UPPSALA UNIVERSITET

Matematiska institutionen M. Klimek

Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, 1MA283 2000-03-03

Skrivtid: 9-15.

Tillåtna hjälpmedel: Manuella skrivdon och Kreyszigs bok Introductory Functional Analysis with Applications.

LYCKA TILL!

Problems 1 — 8 should be attempted by all students. Graduate students should also try to solve Problems 9 and 10

1. Let Y be a subspace of an inner product space X and let $x_1, x_2, \ldots, x_n \in Y$. Show that if

$$Y = \operatorname{span}\{x_1, x_2, \dots, x_n\},\$$

then

$$Y^{\perp} = \left\{ x \in X : \sum_{j=1}^{n} \langle x, x_j \rangle x_j = 0 \right\}.$$

2. Let

$$c = \{x = (\xi_j) \in l^{\infty} : \lim_{i \to \infty} \xi_j \text{ exists (and is finite)}\}.$$

We say that $x=(\xi_j)\in l^\infty$ stabilizes if there exist N such that for all $j\geq N$

$$\xi_N = \xi_i$$
.

Let $M = \{x \in c : x \text{ stabilizes}\}$. Show that c is the closure of M.

3. Let H be a real Hilbert space. Let $u, v \in H$ be such that u is not orthogonal to v. Define $T: H \longrightarrow H$ by the condition that y = Tx if and only if y is the only point on the line

$$L_x = \{x + tv : t \in \mathbf{R}\}$$

which is orthogonal to u. Show that T is a bounded linear operator and find its range. Hint: Given x, calculate y in terms of x, u and v.

4. Show that if T is the operator from Problem 3 and u, v are linearly dependent, then T is self-adjoint.

5. Let $T: H_1 \longrightarrow H_2$ be a bounded linear operator between Hilbert spaces H_1 and H_2 . Let $(e_j)_{j\geq 1}$ be an orthonormal basis for H_2 . Show that there exists a sequence of vectors $(f_j)_{j\geq 1}$ in H_1 such that

$$Tx = \sum_{j>1} \langle x, f_j \rangle e_j, \qquad x \in H_1.$$

6. Let α_{jk} be numbers (for all $j, k \geq 1$) such that

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |\alpha_{jk}|^2 < \infty.$$

Define $T: l^2 \longrightarrow l^2$ as follows. If $x = (\xi_i), y = (\eta_i)$ and Tx = y, then

$$\eta_j = \sum_{k=1}^{\infty} \alpha_{jk} \xi_k, \qquad j \ge 1.$$

Show that T is a compact operator.

- 7. Let H be a complex Hilbert space. Let $P: H \longrightarrow H$ be an orthogonal projection and let $S: H \longrightarrow H$ be a unitary operator. Show that the operator $Q = S^{-1}PS$ is an orthogonal projection.
- **8.** Recall that if X, Y are normed spaces and $T: X \longrightarrow Y$ is a linear operator then the graph of T is the set $\mathcal{G}(T) = \{(x,y) \in X \times Y : y = Tx\}$. We will treat $X \times Y$ as a normed space with the norm $\|(x,y)\| = \|x\| + \|y\|$. Let $T_1, T_2: X \longrightarrow Y$ be two linear operators. Show that if $\mathcal{G}(T_1)$ is closed in $X \times Y$ and T_2 is bounded, then $\mathcal{G}(T_1 + T_2)$ is closed in $X \times Y$.

Additional problems for graduate students:

- **9.** Let X be an infinite dimensional normed space and let $T: X \longrightarrow X$ be a compact operator. Show that $0 \in \sigma(T)$.
- **10.** Let c be the subspace of l^{∞} described in Problem 2. For every $n \geq 1$ define the functional $f_n : c \longrightarrow \mathbb{C}$ by the formula

$$f_n(x) = \sum_{k=1}^{\infty} \frac{\left(1 - \frac{1}{n}\right)^{k-1}}{n} \xi_k, \qquad x = (\xi_k) \in c.$$

Define also $f: c \longrightarrow \mathbf{C}$ by

$$f(x) = \lim_{k \to \infty} \xi_k, \qquad x = (\xi_k) \in c.$$

Show that $||f_n|| = ||f|| = 1$, for all n, and that the sequence (f_n) is w^* -convergent to f.

GOOD LUCK!