UPPSALA UNIVERSITET

Matematiska institutionen M. Klimek

Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, 1MA283 1998-06-02

SOLUTIONS:

1. To show completeness it is enough to notice that $x = (\xi_1, \xi_2, \xi_3, \ldots) \in E$ if and only if $x^{(1)} = (\xi_1, \xi_3, \xi_5, \ldots) \in l^1$ and $x^{(2)} = (\xi_2, \xi_4, \xi_6, \ldots) \in l^2$. Moreover (x_n) is a Cauchy sequence in E if and only if the sequences $(x_n^{(1)})$ and $(x_n^{(2)})$ are Cauchy in l^1 and l^2 respectively. Since both l^1 and l^2 are complete, the required result follows. To check the second statement, it suffices to show that the parallelogram identity is not satisfied. For instance, if $x = (1, 0, 0, \ldots)$ and $y = (0, 1, 0, 0, \ldots)$, then

$$||x + y||^2 + ||x - y||^2 = 8 \neq 4 = 2(||x||^2 + ||y||^2).$$

- **2.** The operator (I P) is the orthogonal projection onto $\mathcal{N}(T)$. So for any $x \in H$ we have Tx = T((I P)x + Px) = TPx. S is obviously surjective; it is also injective because Sx = 0 if and only if Tx and $x \perp \mathcal{N}(T)$. By the Open Mapping Theorem S is open, which means that S^{-1} is continuous.
- **3.** Take $x \in \mathcal{C}[-1,1]$. Since x is continuous at 0, for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$x(0) - \epsilon < x(t) < x(0) + \epsilon$$
 if $|t| < \delta$.

Consequently

$$f(x) - \epsilon < f_n(x) < f(x) + \epsilon$$
 if $\frac{1}{n} < \delta$.

In other words $\lim_{n\to\infty} f_n(x) = f(x)$.

- **4.** We have: $||x_n|| = 1$, $f_n(x_n) = 1/2$, $f(x_n) = 0$ and $1/2 = ||f_n(x_n) f(x_n)|| \le ||f_n f||$.
- **5.** If $\xi = (\xi_k) \in l^{\infty}$, then we have:

$$||S(x)|| = \sup_{j>1} \left| \sum_{k=1}^{\infty} \alpha_{jk} \xi_k \right| \le \sup_{j>1} \left(\sum_{k=1}^{\infty} |\alpha_{jk}| \right) \left(\sup_{k>1} |\xi_k| \right) \le A ||\xi||.$$

- **6.** It is enough to notice that $P_Y(x)$ is characterized by the fact that $x P_Y(x) \perp y_1, \ldots, y_n$.
- 7. If Z is a closed subspace of a Hilbert space H and $f \in Z'$, then $f(x) = \langle x, z \rangle$ for some $z \in Z$ and for all $x \in H$ (by the Riesz theorem) and ||f|| = ||z||. But f is

well-defined for all $x \in H$ and has the same norm ||z|| when regarded as an element of H'. The second part is also a consequence of the Riesz theorem:

$$\sup_{f\in H'\setminus\{0\}}\frac{|f(x)|}{\|f\|}=\sup_{y\in H\setminus\{0\}}\frac{|\langle x,y\rangle|}{\|y\|}=\sup_{\|z\|=1}|\langle x,z\rangle|=\|x\|.$$

(By the Cauchy-Schwarz estimate $|\langle x,z\rangle| \leq ||x||$ if ||z|| = 1, but we reach equality if either x = 0 or z = x/||x||.)

8. Define

$$T(x) = \sum_{n=1}^{\infty} \frac{\langle x, x_n \rangle}{n} x_n.$$

Then $||Tx||^2 \le ||x||^2$ by Bessel's inequality, T is Hermitian because $\langle Tx, x \rangle$ is real for all x and T is compact being the limit of

$$T_m(x) = \sum_{n=1}^m \frac{\langle x, x_n \rangle}{n} x_n.$$

9. Since S(B(0,1)) is open and contains 0, there exists $\delta > 0$ such that $B(0,\delta) \subset S(B(0,1))$. If $y \in Y \setminus \{0\}$, then

$$\frac{\delta y}{2\|y\|} \in B(0,\delta).$$

Hence there exists $x \in B(0,1)$ such that

$$S(x) = \frac{\delta y}{2\|y\|}.$$

Thus

$$S\left(\frac{2\|y\|x}{\delta}\right) = y.$$

Since S(0) = 0, the above shows surjectivity of S. To show openness, it suffices to check that

$$\forall a \in X \ \forall r > 0 : S(B(a,r)) \supset B(f(a),r\delta),$$

where δ is as above.

10. We have to show that the graph of T is closed. Suppose that $y_j \to y$ in H and $Ty_j \to z$ in l^2 as $j \to \infty$. It is enough to prove that Ty = z. Since (Ty_j) is a Cauchy sequence (and from the definition of the l^2 norm)

$$\forall \epsilon > 0 \,\exists N \,\forall n \geq 1 \,\forall i,j \geq N \ : \ \sum_{k=1}^{n} |\langle y_i, x_k \rangle - \langle y_j, x_k \rangle|^2 < \epsilon^2.$$

By letting first j and then n go to infinity, we conclude that

$$||Ty_i - T_y||_{l^2} < \epsilon.$$

So $Ty_i \to T_y$ in l^2 and hence Ty = z. By the Closed Graph Theorem T is bounded.