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Abstract

In pharmaceutical research there are data sets describing the inter-
actions between proteins and molecules. The data sets include a huge
number of independent variables (features) and the response variable
is typically the binding strength. Thus, one of the most challeng-
ing problems is to find the features that have a real influence on the
binding strength.

Here we present a feature selection method. The principle of the
algorithm is to disturb each single feature by adding pseudo errors
and to study the influence on the quality of the model fit. The main
idea is that the change of unimportant features has no effect on the
binding strength.

1 Introduction

Suppose a n× (p+ 1) data matrix (y,X), where the first column y = (yi) is
considered as response variable, X = (xij)i=1..n,j=1..p is a n × p matrix. The
columns of X are related to different features denoted by x(j), j = 1, .., p. The
problem is to select the features which are really relevant for prediction of y.

Here we propose a procedure which indicate for every single feature the in-
fluence on the response.

The main idea arises from SIMEX methods in measurement errors models.
There the measurement error is increased by adding pseudo errors and the
influence of the pseudo errors is modelized in order to extrapolate backwards
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to the case with no measurement errors, compare [1]. Nowadays SIMEX is
also applied to model selections procedures. There SIMEX is used for the
choice of adaptive parameters, see [2].

Our method use only the simulation step, where pseudo errors are added.
The extrapolation step is not done. Thus we introduce the name SimSel for
simulation and selection. The goal of the method is to find out, whether a
specific feature has some influence on the response. The selection part of the
procedure is up to now not implemented.

The residual sum of squares is used as criterion for measuring the influence.
It is not used as a criterion for fitting a model. It is enough to have an
approximative model. If the underlying relationship is a nonlinear errors-in-
variables model the procedure is still working. In this case the residual sum
of squares corresponds to the naive method in an approximative quadratic
model.

The main items of SimSel can be described as follows.

• The residual sum of squares is used to measure the influence of the
features on the response.

• The x variable under consideration is disturbed by pseudo errors.

• The influence of the pseudo errors on the residual sum of squares is
studied.

• If the residual sum of squares is unchanged, then this feature does not
matter.

The report is organized as follows. First we present a linear and a quadratic
algorithm and the related theoretical background. In Section 4 simulation
results are summarized. Section 5 contains an application in pharmacy. The
discussion of the simulations and of further research is given in Section 6. All
proofs can be found in the Appendix. The beta version of the R-packages is
available on the home page http://www.math.uu.se/ ˜zwanzig.
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2 Linear SimSel

With out loss of generality we assume that the feature of interest is related
to x(1) the first column of X.

The linear ordinary least squares method is defined by minimizing the sum
of squares

‖y −Xβ‖2 =
n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

.

Denote the residual sum of squares by

RSS = min
β∈Rp
‖y −Xβ‖2 =

∥∥∥y −Xβ̂
∥∥∥2

.

Then the linear SimSel method consists of the following steps.

The linear SimSel Method

1. Choose a sequence of positive numbers 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λK .

2. For each λ ∈ {λ1, .., λK} pseudo errors ε∗1, ..., ε
∗
n are generated , i.i. P ∗ distributed

with E ε∗i = 0, V ar(ε∗i ) = 1. The pseudo errors ε∗ = (ε∗1, ..., ε
∗
n)T are

added to x(1)

x(1)(λ) = x(1) +
√
λε∗.

Note, the other columns are unchanged!

We get a new data matrix (y,X (λ)) with

X (λ) = X +
√
λ∆,

where ∆ is the (n× p)− matrix

∆ =


ε∗1 0 · · · 0
ε∗2 0 · · · 0
...

... 0
...

ε∗n−1 0 · · · ...
ε∗n 0 · · · 0

 .
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3. Compute for each λ ∈ {λ1, .., λK}

RSS (λ) = min
β∈Rp
‖y −X (λ) β‖2 .

4. Under the assumption that
(
XTX

)−1
exists a simple linear regression

with RSS (λk) , k = 1, ..., K as response variable and (λ1, .., λK) as
design variable. The F statistic is saved. The R function is called sin-
gle.simsel.linear .

5. The steps 2-4 are repeated several times and the density of the F statis-
tic is estimated. The result is visualized by a violin plot. The R function
called is simsel.linear.f .

6. If the F statistics are large, then we conclude that the feature x(1) matters.

Let us now consider the theoretical background. The term (vector, matrix)

rn = oP ∗(1) is defined by

lim
n→∞

P ∗ (‖rn‖ > ε) = 0 for all ε > 0.

Theorem:

Under the assumption that
(
XTX

)−1
exists, it holds

1

n
RSS (λ) =

1

n
RSS +

λ1

1 + h11λ1

(
β̂1

)2

+ oP ∗(1)

where h11 is the (1, 1)−element of
(

1
n
XTX

)−1
and β̂1 is the first component

of the OLSE estimator β̂ =
(
XTX

)−1
XTy.

Proof: The proof is given in the Appendix.

Remark:

In the procedure we use a linear approximation, because for small λ1, .., λK ,
it holds

λk
1 + h11λk

≈ λk; k = 1, ..., K.

Remark:
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We have not required any model assumption for this procedure. We compare
only the ordinary least squares fit in an approximative models. In linear
errors-in-variables model the OLSE is inconsistent. But if β1 is zero, then
OLSE converges also to zero. This gives the chance for a successful applica-
tion of SimSel to errors-in-variables models.

3 Quadratic SimSel

Suppose a possible nonlinear relationship between the features and the re-
sponse.

In this case we study the best quadratic approximation. For this method a
center and scaling of all variables are essential.

ycent,i =
yi − y
‖y‖

, xcent,ji =
xji − x(j)∥∥x(j)

∥∥ , j = 1...p; (1)

ycent = (ycent,i)i=1..n, xcent(j) = (xcent,ji)i=1..n

We introduce the quadratic approximation

H
(
xcent(1), ...,xcent(p)

)
= linear +mixture+ quadratic

of length m = 1
2
(p2 + 3p). With out loss of generality we assume that the

feature of interest is related to x(1) the first column of X. We organize the
quadratic approximation, such that the first p+ 1 terms includes x(1).

H
(
xcent(1), ...,xcent(p)

)
= β1 xcent(1) + βp+1 (xcent(1)xcent(2)) + ...βp (xcent(1)xcent(p)) + βp+1 x2

cent(1)

+βp+2 xcent(2) + ...+ βm x2
cent(p)

= Hβ,

where (xcent(1)xcent(2)) is the vector produced by componentwisely multiplica-
tion. The columns h(1), ...,h(m) of H are centered again but without scaling:

hce,ji = hji −
1

n

n∑
i=1

hji, hce(j) = (h,ji (λ))i=1...n , j = 1, ...,m (2)
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Introduce the new matrix

Hce =
(
hce(1), ...,hce(m)

)
and the centered quadratic approximation by

Hce(xcent(1), ...,xcent(p)) = Hceβ.

The quadratic SimSel method is based on this centered quadratic approxi-
mation. We apply as criterion

RSS = min
β
‖ycent −Hceβ‖2 .

The quadratic SimSel Method

1. Center all variables by (1),

2. Choose a sequence of positive numbers 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λK .

3. For each λ ∈ {λ1, .., λK} generate pseudo errors ε∗ = (ε∗1, ...; ε
∗
n)T ,

i.i. P ∗ distributed with E ε∗i = 0, V ar(ε∗i ) = 1, E(ε∗i )
3 = 0 and E

(ε∗i )
4 = µ+ 1.

Add the pseudo errors to the first feature.

xcent(1) (λ) = xcent(1) +
√
λε∗

Note, the other variables are unchanged!

4. Calculate the quadratic expansion

Hce

(
xcent(1) (λ) ,xcent(2)...,xcent(p)

)
= Hce (λ) β.

with
Hce (λ) =

(
hce(1) (λ) , ...,hce(m) (λ)

)
5. Compute for each λ ∈ {λ1, .., λK}

RSS (λ) = min
β∈Rm

‖y −Hce (λ) β‖2 .
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6. Calculate a simple linear regression with RSS (λk) , k = 1...K as re-
sponse variable and (λ1, .., λK) as design variable. Save the F-statistic.
The R function is called single.simsel.quadratic .

7. The steps 3 - 6 are repeated several times and the density of the F
statistic is estimated. The result is visualized by a violin plot. The R
function is called simsel.quadratic.f .

8. If the F statistics are large, then we conclude that the feature x(1) matters.

The theoretical background is given by the following result.

Theorem: Under the assumption, that ( 1
n
HT
ceHce)

−1 exists it holds

1

n
RSS(λ) =

1

n
RSS + β̂TD(λ)β̂ + oP ∗(1)

where β̂TD(λ)β̂ includes β̂1, ..., β̂p+1 only.

In the special case p = 2. It holds

1

n
RSS (λ) =

1

n
RSS + β̂T(1)(D (λ)−1 + H(3,3))

−1β̂(1) + oP ∗(1)

with β̂(1) = (β̂1, β̂2, β̂3)
T and

(
1

n
HT
ceHce)

−1 =

(
H(3,3) H(4)

HT
(4) H(5)

)
and

D (λ) =

 λ 0 0
0 λ 2λρ
0 2λρ 4λ+ λ2µ

 , ρ =
1

n

n∑
i=1

xcent,2ixcent1,i

Proof: The proof is given in the Appendix.

4 Simulation

Suppose an n×(p+1) data set (y,X). The simulation studies outlined below
aim to show SimSel’s performance in a:
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• linear model setting where the columns in X are uncorrelated and cor-
related, respectively

• nonlinear model setting where the columns in X are uncorrelated and
correlated, respectively

• linear errors-in-variable model setting where the columns in X are un-
correlated and correlated, respectively

• nonlinear errors-in-variable model setting where the columns in X are
uncorrelated and correlated, respectively

Data sets for simulation studies were generated by assuming that y follow
either a linear or a nonlinear model according to

yi = Σp
j=1βjxij + εi (3)

or
yi = sin(Σp

j=1βjxij) + εi, (4)

respectively, where εi ∼ N(0, σ2), i = 1, ..., 40. σ2 is chosen to adhere the
y-variable with roughly ten percent error. We fix the number of independent
variables to 4, i.e. p = 4, out of which two are relevant for the response
variable y, i.e. have βj 6= 0. Arbitrarily we pick the relevant variables to be
j = 1 and j = 3, both having β = 1, whereas the variables 2 and 4 have
β = 0. The data matrix X = xij is sampled from a multivariate normal
distribution. Thus X ∼ N4(0,Σ4), where 0 is a p-dimensional vector of zeros
and Σ4 is either the I4 identity matrix or the matrix S specified below, thus
resulting in matrices X with uncorrelated or correlated variables.

S =


1 0.23 −0.29 0.51

0.23 1 −0.89 0.03
−0.29 −0.89 1 −0.35
0.51 0.03 −0.35 1


The result of the nine different simulation studies are shown below. The
figures show the distribution of the F-statistic for the simple linear regression
with RSS (λ1) , ..., RSS (λK) as response variable and λ1, ..., λK as design
variable in the linear SimSel procedure and in the quadratic SimSel procedure
description after 100 repetitions of the entire SimSel.
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Figure 1: Linear data, no errors-in-variables and uncorrelated data.

Figure 2: Linear data, no errors-in-variables and correlated data.

5 Application

In chemistry and pharmacology it is often desirable to characterize the inter-
actions between molecules and proteins by for instance quantitative structure-
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Figure 3: Linear data, errors-in-variables and uncorrelated data.

Figure 4: Linear data, errors-in-variables and correlated data.

activity relationship (QSAR) or Proteochemometrics (PCM) [5]. In these
methods chemical structures are numerically described (by e.g. their physio-
chemical properties) and correlated with a well defined measurable process,
such as biological activity or chemical reactivity, typically by the means of
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Figure 5: Nonlinear data, no errors-in-variables and uncorrelated data.

Figure 6: Nonlinear data, no errors-in-variables and correlated data.

linear or nonlinear regression methods. The data sets often suffer from hav-
ing few observations in relation to the number of variables, often even p > n
(this problem is here referred to as ’underdeterminedness’). The underdeter-
minedness arises from the fact that it is very difficult to a priori say which
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Figure 7: Nonlinear data, errors-in-variables and uncorrelated data.

Figure 8: Linear data, errors-in-variables and correlated data.

molecular features that govern an interaction and the many available ways
of numerically describing a chemical structure. Moreover, the variables in
X are often strongly correlated and are impossible to observe without errors
(occurring from either measurement errors or calculation errors), leading to
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errors-in-variables.

One way to deal with the problem of underdeterminedness is to employ
feature-selection methods to reduce the number of variables in X. It is
then important that the selection method works under the conditions stipu-
lated by the problem domain, i.e. in chemistry and pharmacology that the
method works for underdetermined, nonlinear errors-in-variable models with
correlated variables. While SimSel not (yet) has been extended to work for
underdetermined problems, we have demonstrated its usefulness on linear,
nonlinear, linear EIV, and nonlinear EIV problems with uncorrelated and
correlated design matrices on simulated data.

In order to make an evaluation of the methods performance on a small data
set from a real application, we used the well-studied Selwood data set [4].
The Selwood data contains 31 observations of 53 variables and is thus grossly
underdetermined. From the 53 variables we selected four out of which two
are known from previous studies to be relevant for the response variable and
the other two are known to not be relevant, see [3].

6 SimSel R-package

The SimSel procedure is implemented in the R-package SimSel 0.1 and is
available at http://www.math.uu.se/∼zwanzig.

The two main functions are simsel.linear and simsel.linear.f for linear Sim-
Sel and simsel.quadratic and simsel.quadratic.f for the quadratic SimSel
procedure. The simsel.linear and simsel.quadratic functions go through
the linear and quadric SimSel procedures, respectively, and plot the points
λk, RSS (λk), i = 1, ..., p. The simsel.linear.f and simsel.quadratic.f run
the respective procedure a given, say B, number of times. Each time the
F-statistic is collected. The distribution of the F-statistic for each variable
over the B repetitions is plotted as a result.

The code for the simulations is also available in the SimSel package.
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7 Discussion

The proposed method has some advantages:

• The method is model robust.

• It is easy to interpret and intuitive heuristic.

• No splitting of the data set in training and test subsets is required.

Open Problems:

• Relax the rank condition, that ( 1
n
HT
ceHce)

−1 exists.

• Implement selection procedure steps.

• Generalize the procedure for testing more than one features simultane-
ously.

• Combine SimSel with an orthogonalization procedure.

8 Appendix

Proof for linear SimSel: It holds

1

n
RSS (λ) =

1

n
yTy− 1

n
yTP (λ)y (5)

with
P (λ) = X(λ)

(
X(λ)TX(λ)

)−1
X(λ)T . (6)

First we consider

1

n
X(λ)Ty =

(
1

n
X +

1

n

√
λ∆

)T
y.

Introduce the denotations:

e1 =


1
0
...
0

 ; ε∗ =


ε∗1
ε∗2
...
ε∗n


14



Then
∆ = ε∗eT1 and ∆Ty =ε∗Tye1.

For arbitrary fixed y it holds by the law of large numbers

1

n
ε∗Ty = oP ∗(1),

because
1

n
ε∗Ty =

1

n

n∑
i=1

yiε
∗
i , Eyiε

∗
i = 0, V ar (yiε

∗
i ) <∞.

Thus
1

n
X(λ)Ty =

1

n
XTy+oP ∗(1). (7)

Consider now X(λ)TX(λ) :

1

n
X(λ)TX(λ) =

1

n

(
X+
√
λ∆
)T (

X+
√
λ∆
)

(8)

=
1

n
XTX+

1

n

√
λXT∆ +

1

n

√
λ∆TX+

1

n
λ∆T∆

We have

1

n
XT∆ =


1
n
ε∗Tx(1) 0 · · · 0

...
... 0

...
1
n
ε∗Tx(p) 0 · · · 0

 .

By the same argumentation as for 1
n
ε∗Ty we obtain that

1

n
XT∆ = oP ∗(1);

1

n
∆TX =oP ∗(1). (9)

Further

1

n
∆T∆ =


1
n
ε∗T ε∗ · · · 0

... 0
...

0 · · · 0

 =
1

n
ε∗T ε∗e1e

T
1 .

By the law of large numbers

1

n
ε∗T ε∗ =

1

n

n∑
i=1

(ε∗i )
2 = V ar (ε∗1) + oP ∗(1) = 1 + oP ∗(1).
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Thus
1

n
∆T∆ = e1e

T
1 + oP ∗(1). (10)

Summarizing (8), (9) and (10) we have

1

n
X(λ)TX(λ) =

1

n
XTX+λe1e

T
1 + oP ∗(1).

Hence (
1

n
X(λ)TX(λ)

)−1

=

(
1

n
XTX + λe1e

T
1

)−1

+ oP ∗(1).

Using the relation

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1

with A = 1
n
XTX, B = DT=

√
λe1, C = 1 and h11 = eT1

(
1
n
XTX

)−1
e1 we get(

1

n
XTX + λe1e

T
1

)−1

=

(
1

n
XTX

)−1

− λ

1 + λh11

(
1

n
XTX

)−1

e1e
T
1

(
1

n
XTX

)−1

.

(11)
Consider now the term 1

n
yTP (λ)y in (5). Using (7) and (11)

1

n
yTP (λ)y =

1

n
yTX(λ)

(
1

n
X(λ)TX(λ)

)−1
1

n
X(λ)Ty

=

(
1

n
XTy

)T (
1

n
XTX + λe1e

T
1

)−1(
1

n
XTy

)
+ oP ∗(1)

=
1

n
yTPy− λ

1 + λh11

β̂Te1e
T
1 β̂ + oP ∗(1)

=
1

n
yTPy− λ

1 + λh11

(β̂1)
2 + oP ∗(1).

Then the results follows from (5)

1

n
RSS (λ) =

1

n
yTy− 1

n
yTPy+

λ

1 + λh11

(β̂1)
2 + oP ∗(1)

=
1

n
RSS +

λ

1 + λh11

(β̂1)
2 + oP ∗(1).
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Proof for quadratic SimSel: Consider two features only: p = 2, m = 5.
The quadratic approximation is

H(x(1),x(2)) = β1x(1) + β2

(
x(1)x(2)

)
+ β3x

2
(1) + β4x(1) + β5x

2
(2)

Step 4 of procedure gives

Hce (λ) =
(
hce(1) (λ) , ...,hce(5) (λ)

)
,

with hce(j) (λ) = (hj,i (λ))i=1...n, and hce(j) = hce(j) (0) = (hcej,i)i=1...n, j =
1...5

h1,i (λ) = (xcent,1i +
√
λε∗i )−

1

n

n∑
k=1

(xcent,1k +
√
λε∗k)

= hce1,i +
√
λ(ε∗i −

1

n

n∑
k=1

ε∗k)

hce1,i = xcent,1i

h2,i (λ) = (xcent,1i +
√
λε∗i )xcent,2i −

1

n

n∑
k=1

(xcent,1k +
√
λε∗k)xcent,2k

= hce2,i + 2
√
λ(ε∗ixcent,2i −

1

n

n∑
k=1

ε∗kxcent,2k)

hce2,i = xcent,1ixcent,2i −
1

n

n∑
k=1

xcent,1kxcent,2k

h3,i (λ) = (xcent,1i +
√
λε∗i )

2 − 1

n

n∑
k=1

(xcent,1k +
√
λε∗k)

2

= hce3,i + 2
√
λ(ε∗ixcent,1i −

1

n

n∑
k=1

ε∗kxcent,1k)

+λ(ε∗2i −
1

n

n∑
k=1

ε∗2k )

hce3,i = x2
cent,1i −

1

n

n∑
k=1

x2
cent,1k
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hce(4) (λ) = hce(4) = xcent(2)

hce(5) (λ) = hce(5), hce5,i = x2
cent,2i −

1

n

n∑
i=1

x2
cent,2k.

Summarizing we obtained:

Hce (λ) = Hce+
√
λD1 + λD2

with Hce = Hce (0) =
(
hce(1), ...,hce(5)

)
D1 =

(
ε∗i −

1

n

n∑
k=1

ε∗k, , ε
∗
ixcent,2i −

1

n

n∑
k=1

ε∗kxcent,2k, 2(ε∗ixcent,1i −
1

n

n∑
k=1

ε∗kxcent,1k), 0, 0

)
i=1..n

and

D2 =

(
0, 0, (ε∗i

2 − 1

n

n∑
k=1

ε∗k
2), 0, 0

)
i=1..n

.

Introducing notations for the columns of D1 and D2 we have

D1 = (a, b, 2c, 0, 0) D2 = (0, 0, d, 0, 0).

Compare the RSS

1

n
RSS (λ) =

1

n
yTcentycent−

1

n
yTcentP (λ)ycent (12)

with

1

n
yTcentP (λ)ycent =

1

n
yTcentHce(λ)

(
1

n
Hce(λ)THce(λ)

)−1
1

n
Hce(λ)Tycent.

We show first

1

n
Hce(λ)Tycent=

1

n
HT
ceycent+oP ∗(1). (13)

We have
1

n
DT

1 ycent= oP ∗(1) and
1

n
DT

2 ycent= oP ∗(1).
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Because of
∑n

i=1 ycent,i = 0 and of the law of large number with Eε∗i = 0 it
holds

1

n
aTycent =

1

n

n∑
i=1

ε∗i ycent,i =
1

n

n∑
i=1

Eε∗i ycent,i + oP ∗(1) = oP ∗(1) (14)

and

1

n
bTycent =

1

n

n∑
i=1

ε∗ixcent,ikycent,i =
1

n

n∑
i=1

Eε∗ixcent,ikycent,i + oP ∗(1) = oP ∗(1).

Analogously 1
n
cTycent = oP ∗(1). Using E(ε∗i )

2 = 1 and
∑n

i=1 ycent,i = 0 we get

1

n
dTycent =

1

n

n∑
i=1

(ε∗i )
2ycent,i =

1

n

n∑
i=1

E(ε∗i )
2ycent,i + oP ∗(1)

=
1

n

n∑
i=1

ycent,i + oP ∗(1) = oP ∗(1).

Consider now 1
n
Hce(λ)THce(λ) :

1

n
Hce(λ)THce(λ) =

1

n
(Hce+

√
λD1 + λD2)

T (Hce+
√
λD1 + λD2)

=
1

n
(HT

ceHce+
√
λDT

1 Hce + λDT
2 Hce+

√
λHT

ceD1+λDT
1 D1 + λ

√
λDT

2 D1

+λHT
ceD2+λ

√
λDT

1 D2 + λ2DT
2 D2)

Note the columns of Hce are centered. We get analogously to (14)

DT
1 Hce = oP ∗(1), DT

2 Hce = oP ∗(1).

Especially

1

n
dThcent(4) =

1

n

n∑
i=1

ε∗2i hcent,4i =
1

n

n∑
i=1

Eε∗2i hcent,4i + oP ∗(1) = oP ∗(1).
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Remains to study λDT
1 D1 + λ

√
λ(DT

2 D1 + DT
1 D2) + λ2DT

2 D2. Consider
1
n
DT

1 D1.

1

n
aTa =

n− 1

n
s2(ε∗) =

n− 1

n
E(s2(ε∗)) + oP ∗(1) = 1 + o(1) + oP ∗(1),

where s2(ε∗) is the sample variance and

1

n
aT b =

1

n

n∑
i=1

ε∗2i xcent,2i − (
1

n

∑
ε∗i )(

1

n

∑
ε∗ixcent,2i)

=
1

n

n∑
i=1

Eε∗2i xcent,2i − (
1

n

∑
Eε∗i )(

1

n

∑
Eε∗ixcent,2i) + oP ∗(1)

=
1

n

n∑
i=1

xcent,2i + oP ∗(1) = oP ∗(1)

1

n
cT b =

1

n

n∑
i=1

ε∗2i xcent,2ixcent,1i − (
1

n

∑
ε∗ixcent,1i)(

1

n

∑
ε∗ixcent,2i)

=
1

n

n∑
i=1

Eε∗2i xcent,2ixcent,1i + oP ∗(1)

=
1

n

n∑
i=1

xcent,2ixcent,1i + oP ∗(1) = ρ+ oP ∗(1)

with

ρ =
1

n

n∑
i=1

xcent,2ixcent1,i.

Further

1

n
cT c =

1

n

n∑
i=1

ε∗2i x
2
cent,2i − (

1

n

∑
ε∗ixcent,2i)

2

=
1

n

n∑
i=1

Eε∗2i x
2
cent,2i + oP ∗(1)

=
1

n

n∑
i=1

x2
cent,2i + oP ∗(1) = 1 + oP ∗(1).
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Thus

1

n
DT

1 D1 =


1 0 0 0 0
0 1 2ρ 0 0
0 2ρ 4 0 0
0 0 0 0 0
0 0 0 0 0

+ oP ∗(1).

Study now 1
n
DT

1 D2

1

n
aTd =

1

n

n∑
i=1

ε∗3i xcent2i − (
1

n

∑
ε∗2i )(

1

n

∑
ε∗ixcent,2i)

=
1

n

n∑
i=1

Eε∗3i xcent,2i − (
1

n

∑
Eε∗2i )(

1

n

∑
Eε∗ixcent,2i) + oP ∗(1)

= oP ∗(1)

The other elements can estimated analogously. Thus

1

n
DT

1 D2 = oP ∗(1).

Consider 1
n
DT

2 D2

1

n
dTd =

1

n

n∑
i=1

ε∗4i − (
1

n

∑
ε∗2i )2

=
1

n

n∑
i=1

Eε∗4i − (
1

n

∑
Eε∗2i )2 + oP ∗(1)

= µ+ oP ∗(1).

Summarizing:

1

n
Hce(λ)THce(λ) =

1

n
HT
ceHce+∆+oP ∗(1)

where

∆ =


λ 0 0 0 0
0 λ 2λρ 0 0
0 2λρ 4λ+ λ2µ 0 0
0 0 0 0 0
0 0 0 0 0

 =

(
I3
0

)
D (λ)

(
I3 0

)
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with

D (λ) =

 λ 0 0
0 λ 2λρ
0 2λρ 4λ+ λ2µ

 .

Apply now the relation

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1

with A = 1
n
HT
ceHce, B = DT=

(
I3
0

)
, C = D (λ) we get

(
1

n
HT
ceHce+∆)−1

= (
1

n
HT
ceHce)

−1 − (
1

n
HT
ceHce)

−1

(
I3
0

)
(D (λ)−1 + H(3,3))

−1
(
I3 0

)
(
1

n
HT
ceHce)

−1

with

(
1

n
HT
ceHce)

−1 =

(
H(3,3) H(4)

HT
(4) H(5)

)
and

D (λ)−1 = 1
λ

1
4+λµ−4ρ2

 4 + λµ− 4ρ2 0 0
0 4 + λµ −2ρ
0 −2ρ 1


Note (

I3 0
)

(
1

n
HT
ceHce)

−1HT
ceycent = β̂(1)

where
β̂(1) = (β̂1, β̂2, β̂2)

T

Summarizing (12) and (13) we get

1

n
yTcentP (λ)ycent =

1

n
yTcentPycent − β̂T(1)(D (λ)−1 + H(3,3))

−1β̂(1) + oP ∗(1)

Thus

1

n
RSS (λ) =

1

n
RSS + β̂T(1)(D (λ)−1 + H(3,3))

−1β̂(1) + oP ∗(1).
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