UPPSALA UNIVERSITET

Matematiska institutionen M. Klimek

Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, 1MA283 1999-06-03

SOLUTIONS:

1. Every step function f can be identified with an element of l^2 , for example with

$$s_f = (f(0), f(1), f(-1), f(2), f(-2), f(3), f(-3), \dots).$$

and the operator $f \mapsto s_f$ is an isometry of normed spaces.

- **2.** Let $\mathbf{a} = (\alpha, \alpha^2, \alpha^3, \ldots)$ and $\mathbf{b} = (\beta, \beta^2, \beta^3, \ldots)$. Then $L(x) = \langle \mathbf{b}, x \rangle \mathbf{a}$ for all $x \in l^2$ which yields the result easily.
- **3.** It is enough to notice that

$$\sqrt{2}T((x_n)) = (x_1 - x_2, x_1 + x_2, x_3 - x_4, x_3 + x_4, \dots)$$

and

$$\|(x_1-x_2,x_1+x_2,x_3-x_4,x_3+x_4,\ldots)\|^2=2\|x\|^2.$$

4. We have

$$\langle S(x), y \rangle = \left\langle \sum_{j=1}^{n} \langle x, x_j \rangle x_j, y \right\rangle = \sum_{j=1}^{n} \langle x, x_j \rangle \langle x_j, y \rangle = \left\langle x, \sum_{j=1}^{n} \langle y, x_j \rangle, x_j \right\rangle = \langle x, S(t) \rangle.$$

In particular if $x = y \in K$ and S(x) = 0, then $x \perp K$ and so x = 0.

5. It is enough to show that for each $x \in H$ and for all x_n

$$\langle x - P_K(x), x_n \rangle = 0.$$

We have

$$\langle P_K(x), x_n \rangle = \left\langle \sum_{j=1}^k \langle x, S^{-1} x_j \rangle x_j, x_n \right\rangle = \sum_{j=1}^k \langle x, S^{-1} x_j \rangle \langle x_j, x_n \rangle =$$
$$= \langle Sx, S^{-1} x_n \rangle = \langle x, SS^{-1} x_n \rangle = \langle x, x_n \rangle.$$

6. Suppose that (f_n) is weakly convergent in X' to $f \in X$. This means that $g(f_n) \to g(f)$ for any $g \in X''$. Take $x \in X$ and define $g \in X''$ by the formula g(h) = h(x) for

all $h \in X'$. Then $f_n(x) = g(f_n) \to g(f) = f(x)$. Since x was arbitrarily chosen we can conclude that (f_n) is weak* convergent to f.

- 7. The range consist of all cubic polynomials q such that q(0) = 0. The operator is not compact (and not even bounded). For example, if $p(t) = t^n$, then ||p|| = 1, but $||F(p_n)|| = 1 + 2^n$.
- **8.** Let $z = T_{\lambda}(x)$. Then

$$z(t) = (a - \lambda)x(t) + bx(1 - t),$$

 $z(1 - t) = bx(t) + (a - \lambda)x(1 - t).$

Therefore

$$x(t) = \frac{(a-\lambda)z(t) - bz(1-t)}{(a-\lambda)^2 - b^2}$$

provided that $|b| \neq |a - \lambda|$. Hence there are exactly two eigenvalues a - b and a + b. Moreover, there are no other elements in the spectrum.