→∞

1   ≤  σ σ σ
exp( )( )expAa c c A

A
1 2

2 2

2
+ 



 (73)

with probability 1. 
By virtue of the mean-value theorem, 

r2  =  
1

1

0

n
F

i

n

i i
T

=
∑ −( )β ξ β β β( , ) ˆ

( ) ,

where  β( i )  is an intermediate point between  β
 

0  and  β̂ .  Recall that, according to (8),  β
 

0  lies in the interior of

the compact set  Θ.  By Lemma 1,  β̂ β− 0  = oPσ
( )1 .  Therefore, for fixed  ε > 0  and some  γ > 0,  we can

choose  σε γ > 0  and  nε γ < ∞  so that if  σ ∈ (
 
0, σε γ 

]  and  n > nε γ 
,  then, with probability greater than  1 – ε,

we have  β̂  ∈ Uγ β( )0  = β β β γ: − ≤{ }0   and, therefore, 

| r2 |  ≤  sup ( , ) ˆ
,ξ β

β ξ β β
≤ ∈a

F
Θ

∆   ≤  K
 
γ.

Thus,  r2 = oPσ
( )1 .  This and (73) yield the required result. 

8.3.  Proof of Lemma 3.  The numerator of  σ̂2  is 

1

1

2

n
g x y

i

n

i i
=
∑ ( ) −( ), β̂   =  

1

1
2 1

0 2

n
g g

i

n

i i i i
=
∑ +( ) − −( )ξ ε β ε ξ β, ˆ ( , )   =  R1  +  R2  –  2 R3, (74)

where 

R1  =  
1

1
2

0 2

n
g g

i

n

i i i
=
∑ +( ) −[ ]ξ ε β ξ β, ˆ ( , ) ,      R2  =  

1

1
1
2

n i

n

i
=
∑ ε ,

R3  =  
1

1
1 2

0

n
g g

i

n

i i i i
=
∑ +( ) −[ ]ε ξ ε β ξ β, ˆ ( , ) .
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Here  R2 = σ
 

2
 
(

 
1 + oP 

(
 
1

 
)

 
). 

Let us estimate  R1 
.  Applying the mean-value theorem twice, we obtain 

g i iξ ε β+( )2 , ˆ   =  g
 
(

 
ξi  

, β
 

0
 
)  +  g i i

ξ ξ β ε, 0
2( )   +  g i i i

Tβ ξ ε β β+( )2 , ˆ
( ) ∆ ,

where  ξi   is an intermediate point between  ξi  and  ξi + ε2 i 
,  while  β( )i   is an intermediate point between  β̂

and  β
 

0.  Therefore, 

R1  =  
1

1

0 2
2
2

n
g

i

n

i i
=
∑ ( )[ ]ξ ξ β ε,   +  2

1

1

0
2 2n

g g
i

n

i i i i i
T

=
∑ ( ) +( )ξ βξ β ε ξ ε β β, , ˆ

( ) ∆

+  
1

1
2

2

n
g

i

n

i i i
T

=
∑ +( )[ ]β ξ ε β β, ˆ

( ) ∆   =  R11  +  R12  +  R13 
.

By Theorem 3,  ∆β̂  = σ
 

2 OPσ
( )1 .  Therefore, using (30), we obtain 

| R12 |  ≤  σ
 

2 OPσ
( )1 c Aa

n
A

i

n
i iσ σ ε

σ
ε
σ

exp( ) exp2
1

2
1

2 2

=
∑ ( ) .

Here,  
ε
σ
2i ,  i = 1, … , n,  are i.i.d. standard normal.  Therefore, by the law of large numbers, we get  R12 =

σ
 

2 oPσ
( )1 . 

By analogy, we establish that  R13 = σ
 

2 oPσ
( )1 . 

Using the mean-value theorem, we now obtain 

R11  =  
1

1

0 0
2

2
2
2

n
g g

i

n

i i i i
=
∑ ( ) + ( )[ ]ξ ξξξ β ξ β ε ε, ˜ , ˜

=  
1

1

0 2
2
2

n
g

i

n

i i
=
∑ ( )[ ]ξ ξ β ε,   +  2

1

1

0 0
2 2

2

n
g g

i

n

i i i i
=
∑ ( ) ( )ξ ξξξ β ξ β ε ε, ˜ , ˜   +  

1

1

0
2 2

2

n
g

i

n

i i i
=
∑ ( )[ ]ξξ ξ β ε ε˜ , ˜ ,

where  ξ̃i   is an intermediate point between  ξi  and  ξi + ε2 i 
,  and  ε̃2i  ≤ | ε2 i |.  Using (30), and the law of

large numbers, we conclude that the second and the third terms in the last expression are  σ
 

2oPσ
( )1 .  However,

the Cantelli strong law of large numbers implies that, for the first term, we have 

1

1

0 2
2
2 2

n
g

i

n

i i
=
∑ [ ] −( )ξ ξ β ε σ( , )   =  σ

 

2 oPσ
( )1 .

Therefore, 

R1  =  
1

1

2 0 2

n
g

i

n

i
=
∑ [ ]σ ξ βξ( , )   +  σ

 

2 oPσ
( )1 .
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Applying the mean-value theorem again, we get 

R3  =  
1

1

0
2 1n

g
i

n

i i i
=
∑ ( )ξ ξ β ε ε,   +  

1

1
2 1n

g
i

n

i i i
T

i
=
∑ +( )β ξ ε β βε, ˆ

( ) ∆ .

Here, for the first term, we have used (30) and the Cantelli strong law of large numbers, while, for the second

term, we have used (30) and Theorem 3 to obtain  R3  =  σ
 

2 oPσ
( )1 . 

Using (74), we get 

1

1

2

n
g x y

i

n

i i
=
∑ −[ ]( , ˆ )β   =  σ ξ βξ2

1

0 2
1

1+ ( )( )



=

∑n
g

i

n

i ,   +  σ
 

2 oPσ
( )1 . (75)

According to Lemma 2, 

1

1

2

n
g

i

n

i
=
∑ ( )[ ]ξ ξ β, ˆ   =  

1

1

0 2

n
g

i

n

i
=
∑ [ ]ξ ξ β( , )   +  oPσ

( )1 . (76)

Relations (75) and (76) yield the statement of Lemma 3. 
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