Funktionalanalys F3 och F4 Solutions of exam problems from 96-12-09

1. Let $(x_n)_{n\geq 1}$ be a Cauchy sequence in l^2 . Then $x_n = (\xi_j^{(n)})_{j\geq 1}$ and since $|\xi_j^{(n)} - \xi_j^{(m)}| \leq ||x_n - x_m||$, the numerical sequence $(\xi_j^{(n)})_{n\geq 1}$ is Cauchy for any fixed j. Let $\xi_j = \lim_{n\to\infty} \xi_j^{(n)}$. We have to show that $x = (\xi_j)_{j\geq 1} \in l^2$. Since $(x_n)_{n\geq 1}$ is a Cauchy sequence, there exists a positive integer N such that for all $n \geq N$, we have $||x_n - x_N|| \leq 1$. By the triangle inequality

$$\sum_{j=1}^{k} |\xi_j^{(n)}| \le ||x_n - x_N|| + ||x_N|| \le 1 + ||x_N||$$

for all k and $n \geq N$. Hence $||x|| \leq 1 + ||x_N|| < \infty$.

The space of all polynomials with the sup-norm or $\mathcal{C}[a,b]$ with the L^2 -norm are not complete.

2. Let (f_n) be a Cauchy sequence in X'. If $x \in X$, then $|f_n(x) - f_m(x)| \le ||f_n - f_m|| ||x||$ and hence $(f_n(x))_{n\ge 1}$ is a Cauchy sequence in \mathbb{C} . Define f(x) as the limit of this sequence. Clearly $x \mapsto f(x)$ is a linear functional. We have to show that it is bounded. Since (f_n) is Cauchy, there exists N such that $||f_n - f_N|| \le 1$ for all $n \ge N$. Therefore $|f_n(x)| \le ||f_n|| ||x|| \le (||f_n - f_N|| + ||f_N||) ||x|| \le (1 + ||f_N||) ||x||$ for all $n \ge N$ and all $x \in X$. So $|f(x)| \le (1 + ||f_N||) ||x||$.

Take e.g. $f: X \longrightarrow \mathbf{R}$ given by the formula f(x) = x(2). If $x_n(t) = t^n$, then $||x_n|| = 1$ but $f(x_n) = 2^n \to \infty$.

- **3.** If x = 0, take y = 0. If $x \neq 0$, then $K = \tilde{B}(x, ||x||) \cap Y$ is compact because Y is finite dimensional. Moreover, if $z \in Y \setminus K$, then $||x z|| \geq ||x 0||$ and $0 \in K$. So if the required y exists it must be an element of K. The existence of such y follows from the fact that the continuous function $z \mapsto ||z x||$ (regarded as a function from K to **R**) attains a minimum at a point in K.
- **4.** Let α , β and γ denote these three numbers. The inequality $\alpha \leq \beta$ is trivial. On the other hand, if $0 < ||x|| \leq 1$, then $||T(x)|| = ||x|| ||T(x/||x||)|| \leq ||x|| \alpha$. So $\beta \leq \alpha$.

Note that $||T(x)|| \le M||x||$ for some M and all x, if and only if $||T(x/||x||)|| \le M$ for all $x \ne 0$. The last condition is equivalent to saying that $||T(x)|| \le M$ for all x of norm 1. Hence $\alpha = \gamma$.

- **5.** The first statement follows from the definition of the norm in l^2 . Because of the Riesz representation theorem it suffices to show that for every y we have $|\langle x_n, y \rangle| \to 0$ as $n \to \infty$. If $y = (\eta_j)$, then $|\langle x_n, y \rangle| \le ||x_n|| ||(0, \ldots, 0, \eta_{n+1}, \eta_{n+2}, \ldots)||$. Since $||x_n|| = 1$ and $||(0, \ldots, 0, \eta_{n+1}, \eta_{n+2}, \ldots)|| \to 0$ as $n \to \infty$, the required property follows.
- **6.** The property follows directly from the formula

$$||x|| = \sup_{f \in X' \setminus \{0\}} \frac{|f(x)|}{||f||},$$

or from the Hahn-Banach theorem.

- 7. We have $\langle Px, x Px \rangle = \langle Px, x \rangle \langle Px, Px \rangle = \langle Px, x \rangle \langle P^*Px, x \rangle = \langle Px, x \rangle \langle Px, x \rangle = 0$. So $H = \mathcal{R}(P) \oplus \mathcal{R}(I P)$ and $\mathcal{R}(P) \perp \mathcal{R}(I P)$. Note that since PP = P, we have Py = y if $y \in \mathcal{R}(P)$. So if (y_n) is a sequence in $\mathcal{R}(P)$ convergent to y, then $y = \lim y_n = \lim Py_n = Py$ because P is continuous, and therefore y is in the range of P.
- 8. The first part is virtually identical to Example 8.1-6 on page 409 in the textbook (with c_j replacing 1/j). The numbers c_j are the eigenvalues (and constitute the point spectrum), 0 is the only element of the continuous spectrum and the residual spectrum is empty.