UPPSALA UNIVERSITET Matematiska institutionen M. Klimek Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, 1MA283 2000-06-07 ## SOLUTIONS: 1. To get a counterexample we can take x = (1, i) and y = (1, -i) in \mathbb{C}^2 . **2.** $||Tx|| \le (b-a)||x||$ and we get equality when $x \equiv 1$. Obviously $T^{-1}x = x'$ because if $x \in Y$, then $\int_a^t x'(s)ds = x(t).$ The operator T^{-1} is not bounded because, for example, if n is big enough and $x_n(t) = \sin(n(t-a))$, then $||x_n|| = 1$ and $||x_n'|| = n \to \infty$ as $n \to \infty$. **3.** Let $Ta_n \to c \in Y$, where $(a_n) \subset K$. Since K is compact (a_n) has a subsequence, say (b_n) which is convergent to a limit $b \in K$. Since the graph \mathcal{G} of T is closed $(b_n, Tb_n) \to (b, c) \in \mathcal{G}$ and thus Tb = c. So $c \in T(K)$. **4.** $\stackrel{\text{("\Rightarrow")}}{=}$ If y = Tx where $x \in M$, then $y = TPx = PTx \in M$. So $T(M) \subset M$ and similarly $T(M^{\perp}) \subset M^{\perp}$. "\(\psi\)" Let $x \in H$. Then PTx = PT(Px + Qx) = PTPx + PTQx = PTPx because $TQx \in M^{\perp}$. On the other hand TPx = PTPx + QTPx = PTPx because $TPx \in M$. The equality QT = TQ can be shown similarly. **5.** The duals of l^2 and l^1 are l^2 and l^∞ respectively. For weak convergence in l^2 see Kreyszig p.259. If $f \in (l^1)'$ is given by $$f(\xi_1, \xi_2, \ldots) = \sum_{n=1}^{\infty} (-1)^n \xi_n,$$ then $f(e_n)$ oscillates between just two values 1 and -1. **6.** If T_k is the operator given by the k-th partial sum in the definition of T, then T_k is bounded with a finite dimensional range and hence it is compact. Moreover, $$||Tx - T_k x||^2 = \sum_{n=k+1}^{\infty} |\lambda_n|^2 |\langle x, e_n \rangle|^2 \le \sup_{n>k} \{|\lambda_n|^2\} ||x||^2,$$ and hence $||T - T_k|| \to 0$ as $k \to \infty$. **7.** There exists n_0 such that $\lambda_n \geq 1/2$ for all $n \geq n_0$. The sequence $(e_n)_{n \geq n_0}$ is bounded, but if $n_0 \leq n < m$, then $$||Te_m - Te_n||^2 = ||\lambda_m e_m - \lambda_n e_n||^2 = |\lambda_m|^2 + |\lambda_n|^2 \ge 1/2.$$ Consequently (Te_n) has no convergent subsequence. 8. We have $$(T - \lambda I) \left(-\sum_{n=0}^{N-1} \frac{T^n}{\lambda^{n+1}} \right) = -\sum_{n=1}^{N-1} \frac{T^n}{\lambda^n} + \sum_{n=0}^{N-1} \frac{T^n}{\lambda^n} = I.$$ There exists $x \in X$ such that $y = T^{N-1}x \neq 0$. Hence Ty = 0 and so y is an eigenvector. Consequently $\rho(T) = \mathbb{C} \setminus \{0\}$ and $\sigma(T) = \sigma_p(T) = \{0\}$. - 9. Done in class. - 10. Done in class.